Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 666: 107-115, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30940570

RESUMEN

Catalases are biotechnologically relevant enzymes because of their applications in food technology, bioremediation, and biomedicine. The dismutation of hydrogen peroxide occurs in two steps; in the first one, the enzyme forms an oxidized compound I (Cpd I) and in the second one, the enzyme is reduced to the ferric state. In this research work, we analyzed the reduction of Cpd I by X-ray radiation damage during diffraction experiments in crystals of CAT-3, a Large-Size Subunit Catalase (LSC) from Neurospora crassa. A Multi-Crystal Data collection Strategy was applied in order to obtain the Cpd I structure at a resolution of 2.2 Å; this intermediate was highly sensitive to X-ray and was easily reduced at very low deposited radiation dose, causing breakage of the Fe=O bond. The comparison of the structures showed reduced intermediates and also evidenced the differential sensitivity per monomer. The resting ferric state was reduced to the ferrous state, an intermediate without a previous report in LSC. The chemically obtained Cpd I and the X-ray reduced intermediates were identified by UV-visible microspectrometry coupled to data collection. The differential sensitivity and the formation of a ferrous state are discussed, emphasizing the importance of the correct interpretation in the oxidation state of the iron heme.


Asunto(s)
Catalasa/metabolismo , Compuestos Ferrosos/química , Neurospora crassa/enzimología , Catalasa/química , Dominio Catalítico , Cristalografía por Rayos X , Oxidación-Reducción , Conformación Proteica
2.
Chemistry ; 23(54): 13493-13500, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28744916

RESUMEN

With a view to characterizing the influence of the electronic structure of the Fe atom on the nature of its bond with dioxygen (O2 ) in heme compounds, a study of the UV/Vis action spectra and binding energies of heme-O2 molecules has been undertaken in the gas phase. The binding reaction of protonated ferrous heme [FeII -hemeH]+ with O2 has been studied in the gas phase by determining the equilibrium of complexed [FeII -hemeH(O2 )]+ with uncomplexed protonated heme in an ion trap at controlled temperatures. The binding energy of O2 to the Fe atom of protonated ferrous heme was obtained from a van't Hoff plot. Surprisingly, this energy (1540±170 cm-1 , 18.4±2 kJ mol-1 ) is intermediate between those of ferric heme and ferrous heme. This result is interpreted in terms of a delocalization of the positive charge over the porphyrin cycle, such that the Fe atom bears a fractional positive charge. The resulting electron distribution on the Fe atom differs notably from that of a purely low-spin ferrous heme [FeII -heme(O2 )] complex, as deduced from its absorption spectrum. It also differs from that of ferric heme [FeIII -heme(O2 )]+ , as evidenced by the absorption spectra. Protonated heme creates a specific bond that cannot accommodate strong σ donation.


Asunto(s)
Compuestos Férricos/química , Compuestos Ferrosos/química , Gases/química , Hemo/química , Oxígeno/química , Cinética , Protones , Espectrofotometría , Temperatura , Termodinámica
3.
J Biol Inorg Chem ; 21(5-6): 729-43, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27350154

RESUMEN

A series of ferrous-heme 2,6-dimethylphenyl isocyanide (DIMPI) and ferrous-heme mononitrosyl complexes have been synthesized and characterized. The heme portion of the complexes studied is varied with respect to the nature of the axial ligand, including complexes, where it is covalently tethered to the porphyrinate periphery. Reduced heme complexes, [(F8)Fe(II)], [(P(Py))Fe(II)], [(P(Im))Fe(II)], and [(P(ImH))Fe(II)], where F8 = tetrakis(2,6-difluorophenyl)-porphyrinate and P(Py), P(Im), and P(ImH) are partially fluorinated tetraaryl porphyrinates with covalently appended axial base pyridyl/imidazolyl or histamine moieties, were employed; P(ImH) is a new construct. Room temperature addition of DIMPI to these iron(II) complexes affords the bis-isocyanide species [(F8)Fe(II)-(DIMPI)2] in the case of [(F8)Fe(II)], while for the other hemes, mono-DIMPI compounds are obtained, [(P(Py))Fe(II)-(DIMPI)] [(2)-DIMPI], [(P(Im))Fe(II)-(DIMPI)] [(3)-DIMPI], and [(P(ImH))Fe(II)-(DIMPI)] [(4)-DIMPI]. The structures of complexes (3)-DIMPI and (4)-DIMPI have been determined by single crystal X-ray crystallography, where interesting H…F(porphryinate aryl group) interactions are observed. (19)F-NMR spectra determined for these complexes suggest that H…F(porphyrinate aryl groups) attractions also occur in solution, the H atom coming either from the DIMPI methyl groups or from a porphyinate axial base imidazole or porphyrinate pyrrole. Similarly, we have used nitrogen monoxide to generate ferrous-nitrosyl complexes, a five-coordinate species for F8, [(F8)Fe(II)-(NO)], or low-spin six-coordinate compounds [(P(Py))Fe(II)-(NO)], [(P(Im))Fe(II)-(NO)], and [(P(ImH))Fe(II)-(NO)]. The DIMPI and mononitrosyl complexes have also been characterized using UV-Vis, IR, (1)H-NMR, and EPR spectroscopies.


Asunto(s)
Cianuros/química , Compuestos Ferrosos/química , Compuestos Ferrosos/síntesis química , Hemo/química , Óxidos de Nitrógeno/química , Ligandos , Estructura Molecular
4.
Chempluschem ; : e202400550, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348283

RESUMEN

In this work heme models with four [Fe(II)(P)], five [Fe(II)(P)Im], [Fe(II)(P)(Im)O2] and six ligands [Fe(II)(P)(Im)O2], where P = porphyrin, with different spin states (ms =5, 3 and 1) of the iron atom were investigated using relativistic-corrected quantum chemistry methods (PW6B95-D3-DKH/jorge-TZP-DKH). Dependence of the iron-ligand bond properties on (i) spin state and (ii) number of ligands were analyzed using natural bond orbital analysis, electron density topology, electrostatic potential and electron localization function. It is shown that reversible binding of O2 is possible in case of formation of semicoordination bond between Fe(II) and imidazole. Binding of the fifth and sixth ligand from the energetic and orbital points of view is more favorable for the triplet Fe(II) state. At the same time for the six-coordinated complex [Fe(II)(P)(Im)O2] interconversion of Fe(II) electrons of valent 3d orbital from quintet to triplet and vice versa is possible under thermal fluctuations (energy barriers less than 2 kcal/mol).

5.
J Inorg Biochem ; 242: 112168, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36870164

RESUMEN

The cytochrome P450 superfamily of heme-thiolate monooxygenase enzymes can catalyse various oxidation reactions. The addition of a substrate or an inhibitor ligand induces changes in the absorption spectrum of these enzymes and UV-visible (UV-vis) absorbance spectroscopy is the most common and readily available technique used to interrogate their heme and active site environment. Nitrogen-containing ligands can inhibit the catalytic cycle of heme enzymes by interacting with the heme. Here we evaluate the binding of imidazole and pyridine-based ligands to the ferric and ferrous forms of a selection of bacterial cytochrome P450 enzymes using UV-visible absorbance spectroscopy. The majority of these ligands interact with the heme as one would expect for type II nitrogen directly coordinated to a ferric heme-thiolate species. However, the spectroscopic changes observed in the ligand-bound ferrous forms indicated differences in the heme environment across these P450 enzyme/ligand combinations. Multiple species were observed in the UV-vis spectra of the ferrous ligand-bound P450s. None of the enzymes gave rise to the isolation of a single species with a Soret band at ∼442-447 nm, indicative of a 6-coordinate ferrous thiolate species with a nitrogen-donor ligand. A ferrous species with Soret band at ∼427 nm coupled with an α-band of increased intensity was observed with the imidazole ligands. With some enzyme-ligand combinations reduction resulted in breaking of the iron­nitrogen bond yielding a 5-coordinate high-spin ferrous species. In other instances, the ferrous form was readily oxidised back to the ferric form on addition of the ligand.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hierro , Ligandos , Sistema Enzimático del Citocromo P-450/metabolismo , Hierro/química , Oxidación-Reducción , Hemo/química , Imidazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA