Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 23(7): e54755, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35642585

RESUMEN

Malaria is the most serious mosquito-borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub-populations. Seeking to identify EV subpopulations, we subject malaria-derived EVs to size-separation analysis, using asymmetric flow field-flow fractionation. Multi-technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement-system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine-learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.


Asunto(s)
Vesículas Extracelulares , Malaria , Parásitos , Animales , Eritrocitos/parasitología , Vesículas Extracelulares/metabolismo , Humanos , Plasmodium falciparum
2.
Arch Toxicol ; 98(3): 769-777, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38221537

RESUMEN

We established a size separation method for silica nanoparticles (SiNPs) measuring 10, 30, 50, 70, and 100 nm in diameter using asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry (AF4-ICP-MS), and evaluated the cytotoxicity of SiNPs in human hepatoma HepG2 cells. Analysis of the mixture sample revealed that nanoparticles of different sizes were eluted at approximately 2-min intervals, with no effect on each elution time or percentage recovery. Compared with larger SiNPs, smaller SiNPs exhibited high cytotoxicity when the volume of SiNPs exposed to the cells was the same. We measured SiNPs in culture medium and inside cells by AF4-ICP-MS and found that approximately 17% of SiNPs in the mixture of five differently sized particles were absorbed by the cells. Transmission electron microscopy revealed that 10 nm SiNPs formed aggregates and accumulated in the cells. Based on AF4-ICP-MS analysis, there is no clear difference in the particle volume absorbed by the cells among different sizes. Therefore, the high toxicity of small SiNPs can be explained by the fact that their large surface area relative to particle volume efficiently induces toxicological influences. Indeed, the large surface area of 10 nm SiNPs significantly contributed to the production of reactive oxygen species.


Asunto(s)
Fraccionamiento de Campo-Flujo , Nanopartículas , Humanos , Dióxido de Silicio/toxicidad , Dióxido de Silicio/química , Fraccionamiento de Campo-Flujo/métodos , Células Hep G2 , Espectrometría de Masas/métodos , Nanopartículas/toxicidad , Nanopartículas/química , Tamaño de la Partícula
3.
Environ Geochem Health ; 46(10): 367, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167245

RESUMEN

Due to very high mobility in the environment and penetration ability into living organisms, nanoparticles (NPs) of urban dust pose a potential threat to human health and urban ecosystems. Currently, data on the chemical composition of NPs of urban dust, their fate in the environment, and corresponding risks are rather limited. In the present work, NPs of deposited urban dust have been comprehensively studied for the first time; NPs isolated from 78 samples of dust collected in Moscow, the largest megacity in Europe, being taken as example. The elemental composition, potential sources as well as environmental, ecological, and health risks of NPs of urban dust are assessed. It is found that dust NPs are extremely enriched by Cu, Hg, Zn, Mo, Sb, and Pb, and can serve as their carrier in urban environments. No regularities in the spatial distribution of elements have been found, probably, due to high mobility of dust NPs. High ecological and health risks caused by dust NPs are demonstrated. Source apportionment study has evaluated one natural and two anthropogenic sources of elements in NPs of urban dust; the contribution of natural and anthropogenic sources being comparable. It is also shown that dust NPs may be considered as an important carrier of trace elements in urban aquatic systems. Additionally, the risks associated with NPs and bulk samples of dust have been compared. The observed risks associated with NPs are significantly higher.


Asunto(s)
Ciudades , Polvo , Monitoreo del Ambiente , Nanopartículas , Polvo/análisis , Nanopartículas/análisis , Humanos , Medición de Riesgo , Metales Pesados/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Ambientales/análisis
4.
Environ Sci Technol ; 57(26): 9843-9853, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37342885

RESUMEN

The association of arsenic (As) with colloidal particles could facilitate its transport to adjacent water systems or alter its availability in soil-rice systems. However, little is known about the size distribution and composition of particle-bound As in paddy soils, particularly under changing redox conditions. Here, we incubated four As-contaminated paddy soils with distinctive geochemical properties to study the mobilization of particle-bound As during soil reduction and subsequent reoxidation. Using transmission electron microscopy-energy dispersive spectroscopy and asymmetric flow field-flow fractionation, we identified organic matter (OM)-stabilized colloidal Fe, most likely in the form of (oxy)hydroxide-clay composite, as the main arsenic carriers. Specifically, colloidal As was mainly associated with two size fractions of 0.3-40 and >130 kDa. Soil reduction facilitated the release of As from both fractions, whereas reoxidation caused their rapid sedimentation, coinciding with solution Fe variations. Further quantitative analysis demonstrated that As concentrations positively correlated with both Fe and OM concentrations at nanometric scales (0.3-40 kDa) in all studied soils during reduction and reoxidation, yet the correlations are pH-dependent. This study provides a quantitative and size-resolved understanding of particle-bound As in paddy soils, highlighting the importance of nanometric Fe-OM-As interactions in paddy As geochemical cycling.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Arsénico/química , Contaminación Ambiental/análisis , Suelo/química , Coloides/metabolismo
5.
Anal Bioanal Chem ; 415(1): 7-16, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36085421

RESUMEN

While the exact health risks associated with nanoplastics are currently the focus of intense research, there is no doubt that humans are exposed to nanoplastics and that food could be a major source of exposure. Nanoplastics are released from plastic materials and articles used during food production, processing, storage, preparation, and serving. They are also likely to enter the food chain via contaminated water, air, and soil. However, very limited exposure data for risk assessment exists so far due to the lack of suitable analytical methods. Nanoplastic detection in food poses a great analytical challenge due to the complexity of plastics and food matrices as well as the small size and expectedly low concentration of the plastic particles. Multidetector field flow fractionation has emerged as a valuable analytical technique for nanoparticle separation over the last decades, and the first studies using the technique for analyzing nanoplastics in complex matrices are emerging. In combination with online detectors and offline analysis, multidetector field flow fractionation is a powerful platform for advanced characterization of nanoplastics in food by reducing sample complexity, which otherwise hampers the full potential of most analytical techniques. The focus of this article is to present the current state of the art of multidetector field flow fractionation for nanoplastic analysis and to discuss future trends and needs aiming at the analysis of nanoplastics in food.


Asunto(s)
Alimentos , Fraccionamiento de Campo-Flujo , Nanopartículas , Contaminantes Químicos del Agua , Humanos , Fraccionamiento de Campo-Flujo/métodos , Microplásticos/análisis , Nanopartículas/análisis , Tamaño de la Partícula , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Análisis de los Alimentos
6.
Anal Bioanal Chem ; 415(25): 6363-6373, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37606645

RESUMEN

Coiled tube field-flow fractionation (CTFFF) is currently applied to environmental and material studies. In the present work, a novel zone elution mode in CTFFF has been proposed and developed. Zone elution mode is based on the separation of particles by stepwise decreasing the flow rate of the carrier fluid and their subsequent elution at a constant flow rate. The fractionation parameters were optimized using a mixture of standard silica submicron particles (150, 390, and 900 nm). Taking samples of volcanic ash as examples, it has been demonstrated that zone elution mode can be successfully used for the fractionation of environmental nano- and submicron particles. For the first time, CTFFF was coupled online with a dynamic light scattering detector for the size characterization of eluted particles. Zone elution in CTFFF can serve for the further development of hyphenated techniques enabling efficient fractionation and size/elemental characterization of environmental particles in nano- and submicrometric size ranges.

7.
Anal Bioanal Chem ; 415(11): 2113-2120, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36604335

RESUMEN

Electrical asymmetric-flow field-flow fractionation (EAF4) is a new and interesting analytical technique recently proposed for the characterization of metallic nanoparticles (NPs). It has the potential to simultaneously provide relevant information about size and electrical parameters, such as electrophoretic mobility (µ) and zeta-potential (ζ), of individual NP populations in an online instrumental setup with an array of detectors. However, several chemical and instrumental conditions involved in this technique are definitely influential, and only few applications have been proposed until now. In the present work, an EAF4 system has been used with different detectors, ultraviolet-visible (UV-vis), multi-angle light scattering (MALS), and inductively coupled plasma with triple quadrupole mass spectrometry (ICP-TQ-MS) for the characterization of gold, silver, and platinum NPs with both citrate and phosphate coatings. The behavior of NPs has been studied in terms of retention time and signal intensity under both positive and negative current with results depending on the coating. Carrier composition, particularly ionic strength, was found to be critical to achieve satisfactory recoveries and a reliable measurement of electrical parameters. Dynamic light scattering (DLS) has been used as a comparative technique for these parameters. The NovaChem surfactant mix (0.01%) showed a quantitative recovery (93 ± 1%) of the membrane, but the carrier had to be modified by increasing the ionic strength with 200 µM of Na2CO3 to achieve consistent µ values. However, ζ was one order of magnitude lower in EAF4-UV-vis-MALS than in DLS, probably due to different electric processes in the channel. From a practical point of view, EAF4 technique is still in its infancy and further studies are necessary for a robust implementation in the characterization of NPs.

8.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38067805

RESUMEN

The early-stage diagnosis of cancer is a crucial clinical need. The inadequacies of surgery tissue biopsy have prompted a transition to a less invasive profiling of molecular biomarkers from biofluids, known as liquid biopsy. Exosomes are phospholipid bilayer vesicles present in many biofluids with a biologically active cargo, being responsible for cell-to-cell communication in biological systems. An increase in their excretion and changes in their cargo are potential diagnostic biomarkers for an array of diseases, including cancer, and they constitute a promising analyte for liquid biopsy. The number of exosomes released, the morphological properties, the membrane composition, and their content are highly related to the physiological and pathological states. The main analytical challenge to establishing liquid biopsy in clinical practice is the development of biosensors able to detect intact exosomes concentration and simultaneously analyze specific membrane biomarkers and those contained in their cargo. Before analysis, exosomes also need to be isolated from biological fluids. Microfluidic systems can address several issues present in conventional methods (i.e., ultracentrifugation, size-exclusion chromatography, ultrafiltration, and immunoaffinity capture), which are time-consuming and require a relatively high amount of sample; in addition, they can be easily integrated with biosensing systems. A critical review of emerging microfluidic-based devices for integrated biosensing approaches and following the major analytical need for accurate diagnostics is presented here. The design of a new miniaturized biosensing system is also reported. A device based on hollow-fiber flow field-flow fractionation followed by luminescence-based immunoassay is applied to isolate intact exosomes and characterize their cargo as a proof of concept for colon cancer diagnosis.


Asunto(s)
Neoplasias del Colon , Exosomas , Humanos , Exosomas/química , Microfluídica , Biopsia Líquida/métodos , Biomarcadores/análisis , Neoplasias del Colon/diagnóstico , Comunicación Celular
9.
Molecules ; 28(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37375222

RESUMEN

Gastrodia elata ("Tian Ma" in Chinese) is used as a food and medical ingredient in traditional Chinese medicine. In this study, to enhance the anti-breast cancer activity of Gastrodia elata polysaccharide (GEP), GEPs were modified via sulfidation (SGEP) and acetylation (AcGEP). The physicochemical properties (such as solubility and substitution degree) and structural information (such as molecular weight Mw and radius of gyration Rg) of GEP derivatives were determined by Fourier transformed infrared (FTIR) spectroscopy and asymmetrical flow field-flow fractionation (AF4) coupled online with multiangle light scattering (MALS) and differential refractive index (dRI) detectors (AF4-MALS-dRI). The effects of the structural modification of GEP on the proliferation, apoptosis, and cell cycle of MCF-7 cell were studied systematically. The ability of MCF-7 cell for the uptake of GEP was studied by laser scanning confocal microscopy (LSCM). The results suggested that the solubility and anti-breast cancer activity of GEP were enhanced and the average Rg and Mw of GEP decreased after chemical modification. The AF4-MALS-dRI results showed that the chemical modification process simultaneously caused the degradation and aggregation of GEPs. The LSCM results revealed that more SGEP can enter the MCF-7 cell interior compared with AcGEP. The results indicated that the structure of AcGEP could play a dominating role in antitumor activity. The data obtained in this work can be used as a starting point for investigating the structure-bioactivity of GEPs.


Asunto(s)
Fraccionamiento de Campo-Flujo , Gastrodia , Neoplasias , Humanos , Gastrodia/química , Polisacáridos/farmacología , Medicina Tradicional China , Fraccionamiento de Campo-Flujo/métodos
10.
Molecules ; 28(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241911

RESUMEN

Asymmetric-flow field-flow fractionation (AF4) is a gentle, flexible, and powerful separation technique that is widely utilized for fractionating nanometer-sized analytes, which extend to many emerging nanocarriers for drug delivery, including lipid-, virus-, and polymer-based nanoparticles. To ascertain quality attributes and suitability of these nanostructures as drug delivery systems, including particle size distributions, shape, morphology, composition, and stability, it is imperative that comprehensive analytical tools be used to characterize the native properties of these nanoparticles. The capacity for AF4 to be readily coupled to multiple online detectors (MD-AF4) or non-destructively fractionated and analyzed offline make this technique broadly compatible with a multitude of characterization strategies, which can provide insight on size, mass, shape, dispersity, and many other critical quality attributes. This review will critically investigate MD-AF4 reports for characterizing nanoparticles in drug delivery, especially those reported in the last 10-15 years that characterize multiple attributes simultaneously downstream from fractionation.


Asunto(s)
Fraccionamiento de Campo-Flujo , Nanopartículas , Nanoestructuras , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Polímeros , Fraccionamiento de Campo-Flujo/métodos , Tamaño de la Partícula
11.
Molecules ; 28(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37687030

RESUMEN

Field-flow fractionation (FFF) is a family of single-phase separative techniques exploited to gently separate and characterize nano- and microsystems in suspension. These techniques cover an extremely wide dynamic range and are able to separate analytes in an interval between a few nm to 100 µm size-wise (over 15 orders of magnitude mass-wise). They are flexible in terms of mobile phase and can separate the analytes in native conditions, preserving their original structures/properties as much as possible. Molecular biology is the branch of biology that studies the molecular basis of biological activity, while biotechnology deals with the technological applications of biology. The areas where biotechnologies are required include industrial, agri-food, environmental, and pharmaceutical. Many species of biological interest belong to the operational range of FFF techniques, and their application to the analysis of such samples has steadily grown in the last 30 years. This work aims to summarize the main features, milestones, and results provided by the application of FFF in the field of molecular biology and biotechnology, with a focus on the years from 2000 to 2022. After a theoretical background overview of FFF and its methodologies, the results are reported based on the nature of the samples analyzed.


Asunto(s)
Biotecnología , Fraccionamiento de Campo-Flujo , Biología Molecular , Alimentos , Industrias
12.
Environ Sci Technol ; 56(15): 10668-10680, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35731699

RESUMEN

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is typically used to quantify surface interactions between engineered nanoparticles (ENPs), soil nanoparticles (SNPs), and/or porous media, which are used to assess environmental risk and fate of ENPs. This study investigates the co-transport behavior of functionalized multiwalled carbon nanotubes (MWCNTs) with positively (goethite nanoparticles, GNPs) and negatively (bentonite nanoparticles, BNPs) charged SNPs in quartz sand (QS). The presence of BNPs increased the transport of MWCNTs, but GNPs inhibited the transport of MWCNTs. In addition, we, for the first time, observed that the transport of negatively (BNPs) and positively (GNPs) charged SNPs was facilitated by the presence of MWCNTs. Traditional mechanisms associated with competitive blocking, heteroaggregation, and classic DLVO calculations cannot explain such phenomena. Direct examination using batch experiments and Fourier transform infrared (FTIR) spectroscopy, asymmetric flow field flow fractionation (AF4) coupled to UV and inductively coupled plasma mass spectrometry (AF4-UV-ICP-MS), and molecular dynamics (MD) simulations demonstrated that MWCNTs-BNPs or MWCNT-GNPs complexes or aggregates can be formed during co-transport. Non-DLVO interactions (e.g., H-bonding and Lewis acid-base interaction) helped to explain observed MWCNT deposition, associations between MWCNTs and both SNPs (positively or negatively), and co-transport. This research sheds novel insight into the transport of MWCNTs and SNPs in porous media and suggests that (i) mutual effects between colloids (e.g., heteroaggregation, co-transport, and competitive blocking) need to be considered in natural soil; and (ii) non-DLVO interactions should be comprehensively considered when evaluating the environmental risk and fate of ENPs.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Coloides , Nanopartículas/química , Nanotubos de Carbono/química , Porosidad , Suelo
13.
Environ Sci Technol ; 56(19): 14133-14145, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36108131

RESUMEN

Colloidal organo-mineral associations contribute to soil organic matter (OM) preservation and mainly occur in two forms: (i) as water-dispersible colloids that are potentially mobile (free colloids) and (ii) as building units of soil microaggregates that are occluded inside them (occluded colloids). However, the way in which these two colloidal forms differ in terms of textural characteristics and chemical composition, together with the nature of their associated OM, remains unknown. To fill these knowledge gaps, free and occluded fine colloids <220 nm were isolated from arable soils with comparable organic carbon (Corg) but different clay contents. Free colloids were dispersed in water suspensions during wet-sieving, while occluded colloids were released from water-stable aggregates by sonication. The asymmetric flow field-flow fractionation analysis on the free and occluded colloids suggested that most of the 0.6-220 nm fine colloidal Corg was present in size fractions that showed high abundances of Si, Al, and Fe. The pyrolysis-field ionization mass spectrometry revealed that the free colloids were relatively rich in less decomposed plant-derived OM (i.e., lipids, suberin, and free fatty acids), whereas the occluded colloids generally contained more decomposed and microbial-derived OM (i.e., carbohydrates and amides). In addition, a higher thermal stability of OM in occluded colloids pointed to a higher resistance to further degradation and mineralization of OM in occluded colloids than that in free colloids. This study provides new insights into the characteristics of subsized fractions of fine colloidal organo-mineral associations in soils and explores the impacts of free versus occluded colloidal forms on the composition and stability of colloid-associated OM.


Asunto(s)
Ácidos Grasos no Esterificados , Suelo , Amidas , Carbohidratos , Carbono/análisis , Arcilla , Coloides/química , Minerales/química , Suelo/química , Agua
14.
Anal Bioanal Chem ; 414(29-30): 8191-8200, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36198918

RESUMEN

Physiochemical degradation of therapeutic proteins in vivo during plasma circulation after administration can have a detrimental effect on their efficacy and safety profile. During drug product development, in vivo animal studies are necessary to explore in vivo protein behaviour. However, these studies are very demanding and expensive, and the industry is working to decrease the number of in vivo studies. Consequently, there is considerable interest in the development of methods to pre-screen the behaviour of therapeutic proteins in vivo using in vitro analysis. In this work, asymmetrical flow field-flow fractionation (AF4) and liquid chromatography-mass spectrometry (LC-MS) were combined to develop a novel analytical methodology for predicting the behaviour of therapeutic proteins in vivo. The method was tested with two proteins, a monoclonal antibody and a serum albumin binding affibody. After incubation of the proteins in plasma, the method was successfully used to investigate and quantify serum albumin binding, analyse changes in monoclonal antibody size, and identify and quantify monoclonal antibody aggregates.


Asunto(s)
Fraccionamiento de Campo-Flujo , Animales , Humanos , Fraccionamiento de Campo-Flujo/métodos , Cromatografía Liquida , Espectrometría de Masas , Anticuerpos Monoclonales , Albúmina Sérica
15.
Anal Bioanal Chem ; 414(18): 5519-5527, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35182166

RESUMEN

Aptamers are biomimetic receptors that are increasingly exploited for the development of optical and electrochemical aptasensors. They are selected in vitro by the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure, but although they are promising recognition elements, for their reliable applicability for analytical purposes, one cannot ignore sample components that cause matrix effects. This particularly applies when different SELEX-selected aptamers and related truncated sequences are available for a certain target, and the choice of the aptamer should be driven by the specific downstream application. In this context, the present work aimed at investigating the potentialities of asymmetrical flow field-flow fractionation (AF4) with UV detection for the development of a screening method of a large number of anti-lysozyme aptamers towards lysozyme, including randomized sequences and an interfering agent (serum albumin). The possibility to work in native conditions and selectively monitor the evolution of untagged aptamer signal as a result of aptamer-protein binding makes the devised method effective as a strategy for shortlisting the most promising aptamers both in terms of affinity and in terms of selectivity, to support subsequent development of aptamer-based analytical devices.


Asunto(s)
Aptámeros de Nucleótidos , Técnica SELEX de Producción de Aptámeros , Aptámeros de Nucleótidos/metabolismo , Ligandos , Unión Proteica , Técnica SELEX de Producción de Aptámeros/métodos
16.
Subcell Biochem ; 97: 89-97, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33779915

RESUMEN

Extracellular vesicles (EVs) are described as membranous vesicles that are secreted by various cell types. EVs can be categorised as exosomes, ectosomes, apoptotic bodies, large oncosomes and migrasomes. EVs are heterogeneous in nature according to their origin, mode of release, size, and biochemical contents. Herein, we discuss a recently discovered subpopulation of EVs called 'exomeres'. Unlike the other subtypes of EVs, exomeres are defined as non-membranous nanovesicles with a size ≤50 nm. They can be isolated using asymmetric-flow field-flow fractionation as well as ultracentrifugation. The cargo of exomeres are beginning to be unravelled and are highlighted to be enriched with proteins implicated in regulating metabolic pathways. Consistent with other types of EVs, exomeres also contain nucleic acids and lipids which can be delivered to recipient cells. These discoveries highlight the complex heterogeneity of EVs and thereby necessitates further attention to understand the nature of each subpopulation more exclusively. Overall, this chapter describes the current knowledge on exomeres.


Asunto(s)
Exosomas , Vesículas Extracelulares , Transporte Biológico , Exosomas/genética , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Lípidos , Proteínas/metabolismo
17.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36555765

RESUMEN

Size and zeta potential are critical physicochemical properties of nanoparticles (NPs), influencing their biological activity and safety profile. These are essential for further industrial upscale and clinical success. However, the characterization of polydisperse, non-spherical NPs is a challenge for traditional characterization techniques (ex., dynamic light scattering (DLS)). In this paper, superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyvinyl alcohol (PVAL) exhibiting different terminal groups at their surface, either hydroxyl (OH), carboxyl (COOH) or amino (NH2) end groups. Size, zeta potential and concentration were characterized by orthogonal methods, namely, batch DLS, nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), transmission electron microscopy (TEM), asymmetric flow field flow fractionation (AF4) coupled to multi-angle light scattering (MALS), UV-Visible and online DLS. Finally, coated SPIONs were incubated with albumin, and size changes were monitored by AF4-MALS-UV-DLS. NTA showed the biggest mean sizes, even though DLS PVAL-COOH SPION graphs presented aggregates in the micrometer range. TRPS detected more NPs in suspension than NTA. Finally, AF4-MALS-UV-DLS could successfully resolve the different sizes of the coated SPION suspensions. The results highlight the importance of combining techniques with different principles for NPs characterization. The advantages and limitations of each method are discussed here.


Asunto(s)
Nanopartículas , Polímeros , Tamaño de la Partícula , Dispersión Dinámica de Luz , Nanopartículas/química , Nanopartículas Magnéticas de Óxido de Hierro , Alcohol Polivinílico
18.
Molecules ; 27(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080254

RESUMEN

Aggregation is among the most critical parameters affecting the pharmacological and safety profile of peptide Active Pharmaceutical Ingredients (APIs). For this reason, it is of utmost importance to define the exact aggregation state of peptide drugs, particularly when the API is marketed as a ready-to-use solution. Consequently, appropriate non-destructive techniques able to replicate the peptide environment must be employed. In our work, we exploited Asymmetrical Flow Field-Flow Fractionation (AF4), connected to UV, dRI, fluorescence, and MALS detectors, to fully characterize the aggregation state of Liraglutide, a peptide API used for the treatment of diabetes type 2 and chronic obesity. In previous studies, Liraglutide was hypothesized to assemble into hexa-octamers in phosphate buffer, but no information on its behavior in the formulation medium was provided up to now. The method used allowed researchers to work using formulation as the mobile phase with excellent recoveries and LoQ/LoD, discerning between stable and degraded samples, and detecting, when present, aggregates up to 108 Da. The native state of Liraglutide was assessed and found to be an association into pentamers, with a non-spherical conformation. Combined to benchmark analyses, the sameness study was complete and descriptive, also giving insight on the aggregation process and covalent/non-covalent aggregate types.


Asunto(s)
Fraccionamiento de Campo-Flujo , Liraglutida , Fraccionamiento de Campo-Flujo/métodos
19.
Molecules ; 27(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080273

RESUMEN

Tomato sauce is a world famous food product. Despite standards regulating the production of tomato derivatives, the market suffers frpm fraud such as product adulteration, origin mislabelling and counterfeiting. Methods suitable to discriminate the geographical origin of food samples and identify counterfeits are required. Chemometric approaches offer valuable information: data on tomato sauce is usually obtained through chromatography (HPLC and GC) coupled to mass spectrometry, which requires chemical pretreatment and the use of organic solvents. In this paper, a faster, cheaper, and greener analytical procedure has been developed for the analysis of volatile organic compounds (VOCs) and the colloidal fraction via multivariate statistical analysis. Tomato sauce VOCs were analysed by GC coupled to flame ionisation (GC-FID) and to ion mobility spectrometry (GC-IMS). Instead of using HPLC, the colloidal fraction was analysed by asymmetric flow field-fractionation (AF4), which was applied to this kind of sample for the first time. The GC and AF4 data showed promising perspectives in food-quality control: the AF4 method yielded comparable or better results than GC-IMS and offered complementary information. The ability to work in saline conditions with easy pretreatment and no chemical waste is a significant advantage compared to environmentally heavy techniques. The method presented here should therefore be taken into consideration when designing chemometric approaches which encompass a large number of samples.


Asunto(s)
Solanum lycopersicum , Compuestos Orgánicos Volátiles , Quimiometría , Cromatografía de Gases y Espectrometría de Masas/métodos , Análisis de Componente Principal , Compuestos Orgánicos Volátiles/análisis
20.
Chimia (Aarau) ; 76(1-2): 34-44, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38069747

RESUMEN

Asymmetrical flow field-flow fractionation (AF4) is a powerful technique employed for the separation of macromolecules, nanoparticles, and their assemblages according to their hydrodynamic behavior. It is well known that at this size range, complex interactions can occur between components (e.g. surface adsorption, aggregation) controlling the fate of trace metals (TMs) bound to them. AF4 coupling to inductively coupled plasma mass spectrometry (ICP-MS) allows the quantification of metal-containing species at trace levels present in environmental and biological systems on a size-composition basis. The combination of AF4-ICP-MS with other online detectors provides additional information that allows the assessment of the origin of analytes present in mixtures and complex matrixes with minimal sample preparation, which is crucial for understanding the behavior of trace metal contaminants. Despite the increasing use of AF4-ICP-MS in environmental contexts, we acknowledge that the quantification of inorganic species using such combined techniques requires further development of standardized procedures and need certified reference materials. In this review, we also discuss critical endpoints within the ICP-MS instrument coupled to AF4 that need to be controlled before quantitative measurements can be validated. Then, we illustrate how the combination of different online detectors in addition to ICP-MS offers an integrated picture of natural components states, thus providing key information on the changes in behavior of trace metal species and metallic nanoparticles (MNPs) as observed in both environmental samples and biofluids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA