RESUMEN
Semaglutide is currently the most promising antidiabetic drug, especially for the treatment of type 2 diabetes mellitus, due to its excellent efficacy in glycemic control and weight loss. However, the production of semaglutide remains high cost, and high yield, low cost, and high purity still remains a challenge. Herein, we reported a convenient and high-yield strategy for the preparation of semaglutide through fragmented condensation coupling, involving solid-phase peptide synthesis of tetrapeptide and on-column refolding and on-column enzyme cleavage based inclusion body expression of Lys26Arg34GLP-1 (11-37) with fused protein tags in an X-Y-D4K-G pattern. The optimized N-terminal protein tag significantly boosts inclusion body expression level, while on-column refolding and on-column enzyme cleavage avoid precipitation, enhancing efficiency and yield together with one-step purification. The successful preparation of semaglutide is expected to achieve large-scale industrial production with low cost, high yield and high purity.
Asunto(s)
Péptidos Similares al Glucagón , Cuerpos de Inclusión , Técnicas de Síntesis en Fase Sólida , Péptidos Similares al Glucagón/química , Técnicas de Síntesis en Fase Sólida/métodos , Cuerpos de Inclusión/química , Escherichia coli/genética , Escherichia coli/metabolismo , Hipoglucemiantes/química , HumanosRESUMEN
Dolastatin 10 (Dol-10), a natural marine-source pentapeptide, is a powerful antimitotic agent regarded as one of the most potent anticancer compounds found to date. Dol-10 however, lacks chemical conjugation capabilities, which restricts the feasibility of its application in targeted drug therapy. This limitation has spurred the prospect that chemical structure of the parent molecule might allow conjugation of the derivatives to drug carriers such as antibodies. By first employing docking studies, we designed and prepared a series of novel Dol-10 analogs with a modified C-terminus, preserving high potency of the parent compound while enhancing conjugation capability. The modifications involved the introduction of a methyleneamine functionality at position 4 of the 1,3-thiazole ring, along with the substitution of the thiazole ring with a 1,2,3-triazole moiety, furnished with methylenehydroxy, carboxy, methyleneamine, and N(Me)-methyleneamine tethering functionalities at position 4. Among the synthesized pentapeptides, DA-1 exhibited the highest potency in prostate cancer (PC-3) cells, eliciting apoptosis (IC50 0.2 ± 0.1 nm) and cell cycle arrest at the mitotic stage after at least 6 days of culture. This delayed response suggests the accumulation of cellular stress or significant physiological alterations that profoundly impact the cell cycle. We believe that these novel Dol-10 derivates represent a new and straightforward route for the development of C-terminus modified Dol-10-based microtubule inhibitors, thereby advancing targeted anticancer therapy.
Asunto(s)
Antineoplásicos , Proliferación Celular , Depsipéptidos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Depsipéptidos/química , Depsipéptidos/farmacología , Depsipéptidos/síntesis química , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Estructura Molecular , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Apoptosis/efectos de los fármacos , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis químicaRESUMEN
Morpholine, which scores 7.5 in terms of greenness and is not a regulated substance, could be considered a strong contender for Fmoc removal in solid-phase peptide synthesis (SPPS). Morpholine in dimethylformamide (DMF) (50%-60%) efficiently removes Fmoc in SPPS, minimizes the formation of diketopiperazine, and almost avoids the aspartimide formation. As a proof of concept, somatostatin has been synthesized using 50% morpholine in DMF with the same purity as when using 20% piperidine-DMF.
Asunto(s)
Fluorenos , Técnicas de Síntesis en Fase Sólida , Fluorenos/química , MorfolinasRESUMEN
The self-assembly in aqueous solution of three Fmoc-amino acids with hydrophobic (aliphatic or aromatic, alanine or phenylalanine) or hydrophilic cationic residues (arginine) is compared. The critical aggregation concentrations were obtained using intrinsic fluorescence or fluorescence probe measurements, and conformation was probed using circular dichroism spectroscopy. Self-assembled nanostructures were imaged using cryo-transmission electron microscopy and small-angle X-ray scattering (SAXS). Fmoc-Ala is found to form remarkable structures comprising extended fibril-like objects nucleating from spherical cores. In contrast, Fmoc-Arg self-assembles into plate-like crystals. Fmoc-Phe forms extended structures, in a mixture of straight and twisted fibrils coexisting with nanotapes. Spontaneous flow alignment of solutions of Fmoc-Phe assemblies is observed by SAXS. The cytocompatibility of the three Fmoc-amino acids was also compared via MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] mitochondrial activity assays. All three Fmoc-amino acids are cytocompatible with L929 fibroblasts at low concentration, and Fmoc-Arg shows cell viability up to comparatively high concentration (0.63 mM).
Asunto(s)
Aminoácidos , Fluorenos , Interacciones Hidrofóbicas e Hidrofílicas , Fluorenos/química , Aminoácidos/química , Animales , Ratones , Supervivencia Celular/efectos de los fármacosRESUMEN
Glioblastoma multiforme therapy remains a significant challenge since there is a lack of effective treatment for this cancer. As most of the examined gliomas express or overexpress cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptors γ (PPARγ), we decided to use these proteins as therapeutic targets. Toxicity, antiproliferative, proapoptotic, and antimigratory activity of COX-2 inhibitor (celecoxib-CXB) and/or PPARγ agonist (Fmoc-L-Leucine-FL) was examined in vitro on temozolomide resistant U-118 MG glioma cell line and comparatively on BJ normal fibroblasts and immortalized HaCaT keratinocytes. The in vivo activity of both agents was studied on C. elegans nematode. Both drugs effectively destroyed U-118 MG glioma cells via antiproliferative, pro-apoptotic, and anti-migratory effects in a concentration range 50-100 µM. The mechanism of action of CXB and FL against glioma was COX-2 and PPARγ dependent and resulted in up-regulation of these factors. Unlike reports by other authors, we did not observe the expected synergistic or additive effect of both drugs. Comparative studies on normal BJ fibroblast cells and immortalized HaCaT keratinocytes showed that the tested drugs did not have a selective effect on glioma cells and their mechanism of action differs significantly from that observed in the case of glioma. HaCaTs did not react with concomitant changes in the expression of COX-2 and PPARγ and were resistant to FL. Safety tests of repurposing drugs used in cancer therapy tested on C. elegans nematode indicated that CXB, FL, or their mixture at a concentration of up to 100 µM had no significant effect on the entire nematode organism up to 4th day of incubation. After a 7-day treatment, CXB significantly shortened the lifespan of C. elegans at 25-400 µM concentration and body length at 50-400 µM concentration.
Asunto(s)
Caenorhabditis elegans , Glioblastoma , Leucina/análogos & derivados , Animales , Humanos , Celecoxib/farmacología , Celecoxib/uso terapéutico , Temozolomida/farmacología , Temozolomida/uso terapéutico , Caenorhabditis elegans/metabolismo , Ciclooxigenasa 2/metabolismo , PPAR gamma/metabolismo , Sulfonamidas/farmacología , Pirazoles/farmacología , Apoptosis , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Línea Celular , Glioblastoma/tratamiento farmacológico , Línea Celular TumoralRESUMEN
1. In order to compare the difference between different derivatisations for amino acids determination of foie gras via, reversed phase high performance liquid chromatography (HPLC), O-phthalaldehyde and 9-fluorenyl-methyl chloroformate (OPA-FMOC group), phenylisothiocyanate (PITC group) and 6-Aminoquinolyl-N-hydrox-ysuccinimidyl Carbamate (AQC group) were applied to derivatisation reagent in this current experiment. The determination results of automatic amino acid analyser were applied, and 17 amino acids were detected by these three derivatisation methods.2. The running times of OPA-FMOC group, PITC group and AQC group were 18, 45 and 35 min, respectively. There was a large difference between the results of OPA-FMOC group and results from the automatic amino acid analyser, although the difference between the results from PITC and the automatic amino acid analyser was minimal.3. In conclusion, the running time of OPA-FMOC group was shorter than that of PITC group and AQC group; the accuracy of the former was better than the OPA-FMOC group and AQC group for the determination of amino acid of foie gras.
RESUMEN
Antimicrobial peptides (AMPs) are vital components of the nonspecific immune system that represent a promising broad-spectrum alternative to conventional antibiotics. Several short cationic antimicrobial peptides show highly effective antibacterial activity and low hemolytic activity, which are based on the action of a few critical amino acids, such as phenylalanine (F) and lysine (K). Previous studies have reported that Fmoc-based phenylalanine peptides possess appreciable antibacterial potency against Gram-positive bacteria, but their ability to kill Gram-negative bacteria was suboptimal. In this study, we designed and prepared a series of Fmoc-KnF peptide (n = 1-3) series by adding lysine motifs to strengthen their broad-spectrum antibacterial activity. The effect was investigated that the amount of lysine in Fmoc-F peptides on their antibacterial properties and hemolytic activities. Our results showed that the Fmoc-KKF peptide holds the strongest antimicrobial activity against both Gram-positive and negative bacteria among all designed peptides, as well as low hemolytic activity. These results provide support for the general strategy of enhancing the broad-spectrum antibacterial activity of AMPs through increased lysine content.
Asunto(s)
Péptidos Catiónicos Antimicrobianos , Lisina , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Lisina/química , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Bacterias Gramnegativas , Fenilalanina/química , Pruebas de Sensibilidad MicrobianaRESUMEN
Short and ultra-short peptides have been recently envisioned as excellent building blocks for the formulation of hydrogels with appealing properties. Due to its simplicity and capability to gel under physiological conditions, Fmoc-FF (Nα -fluorenylmethoxycarbonyl-diphenylalanine), remains one of the most studied low molecular-weight hydrogelators. Since its first identification in 2006, a plethora of its analogues were synthetized and investigated for the fabrication of novel supramolecular materials. Here we report a description of the Fmoc-FF analogues in which the aromatic Fmoc group is replaced with other substituents. These analogues are distinguished into five different classes including derivatives: i) customized with solid phase peptide synthesis protecting groups; ii) containing non-aromatic groups, iii) containing aromatic groups, iv) derivatized with metal complexes and v) containing stimuli-responsive groups. The morphological, mechanical, and functional effects caused by this modification on the resulting material are also pointed out.
Asunto(s)
Fluorenos , Péptidos , Péptidos/química , Fluorenos/química , Hidrogeles/química , Fenilalanina/químicaRESUMEN
The depletion of the neurotransmitter acetylcholine has been suggested to contribute to the reduced cognitive function observed in individuals suffering from neurodegenerative diseases such as Alzheimer's Disease (AD). For the two major cholinesterases, butyrylcholinesterase (BChE) and acetylcholinesterase (AChE), increased BChE activity observed in individuals with AD has been suggested to deplete acetylcholine levels. To reduce acetylcholine degradation and help restore the pool of the neurotransmitter, specific and potent BChE inhibitors are sought. Our previous findings have identified 9-fluorenylmethoxycarbonyl (Fmoc) amino acid-based inhibitors as effective BChE inhibitors. The amino acid-based compounds offered the opportunity to survey a range of structural features to enhance interactions with the enzyme active site. As enzymes interact with features of their substrates, incorporation of substrate-like features was predicted to lead to better inhibitors. Specifically, incorporation of a trimethylammonium moiety to mimic the cationic group of acetylcholine may lead to increased potency and selectivity. To test this model, a series of inhibitors bearing a cationic trimethylammonium group were synthesized, purified, and characterized. While the Fmoc-ester derivatives inhibited the enzyme, additional experiments showed the compounds acted as substrates and were enzymatically hydrolyzed. Inhibition studies with the Fmoc-amide derivatives showed that the compounds do not act as substrates and selectively inhibit BChE with IC50 values in the 0.06-10.0 µM range. Computational docking studies suggest that the inhibitors can interact with cholinyl binding site and peripheral site. Overall, the results suggest that introducing substrate-like characteristics within the Fmoc-amino acid-based background increases their potency. The versatile and ready access to amino acid-based compounds offers an attractive system to further our understanding of the relative importance of protein-small molecule interactions while guiding the development of better inhibitors.
Asunto(s)
Enfermedad de Alzheimer , Butirilcolinesterasa , Humanos , Acetilcolina , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Aminoácidos/farmacología , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Compuestos de Amonio Cuaternario/químicaRESUMEN
Hydrogels formed via supramolecular self-assembly of fluorenylmethyloxycarbonyl (Fmoc)-conjugated amino acids provide excellent scaffolds for 3D cell culture, tissue engineering, and tissue recovery matrices. Such hydrogels are usually characterized by rheology or electron microscopy, which are invasive and cannot provide real-time information. Here, we incorporate near-infrared fluorescent single-walled carbon nanotubes (SWCNTs) into Fmoc-diphenylalanine hydrogels as fluorescent probes, reporting in real-time on the morphology and time-dependent structural changes of the self-assembled hydrogels in the transparency window of biological tissue. We further demonstrate that the gelation process and structural changes upon the addition of cross-linking ions are transduced into spectral modulations of the SWCNT-fluorescence. Moreover, morphological differences of the hydrogels induced by polymer additives are manifested in unique features in fluorescence images of the incorporated SWCNTs. SWCNTs can thus serve as optical probes for noninvasive, long-term monitoring of the self-assembly gelation process and the fate of the resulting peptide hydrogel during long-term usage.
Asunto(s)
Hidrogeles , Nanotubos de Carbono , Hidrogeles/química , Colorantes Fluorescentes/química , Polímeros , Nanotubos de Carbono/química , Péptidos/químicaRESUMEN
As peptides gained interest as new drugs in the past years, their synthetic routes had been the subject of review and improvement. Fmoc/tBu-based solid-phase peptide synthesis (SPPS) is the most convenient technique, and the implementation in continuous flow has allowed for single-pass coupling and deprotection reactions. The focus of this research is to evaluate the relationship between undesired solvent-promoted reactions and final crude purity, by studying volume changes of a variable bed flow reactor through the synthesis. Based on the temperature, typical solvents for SPPS such as dimethylformamide (DMF) or N-methyl-2-pyrrolidone (NMP) can cause unwanted Fmoc removal during wash steps. It was found that for every millilitre of DMF used at 80°C, up to 1 µmol of Fmoc-protected peptide is deprotected, leading to additional impurities. This effect can, however, be minimised by adding additives such as HOBt, which reduces such unwanted deprotection to just 0.1 µmol/ml.
Asunto(s)
Péptidos , Técnicas de Síntesis en Fase Sólida , Técnicas de Síntesis en Fase Sólida/métodos , Dimetilformamida , Solventes , FluorenosRESUMEN
The preparation, self-assembly, and antimicrobial activity of peptides based on TK913 is described. TK9Z4 incorporating a Pro-Pro motif exhibited self-assembly but no cytotoxicity. However, peptide TKZ3 (obtained by changing the amino acid sequence of TK9Z4) showed morphological changes at different concentrations, potent antimicrobial activity, low cytotoxicity, and trypsin resistance. Accordingly, TKZ3 is proposed as new AMP derived from ovalbumin-derived peptides.
Asunto(s)
Péptidos Antimicrobianos , Péptidos , Secuencia de Aminoácidos , Ovalbúmina/química , Péptidos/químicaRESUMEN
The life and work of Robert Charles Sheppard (1932-2019), Bob Sheppard informally among friends, is outlined. He was a leading pioneer of solid phase peptide synthesis and made the most significant and fundamental European contribution to the art of peptide synthesis since Emil Fischer.
Asunto(s)
Técnicas de Síntesis en Fase SólidaRESUMEN
Lipase-catalyzed hydrolytic kinetic resolution is a method of obtaining optically pure chiral alcohols and amines, which requires additional tools for determining enantiomerical purity. Herein, we present a study on multigram-scale hydrolytic kinetic resolution of trans-2-azidocyclohexyl acetate using Pseudomonas cepacia lipase immobilized on Immobead support. We investigated several parameters of the preparative-scale process: temperature, organic co-solvent, and the influence of calcium ions. Moreover, we have developed an efficient fluorenylmethyloxycarbonyl chloride (Fmoc-Cl) derivatization protocol for 2-azidocyclohexanol, which enabled chiral reversed-phase high-performance liquid chromatography (RP-HPLC) determination of enantiomeric excess.
Asunto(s)
Alcoholes , Lipasa , Acetatos , Cromatografía Líquida de Alta Presión/métodos , Lipasa/química , EstereoisomerismoRESUMEN
Human ß-defensin 3, HBD-3, is a 45-residue antimicrobial and immunomodulatory peptide that plays multiple roles in the host defense system. In addition to interacting with cell membranes, HBD-3 is also a ligand for melanocortin receptors, cytokine receptors and voltage-gated potassium channels. Structural and functional studies of HBD-3 have been hampered by inefficient synthetic and recombinant expression methods. Herein, we report an optimized Fmoc solid-phase synthesis of this peptide using an orthogonal disulfide bonds formation strategy. Our results suggest that utilization of an optimized resin, coupling reagents and pseudoproline dipeptide building blocks decrease chain aggregation and largely improve the amount of the target peptide in the final crude material, making the synthesis more efficient. We also present an alternative synthesis of HBD-3 in which a replacement of a native disulfide bridge with a diselenide bond improved the oxidative folding. Our work enables further biological and pharmacological characterization of HBD-3, hence advancing our understanding of its therapeutic potential.
Asunto(s)
Canales de Potasio con Entrada de Voltaje , beta-Defensinas , Humanos , Técnicas de Síntesis en Fase Sólida , Secuencia de Aminoácidos , Ligandos , Disulfuros/química , Péptidos/química , Dipéptidos , Receptores de CitocinasRESUMEN
In order to modify amino acids, the C-terminus carboxylic acid usually needs to be protected, typically as a methyl ester. However, standard cleavage of methyl esters requires either highly basic or acidic conditions, which are not compatible with Fmoc or acid-labile protecting groups. This highlights the need for orthogonal conditions that permit selective deprotection of esters to create SPPS-ready amino acids. Herein, mild orthogonal ester hydrolysis conditions are systematically explored using calcium(II) iodide as a protective agent for the Fmoc protecting group and optimized for a broad scope of amino esters. Our optimized reaction improved on the already known trimethyltin hydroxide, as it produced better yields with greener, inexpensive chemicals and a less extensive energy expenditure.
Asunto(s)
Ésteres , Yoduros , Aminoácidos/química , Calcio , Ésteres/química , Fluorenos/química , Hidrólisis , Sustancias ProtectorasRESUMEN
As chitin is gaining an increased attention as feedstock for industry, quantification thereof is becoming increasingly important. While gravimetric procedures are long, not specific and highly labour-intensive, acidic hydrolysis of chitin into glucosamine followed by quantification of the latter is more performant. Even though several quantification procedures for the determination of chitin can be found in the literature, they give inconsistent results and their accuracy was not assessed due to the lack of certified analytical standards. Therefore, in the present study, commercially available chitin from practical grade was characterised in detail, allowing the assessment of method accuracy. The procedure for the hydrolysis of chitin into glucosamine and subsequent quantification via UPLC-MS was investigated in detail as well. Using 9-fluorenylmethyl chloroformate (FMOC-Cl) as derivatisation reagent, glucosamine was quantified using reversed-phase chromatography. For the chitin hydrolysis, the highest glucosamine recovery was obtained with 8.0 M HCl for 2 h at 100 °C. The entire procedure for chitin quantification, including the hydrolysis, was characterised by high interday and intraday precision and accuracy. The specificity of the procedure was assessed as well by analysing different mixtures of cellulose and chitin. Chitin recoveries from these analyses ranged from 98.8 to 105.8% while no signal was observed for 100% cellulose, indicating the high specificity of the procedure. It was also concluded that the procedure is much faster and less labour-intensive compared to the gravimetric procedure.
Asunto(s)
Quitina/análisis , Cromatografía Liquida/métodos , Glucosamina/análisis , Espectrometría de Masas/métodos , Calibración , Quitina/normas , Hidrólisis , Límite de Detección , Estándares de Referencia , Reproducibilidad de los ResultadosRESUMEN
Several factors have influenced the increasing presence of peptides as an important class of Active Pharmaceutical Ingredients. One is the continued development of synthetic methodologies for peptide synthesis. Herein, we investigated the Fmoc removal step, using the tea-bag strategy. In this regard, three different secondary amines: piperidine, 4-methylpiperidine, and piperazine, were evaluated. As a result of this study, 4-methyl piperidine showed to be an excellent alternative to the usually used piperidine in terms of purity and compliance with green chemistry principles as well.
Asunto(s)
Péptidos/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos , Tecnología Química Verde , Péptidos/química , Piperazina/química , Piperidinas/químicaRESUMEN
A novel antimicrobial peptide derived from ovalbumin has been discovered. First, the peptide fragment RKIKVYLPRMK (TK9.1) was identified based on computerized predictions of the secondary structure of peptides in a protein data bank. Using HeliQuest, the sequence was developed into RKIKRYLRRMI (TK9.1.3), which was synthesized using Fmoc-solid phase peptide synthesis, and found to have strongly antimicrobial activity against Gram-positive and Gram-negative bacteria, and fungi but not cytotoxic to HeLa cells and hemolysis in mouse red blood cells. Although ovalbumin itself does not have an antibacterial activity, our results suggest that it may supply the organisms that consume it with antimicrobial peptides, in support of their immunodefence.
Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Ovalbúmina/química , Fragmentos de Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Aspergillus oryzae/efectos de los fármacos , Candida/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Células HeLa , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Micrococcus luteus/efectos de los fármacos , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Estructura Secundaria de Proteína , Pseudomonas/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacosRESUMEN
To combat the escalating rise of antibacterial resistance, the development of antimicrobial peptides (AMPs) with a unique mode of action is considered an attractive strategy. However, proteolytic degradation of AMPs remains the greatest challenge in their transformation into therapeutics. Herein, we synthesized Fmoc-triazine amino acids that differ from each other by anchoring either cationic or hydrophobic residues. These unnatural amino acids were adopted for solid-phase peptide synthesis (SPPS) to synthesize a series of amphipathic antimicrobial peptidomimetics. From the antimicrobial screening, we found that the trimer, BJK-4 is the most potent short antimicrobial peptidomimetic without showing hemolytic activity and it displayed enhanced proteolytic stability. Moreover, the mechanism of action to kill bacteria was found to be an intracellular targeting.