Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75.145
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 401-425, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38360544

RESUMEN

IgE-mediated food allergy (IgE-FA) occurs due to a breakdown in immune tolerance that leads to a detrimental type 2 helper T cell (TH2) adaptive immune response. While the processes governing this loss of tolerance are incompletely understood, several host-related and environmental factors impacting the risk of IgE-FA development have been identified. Mounting evidence supports the role of an impaired epithelial barrier in the development of IgE-FA, with exposure of allergens through damaged skin and gut epithelium leading to the aberrant production of alarmins and activation of TH2-type allergic inflammation. The treatment of IgE-FA has historically been avoidance with acute management of allergic reactions, but advances in allergen-specific immunotherapy and the development of biologics and other novel therapeutics are rapidly changing the landscape of food allergy treatment. Here, we discuss the pathogenesis and immunobiology of IgE-FA in addition to its diagnosis, prognosis, and treatment.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Inmunoglobulina E , Humanos , Hipersensibilidad a los Alimentos/terapia , Hipersensibilidad a los Alimentos/inmunología , Animales , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Alérgenos/inmunología , Desensibilización Inmunológica/métodos , Células Th2/inmunología , Tolerancia Inmunológica , Susceptibilidad a Enfermedades
2.
Annu Rev Immunol ; 37: 377-403, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31026410

RESUMEN

The gut-associated lymphoid tissue (GALT) faces a considerable challenge. It encounters antigens derived from an estimated 1014 commensal microbes and greater than 30 kg of food proteins yearly. It must distinguish these harmless antigens from potential pathogens and mount the appropriate host immune response. Local and systemic hyporesponsiveness to dietary antigens, classically referred to as oral tolerance, comprises a distinct complement of adaptive cellular and humoral immune responses. It is increasingly evident that a functional epithelial barrier engaged in intimate interplay with innate immune cells and the resident microbiota is critical to establishing and maintaining oral tolerance. Moreover, innate immune cells serve as a bridge between the microbiota, epithelium, and the adaptive immune system, parlaying tonic microbial stimulation into signals critical for mucosal homeostasis. Dysregulation of gut homeostasis and the subsequent disruption of tolerance therefore have clinically significant consequences for the development of food allergy.


Asunto(s)
Disbiosis/inmunología , Hipersensibilidad a los Alimentos/inmunología , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Administración Oral , Alérgenos/inmunología , Animales , Alimentos , Hipersensibilidad a los Alimentos/microbiología , Homeostasis , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Mucosa Intestinal/microbiología
3.
Cell ; 186(3): 469-478, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36657442

RESUMEN

The current food production system is negatively impacting planetary and human health. A transition to a sustainable and fair food system is urgently needed. Microorganisms are likely enablers of this process, as they can produce delicious and healthy microbial foods with low environmental footprints. We review traditional and current approaches to microbial foods, such as fermented foods, microbial biomass, and food ingredients derived from microbial fermentations. We discuss how future advances in science-driven fermentation, synthetic biology, and sustainable feedstocks enable a new generation of microbial foods, potentially impacting the sustainability, resilience, and health effects of our food system.


Asunto(s)
Alimentos Fermentados , Microbiología de Alimentos , Humanos , Fermentación , Alimentos , Crecimiento Sostenible , Conservación de los Recursos Naturales
4.
Cell ; 186(14): 3033-3048.e20, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37327784

RESUMEN

The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.


Asunto(s)
Gasderminas , Proteínas de Neoplasias , Ratones , Animales , Caspasa 3/metabolismo , Proteínas de Neoplasias/metabolismo , Piroptosis , Intestino Delgado/metabolismo , Tolerancia Inmunológica
5.
Cell ; 185(14): 2495-2509.e11, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35764090

RESUMEN

Plant fibers in byproduct streams produced by non-harsh food processing methods represent biorepositories of diverse, naturally occurring, and physiologically active biomolecules. To demonstrate one approach for their characterization, mass spectrometry of intestinal contents from gnotobiotic mice, plus in vitro studies, revealed liberation of N-methylserotonin from orange fibers by human gut microbiota members including Bacteroides ovatus. Functional genomic analyses of B. ovatus strains grown under permissive and non-permissive N-methylserotonin "mining" conditions revealed polysaccharide utilization loci that target pectins whose expression correlate with strain-specific liberation of this compound. N-methylserotonin, orally administered to germ-free mice, reduced adiposity, altered liver glycogenesis, shortened gut transit time, and changed expression of genes that regulate circadian rhythm in the liver and colon. In human studies, dose-dependent, orange-fiber-specific fecal accumulation of N-methylserotonin positively correlated with levels of microbiome genes encoding enzymes that digest pectic glycans. Identifying this type of microbial mining activity has potential therapeutic implications.


Asunto(s)
Citrus sinensis , Microbioma Gastrointestinal , Animales , Citrus sinensis/metabolismo , Fibras de la Dieta , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Humanos , Ratones , Pectinas/metabolismo , Polisacáridos/metabolismo , Serotonina/análogos & derivados
6.
Cell ; 184(16): 4137-4153.e14, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34256014

RESUMEN

Diet modulates the gut microbiome, which in turn can impact the immune system. Here, we determined how two microbiota-targeted dietary interventions, plant-based fiber and fermented foods, influence the human microbiome and immune system in healthy adults. Using a 17-week randomized, prospective study (n = 18/arm) combined with -omics measurements of microbiome and host, including extensive immune profiling, we found diet-specific effects. The high-fiber diet increased microbiome-encoded glycan-degrading carbohydrate active enzymes (CAZymes) despite stable microbial community diversity. Although cytokine response score (primary outcome) was unchanged, three distinct immunological trajectories in high-fiber consumers corresponded to baseline microbiota diversity. Alternatively, the high-fermented-food diet steadily increased microbiota diversity and decreased inflammatory markers. The data highlight how coupling dietary interventions to deep and longitudinal immune and microbiome profiling can provide individualized and population-wide insight. Fermented foods may be valuable in countering the decreased microbiome diversity and increased inflammation pervasive in industrialized society.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Inmunidad , Biodiversidad , Fibras de la Dieta/farmacología , Conducta Alimentaria , Femenino , Alimentos Fermentados , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Inflamación/patología , Masculino , Persona de Mediana Edad , Transducción de Señal/efectos de los fármacos
7.
Cell ; 177(4): 896-909.e20, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31030999

RESUMEN

In mammals, endogenous circadian clocks sense and respond to daily feeding and lighting cues, adjusting internal ∼24 h rhythms to resonate with, and anticipate, external cycles of day and night. The mechanism underlying circadian entrainment to feeding time is critical for understanding why mistimed feeding, as occurs during shift work, disrupts circadian physiology, a state that is associated with increased incidence of chronic diseases such as type 2 (T2) diabetes. We show that feeding-regulated hormones insulin and insulin-like growth factor 1 (IGF-1) reset circadian clocks in vivo and in vitro by induction of PERIOD proteins, and mistimed insulin signaling disrupts circadian organization of mouse behavior and clock gene expression. Insulin and IGF-1 receptor signaling is sufficient to determine essential circadian parameters, principally via increased PERIOD protein synthesis. This requires coincident mechanistic target of rapamycin (mTOR) activation, increased phosphoinositide signaling, and microRNA downregulation. Besides its well-known homeostatic functions, we propose insulin and IGF-1 are primary signals of feeding time to cellular clocks throughout the body.


Asunto(s)
Relojes Circadianos/fisiología , Conducta Alimentaria/fisiología , Proteínas Circadianas Period/metabolismo , Animales , Ritmo Circadiano/fisiología , Femenino , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Mamíferos/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor IGF Tipo 1/metabolismo , Transducción de Señal
8.
Annu Rev Cell Dev Biol ; 36: 511-528, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32634325

RESUMEN

Pediatric allergic disease is a significant health concern worldwide, and the prevalence of childhood eczema, asthma, allergic rhinitis, and food allergy continues to increase. Evidence to support specific interventions for the prevention of eczema, asthma, and allergic rhinitis is limited, and no consensus on prevention strategies has been reached. Randomized controlled trials investigating the prevention of food allergy via oral tolerance induction and the early introduction of allergenic foods have been successful in reducing peanut and egg allergy prevalence. Infant weaning guidelines in the United Sates were recently amended to actively encourage the introduction of peanut for prevention of peanut allergy.


Asunto(s)
Hipersensibilidad a los Alimentos/inmunología , Tolerancia Inmunológica , Animales , Niño , Humanos , Inmunoterapia , Modelos Biológicos , Hipersensibilidad al Cacahuete/inmunología , Guías de Práctica Clínica como Asunto
9.
Cell ; 171(2): 440-455.e14, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28942925

RESUMEN

Corticospinal neurons (CSNs) represent the direct cortical outputs to the spinal cord and play important roles in motor control across different species. However, their organizational principle remains unclear. By using a retrograde labeling system, we defined the requirement of CSNs in the execution of a skilled forelimb food-pellet retrieval task in mice. In vivo imaging of CSN activity during performance revealed the sequential activation of topographically ordered functional ensembles with moderate local mixing. Region-specific manipulations indicate that CSNs from caudal or rostral forelimb area control reaching or grasping, respectively, and both are required in the transitional pronation step. These region-specific CSNs terminate in different spinal levels and locations, therefore preferentially connecting with the premotor neurons of muscles engaged in different steps of the task. Together, our findings suggest that spatially defined groups of CSNs encode different movement modules, providing a logic for parallel-ordered corticospinal circuits to orchestrate multistep motor skills.


Asunto(s)
Médula Cervical/fisiología , Destreza Motora , Vías Nerviosas , Animales , Calcio/análisis , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Médula Cervical/citología , Miembro Anterior/fisiología , Articulaciones/fisiología , Ratones , Ratones Endogámicos C57BL
10.
Immunity ; 53(6): 1202-1214.e6, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33086036

RESUMEN

The mechanisms by which regulatory T (Treg) cells differentially control allergic and autoimmune responses remain unclear. We show that Treg cells in food allergy (FA) had decreased expression of transforming growth factor beta 1 (TGF-ß1) because of interleukin-4 (IL-4)- and signal transducer and activator of transciription-6 (STAT6)-dependent inhibition of Tgfb1 transcription. These changes were modeled by Treg cell-specific Tgfb1 monoallelic inactivation, which induced allergic dysregulation by impairing microbiota-dependent retinoic acid receptor-related orphan receptor gamma t (ROR-γt)+ Treg cell differentiation. This dysregulation was rescued by treatment with Clostridiales species, which upregulated Tgfb1 expression in Treg cells. Biallelic deficiency precipitated fatal autoimmunity with intense autoantibody production and dysregulated T follicular helper and B cell responses. These results identify a privileged role of Treg cell-derived TGF-ß1 in regulating allergy and autoimmunity at distinct checkpoints in a Tgfb1 gene dose- and microbiota-dependent manner.


Asunto(s)
Autoinmunidad/inmunología , Hipersensibilidad/inmunología , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Adolescente , Animales , Autoinmunidad/genética , Linfocitos B/inmunología , Diferenciación Celular , Niño , Preescolar , Hipersensibilidad a los Alimentos/inmunología , Dosificación de Gen , Humanos , Hipersensibilidad/genética , Inmunoglobulina G/inmunología , Lactante , Mastocitos/inmunología , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Células T Auxiliares Foliculares/inmunología , Linfocitos T Reguladores/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta1/genética , Adulto Joven
11.
Annu Rev Microbiol ; 77: 381-402, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713453

RESUMEN

For thousands of years, humans have enjoyed the novel flavors, increased shelf-life, and nutritional benefits that microbes provide in fermented foods and beverages. Recent sequencing surveys of ferments have mapped patterns of microbial diversity across space, time, and production practices. But a mechanistic understanding of how fermented food microbiomes assemble has only recently begun to emerge. Using three foods as case studies (surface-ripened cheese, sourdough starters, and fermented vegetables), we use an ecological and evolutionary framework to identify how microbial communities assemble in ferments. By combining in situ sequencing surveys with in vitro models, we are beginning to understand how dispersal, selection, diversification, and drift generate the diversity of fermented food communities. Most food producers are unaware of the ecological processes occurring in their production environments, but the theory and models of ecology and evolution can provide new approaches for managing fermented food microbiomes, from farm to ferment.


Asunto(s)
Alimentos Fermentados , Microbiota , Humanos
12.
Immunity ; 50(5): 1262-1275.e4, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31027995

RESUMEN

Mast cell (MC) mediator release after crosslinking of surface-bound IgE antibody by ingested antigen underlies food allergy. However, IgE antibodies are not uniformly associated with food allergy, and intestinal MC load is an important determinant. Atopic dermatitis (AD), characterized by pruritis and cutaneous sensitization to allergens, including foods, is strongly associated with food allergy. Tape stripping mouse skin, a surrogate for scratching, caused expansion and activation of small intestinal MCs, increased intestinal permeability, and promoted food anaphylaxis in sensitized mice. Tape stripping caused keratinocytes to systemically release interleukin-33 (IL-33), which synergized with intestinal tuft-cell-derived IL-25 to drive the expansion and activation of intestinal type-2 innate lymphoid cells (ILC2s). These provided IL-4, which targeted MCs to expand in the intestine. Duodenal MCs were expanded in AD. In addition to promoting cutaneous sensitization to foods, scratching may promote food anaphylaxis in AD by expanding and activating intestinal MCs.


Asunto(s)
Dermatitis Atópica/inmunología , Hipersensibilidad a los Alimentos/inmunología , Mucosa Intestinal/inmunología , Linfocitos/inmunología , Mastocitos/inmunología , Adolescente , Anafilaxia/inmunología , Animales , Proliferación Celular , Niño , Preescolar , Femenino , Humanos , Inmunoglobulina E/inmunología , Interleucina-13/metabolismo , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Piel/inmunología , Piel/lesiones
13.
Immunol Rev ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054597

RESUMEN

Food allergies occur due to a lack of tolerance to the proteins found in foods. While IgE- and non-IgE-mediated food allergies have different clinical manifestations, epidemiology, pathophysiology, and management, they share dysregulated T cell responses. Recent studies have shed light on the contributions of different T cell subsets to the development and persistence of different food allergic diseases. This review discusses the role of T cells in both IgE- and non-IgE-mediated food allergies and considers the potential future investigations in this context.

14.
Immunol Rev ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054615

RESUMEN

Immune tolerance to foods develops in the intestine upon food ingestion and is essential to prevent IgE-mediated food allergy and gut inflammation. In homeostasis, the intestine is a tolerogenic environment that favors the formation of food-specific Foxp3+ regulatory T cells. A tolerogenic intestinal environment depends on colonization by diverse microbiota and exposure to solid foods at a critical period in early life. These early immune responses lead to the induction of antigen-specific Foxp3+ regulatory T cells in draining mesenteric lymph nodes. These peripherally induced regulatory cells circulate and seed the lamina propria of the gut, exerting suppressive function systemically and locally in the intestine. Successful establishment of a tolerogenic intestinal environment in early life sets the stage for oral tolerance to new antigens in adult life.

15.
Immunol Rev ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046826

RESUMEN

Cow milk protein allergy (CMPA) is one of the most common food allergies in the pediatric age worldwide. Prevalence, persistence, and severity of this condition are on the rise, with a negative impact on the health-related quality of life of the patients and families and on the costs related to its management. Another relevant issue is that CMPA in early life may be the first stage of the "allergic march," leading to the occurrence of other atopic manifestations later in life, especially asthma, atopic eczema, urticaria, and rhinoconjunctivitis. Thus, "disease modification" options that are able to modulate the disease course of pediatric patients affected by CMPA would be very welcomed by affected families and healthcare systems. In this review, we report the most relevant progress on this topic.

16.
Immunol Rev ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046160

RESUMEN

The increasing prevalence of food allergy and related pathologies in recent years has underscored the need to understand the factors affecting adverse reactions to food. Food allergy is caused when food-specific IgE triggers the release of histamine from mast cells. However, other food-specific antibody isotypes exist as well, including IgG and IgA. IgA is the main antibody isotype in the gut and mediates noninflammatory reactions to toxins, commensal bacteria, and food antigens. It has also been thought to induce tolerance to food, thus antagonizing the role of food-specific IgE. However, this has remained unclear as food-specific IgA generation is poorly understood. Particularly, the location of IgA induction, the role of T cell help, and the fates of food-specific B cells remain elusive. In this review, we outline what is known about food-specific IgA induction and highlight areas requiring further study. We also explore how knowledge of food-specific IgA induction can be informed by and subsequently contribute to our overall knowledge of gut immunity.

17.
Immunol Rev ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034662

RESUMEN

The last few decades have seen striking changes in the field of food allergy. The prevalence of the disease has risen dramatically in many parts of the globe, and management of the condition has undergone major revision. While delayed introduction of common allergenic foods during infancy was advised for many years, the learning early about peanut allergy (LEAP) trial and other studies led to a major shift in infant feeding practices, with deliberate early introduction of these foods now recommended. Additionally, the Food and Drug Administration approved the first treatment for food allergy in 2020-a peanut oral immunotherapy (OIT) product that likely represents just the beginning of new immunotherapy-based and other treatments for food allergy. Our knowledge of the environmental and genetic factors contributing to the pathogenesis of food allergy has also undergone transformational advances. Here, we will discuss our efforts to improve the clinical care of patients with food allergy and our understanding of the immunological mechanisms contributing to this common disease.

18.
Immunol Rev ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092839

RESUMEN

Food allergy is classically characterized by an inappropriate type-2 immune response to allergenic food antigens. However, how allergens are detected and how that detection leads to the initiation of allergic immunity is poorly understood. In addition to the gastrointestinal tract, the barrier epithelium of the skin may also act as a site of food allergen sensitization. These barrier epithelia are densely innervated by sensory neurons, which respond to diverse physical environmental stimuli. Recent findings suggest that sensory neurons can directly detect a broad array of immunogens, including allergens, triggering sensory responses and the release of neuropeptides that influence immune cell function. Reciprocally, immune mediators modulate the activation or responsiveness of sensory neurons, forming neuroimmune feedback loops that may impact allergic immune responses. By utilizing cutaneous allergen exposure as a model, this review explores the pivotal role of sensory neurons in allergen detection and their dynamic bidirectional communication with the immune system, which ultimately orchestrates the type-2 immune response. Furthermore, it sheds light on how peripheral signals are integrated within the central nervous system to coordinate hallmark features of allergic reactions. Drawing from this emerging evidence, we propose that atopy arises from a dysregulated neuroimmune circuit.

19.
Immunol Rev ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007725

RESUMEN

Food allergy can be life-threatening and often develops early in life. In infants and children, loss-of-function mutations in skin barrier genes associate with food allergy. In a mouse model with skin barrier mutations (Flakey Tail, FT+/- mice), topical epicutaneous sensitization to a food allergen peanut extract (PNE), an environmental allergen Alternaria alternata (Alt) and a detergent induce food allergy and then an oral PNE-challenge induces anaphylaxis. Exposures to these allergens and detergents can occur for infants and children in a household setting. From the clinical and preclinical studies of neonates and children with skin barrier mutations, early oral exposure to allergenic foods before skin sensitization may induce tolerance to food allergens and thus protect against development of food allergy. In the FT+/- mice, oral food allergen prior to skin sensitization induce tolerance to food allergens. However, when the skin of FT+/- pups are exposed to a ubiquitous environmental allergen at the time of oral consumption of food allergens, this blocks the induction of tolerance to the food allergen and the mice can then be skin sensitized with the food allergen. The development of food allergy in neonatal FT+/- mice is mediated by altered skin responses to allergens with increases in skin expression of interleukin 33, oncostatin M and amphiregulin. The development of neonate food allergy is enhanced when born to an allergic mother, but it is inhibited by maternal supplementation with α-tocopherol. Moreover, preclinical studies suggest that food allergen skin sensitization can occur before manifestation of clinical features of atopic dermatitis. Thus, these parameters may impact design of clinical studies for food allergy, when stratifying individuals by loss of skin barrier function or maternal atopy before offspring development of atopic dermatitis.

20.
Trends Biochem Sci ; 48(9): 776-787, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37394345

RESUMEN

Nucleotide binding and leucine-rich repeat-containing receptors (NLRs) have a critical role in plant immunity through direct or indirect recognition of pathogen effectors. Recent studies have demonstrated that such recognition induces formation of large protein complexes called resistosomes to mediate NLR immune signaling. Some NLR resistosomes activate Ca2+ influx by acting as Ca2+-permeable channels, whereas others function as active NADases to catalyze the production of nucleotide-derived second messengers. In this review we summarize these studies on pathogen effector-induced assembly of NLR resistosomes and resistosome-mediated production of the second messengers of Ca2+ and nucleotide derivatives. We also discuss downstream events and regulation of resistosome signaling.


Asunto(s)
Proteínas NLR , Plantas , Proteínas NLR/química , Proteínas NLR/metabolismo , Transducción de Señal , Sistemas de Mensajero Secundario , Nucleótidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA