Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 53(6): 1168-1181.e7, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33326766

RESUMEN

Viruses have evolved multiple strategies to evade elimination by the immune system. Here we examined the contribution of host long noncoding RNAs (lncRNAs) in viral immune evasion. By functional screening of lncRNAs whose expression decreased upon viral infection of macrophages, we identified a lncRNA (lncRNA-GM, Gene Symbol: AK189470.1) that promoted type I interferon (IFN-I) production and inhibited viral replication. Deficiency of lncRNA-GM in mice increased susceptibility to viral infection and impaired IFN-I production. Mechanistically, lncRNA-GM bound to glutathione S-transferase M1 (GSTM1) and blocked GSTM1 interaction with the kinase TBK1, reducing GSTM1-mediated S-glutathionylation of TBK1. Decreased S-glutathionylation enhanced TBK1 activity and downstream production of antiviral mediators. Viral infection reprogrammed intracellular glutathione metabolism and furthermore, an oxidized glutathione mimetic could inhibit TBK1 activity and promote viral replication. Our findings reveal regulation of TBK1 by S-glutathionylation and provide insight into the viral mediated metabolic changes that impact innate immunity and viral evasion.


Asunto(s)
Glutatión/metabolismo , Evasión Inmune , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Glutatión Transferasa/metabolismo , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , ARN Largo no Codificante/genética , Transducción de Señal , Virosis/genética , Virosis/inmunología , Virosis/metabolismo , Replicación Viral
2.
Ann Hum Genet ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622954

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a multifactorial malignancy associated with both genetic and environmental factors. Polymorphic deletions of the phase I and phase II genes involved in the detoxification of potential carcinogens may be a risk factor for nasopharyngeal carcinoma. In this study, we investigated the relationship between CYP2E1 (rs3813867), CYP2A6, GSTM1(rs1183423000) and GSTT1(rs1601993659) gene variations and NPC risk in North African countries with the highest incidence of NPC (Morocco, Algeria and Tunisia). and the evaluation of the potential use of these variants as potential biomarkers for NPC management. METHODS: A total of 600 NPC cases and 545 controls frequency-matched on ethnicity, sex, age and childhood household type, were recruited from three North African countries (Morocco, Algeria and Tunisia) and analysed. Genotyping of CYP2A6 and CYP2E1(rs3813867) was performed by polymerase chain reaction restriction (PCR)-fragment length polymorphism (RFLP) analysis and the GSTM1 (rs1183423000) and GSTT1(rs1601993659) genetic variations were evaluated using the PCR technique. RESULTS: The genotype distributions of CYP2E1(rs3813867), CYP2A6, GSTM1(rs1183423000) and GSTT1(rs1601993659) genotypes did not differ significantly among NPC cases and controls (p > 0.05). Furthermore, our data did not reveal any association with smoking and the studied variants, even when the samples were stratified by the duration period of smoking. CONCLUSION: In this large studied North African population, our findings suggest that the functional CYP2E1, CYP2A6, GSTM1 and GSTT1 variations did not influence NPC susceptibility.

3.
Exp Physiol ; 109(2): 302-311, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37948104

RESUMEN

Chronic obstructive pulmonary disease (COPD) is commonly characterized by shortness of breath, coughing or expectoration. Smoking is the leading cause of COPD development, but only a small percentage of smokers develop symptoms, implying a genetic component. Glutathione S-transferase enzymes are responsible for detoxifying cigarette smoke components. The role of glutathione S-transferase T1 (GSTT1) and glutathione S-transferase M1 (GSTM1) gene polymorphism was assessed with COPD susceptibility and associated clinical parameters in the North Indian population. This was a cross-sectional study involving 200 COPD patients and 200 healthy individuals, with peripheral blood sampling and adequate questionnaires. Multiplex PCR was used for genotyping GSTT1 and GSTM1 gene polymorphism. Logistic regression was used to calculate the odds ratio and 95% confidence intervals to assess the COPD risk and GST polymorphisms. The GSTT1 gene deletion rate was higher in COPD cases (34.5%) than in healthy individuals (20.5%). A statistical relationship between the GSTT1(-) null genotype and COPD risk was observed (odds ratio = 2.04, 95% CI = 1.30-3.20, P = 0.0019). After adjusting for covariates like age, sex and smoking status, a significant association was found for GSTT1(-) null genotype and COPD risk (adjusted odds ratio = 2.90, 95% CI = 1.43-5.87, P = 0.003). The GSTT1(-) genotype was also significantly correlated with clinical parameters for COPD risk. Another primary observation was that females with the GSTT1(-) null genotype were more vulnerable to COPD than males with the same gene deletion. The GSTT1(-) null genotype strongly correlates with COPD development, while no association was observed in the GSTM1(-) null genotype in the North Indian population.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica , Masculino , Femenino , Humanos , Estudios Transversales , Polimorfismo Genético/genética , Glutatión Transferasa/genética , Genotipo , Biomarcadores , Enfermedad Pulmonar Obstructiva Crónica/genética , Estudios de Casos y Controles , Factores de Riesgo
4.
Artículo en Inglés | MEDLINE | ID: mdl-39123072

RESUMEN

Glutathione S-transferases are involved in the oxidative stress which contributes to the pathogenesis of Parkinson's disease (PD). our aim was to investigate the influence of GSTM1 and GSTT1 polymorphisms on the clinical features and treatments outcomes among PD Tunisian patients. We included 300-PD patients followed in neurology department at Razi-University-hospital. GSTM1 and GSTT1 were screened using PCR methods. Correlation between the clinical phenotype and the genotypes was then assessed after adequate parameters adjustment. Individuals carrying inactive GSTT1/GSTM1 were estimated to have 2.5-fold higher risk of developing PD, p = 0.035. The demographic and clinical baseline analysis of GSTM1 polymorphism revealed significant association between the inactive gene and development of tremor as first symptoms (p = 0.046), further, it was correlated to asymmetric start (p = 0.044). The evaluation of the impact of GSTM1/GSTT1 activity among PD at last follow-up revealed the significant variability of motor impairment among cases carrier of the active genes (p = 0.048). As patients with inactive GSTM1/GSTT1 had higher UPDRS-III score. Additionally, higher frequency of cases with good treatment responsiveness was reported among PD with active GSTM1/GSTT1 (p = 0.038).No motor complications were observed among PD by considering the GSTs genotypes (p > 0.05). Finally, we noted significant impairment of memory among cases with inactivate GSTs (p = 0.04), attention deficit (p = 0.013) and impaired judgement (p = 0.0031). This study represents one of the most comprehensive and extensive investigation to date regarding the influence of GSTT1/GSTM1 genotype among PD patients.We speculate that the impact of GSTT1/GSTM1 on PD progression may occur through a cumulative effect, potentially not manifesting during the initial PD stages. Further studies are necessary to validate our conclusions.

5.
Cell Mol Biol Lett ; 29(1): 35, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475733

RESUMEN

BACKGROUND AND AIMS: Epidemiological evidence suggests that the phenotype of glutathione S-transferase mu 1 (GSTM1), a hepatic high-expressed phase II detoxification enzyme, is closely associated with the incidence of alcohol-related liver disease (ALD). However, whether and how hepatic GSTM1 determines the development of ALD is largely unclear. This study was designed to elucidate the role and potential mechanism(s) of hepatic GSTM1 in the pathological process of ALD. METHODS: GSTM1 was detected in the liver of various ALD mice models and cultured hepatocytes. Liver-specific GSTM1 or/and micro (miR)-743a-3p deficiency mice were generated by adenoassociated virus-8 delivered shRNA, respectively. The potential signal pathways involving in alcohol-regulated GSTM1 and GSTM1-associated ALD were explored via both genetic manipulation and pharmacological approaches. RESULTS: GSTM1 was significantly upregulated in both chronic alcohol-induced mice liver and ethanol-exposed murine primary hepatocytes. Alcohol-reduced miR-743a-3p directly contributed to the upregulation of GSTM1, since liver specific silencing miR-743a-3p enhanced GSTM1 and miR-743a-3p loss protected alcohol-induced liver dysfunctions, which was significantly blocked by GSTM1 knockdown. GSTM1 loss robustly aggravated alcohol-induced hepatic steatosis, oxidative stress, inflammation, and early fibrotic-like changes, which was associated with the activation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK), and p38. GSTM1 antagonized ASK1 phosphorylation and its downstream JNK/p38 signaling pathway upon chronic alcohol consumption via binding with ASK1. ASK1 blockage significantly rescued hepatic GSTM1 loss-enhanced disorders in alcohol-fed mice liver. CONCLUSIONS: Chronic alcohol consumption-induced upregulation of GSTM1 in the liver provides a feedback protection against hepatic steatosis and liver injury by counteracting ASK1 activation. Down-regulation of miR-743a-3p improves alcohol intake-induced hepatic steatosis and liver injury via direct targeting on GSTM1. The miR-743a-3p-GSTM1 axis functions as an innate protective pathway to defend the early stage of ALD.


Asunto(s)
Hígado Graso Alcohólico , Glutatión Transferasa , MicroARNs , Animales , Ratones , Glutatión Transferasa/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/patología , MicroARNs/metabolismo , Hígado Graso Alcohólico/metabolismo
6.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673745

RESUMEN

Age-related macular degeneration (AMD) is a chronic disease that usually develops in older people. Pathogenetic changes in this disease include anatomical and functional complexes. Harmful factors damage the retina and macula. These changes may lead to partial or total loss of vision. The disease can occur in two clinical forms: dry (the progression is slow and gentle) and exudative (wet-progression is acute and severe), which usually starts in the dry form; however, the coexistence of both forms is possible. The etiology of AMD is not fully understood, and the precise mechanisms of the development of this illness are still unknown. Extensive genetic studies have shown that AMD is a multi-factorial disease and that genetic determinants, along with external and internal environmental and metabolic-functional factors, are important risk factors. This article reviews the role of glutathione (GSH) enzymes engaged in maintaining the reduced form and polymorphism in glutathione S-transferase theta-1 (GSTT1) and glutathione S-transferase mu-1 (GSTM1) in the development of AMD. We only chose papers that confirmed the influence of the parameters on the development of AMD. Because GSH is the most important antioxidant in the eye, it is important to know the influence of the enzymes and genetic background to ensure an optimal level of glutathione concentration. Numerous studies have been conducted on how the glutathione system works till today. This paper presents the current state of knowledge about the changes in GSH, GST, GR, and GPx in AMD. GST studies clearly show increased activity in ill people, but for GPx, the results relating to activity are not so clear. Depending on the research, the results also suggest higher and lower GPx activity in patients with AMD. The analysis of polymorphisms in GST genes confirmed that mutations lead to weaker antioxidant barriers and may contribute to the development of AMD; unfortunately, a meta-analysis and some research did not confirm that connection. Unspecific results of many of the parameters that make up the glutathione system show many unknowns. It is so important to conduct further research to understand the exact mechanism of defense functions of glutathione against oxidative stress in the human eye.


Asunto(s)
Glutatión , Degeneración Macular , Animales , Humanos , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Degeneración Macular/metabolismo , Degeneración Macular/genética , Degeneración Macular/patología , Estrés Oxidativo
7.
FASEB J ; 36(6): e22373, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35621716

RESUMEN

Cisplatin is a widely used chemotherapeutic agent. However, its clinical utility is limited because of cisplatin-induced ototoxicity. Glutathione S-transferase (GST) was found to play a vital role in reducing cisplatin ototoxicity in mice. Deletion polymorphisms of GSTM1 and GSTT1, members of the GST family, are common in humans and are presumed to be associated with cisplatin-induced hearing impairment. However, the specific roles of GSTM1 and GSTT1 in cisplatin ototoxicity are not completely clear. Here, under cisplatin treatment, simultaneous deletion of Gstm1 and Gstt1 lead to a more profound hearing loss in CBA/CaJ mice (Gstm1/Gstt1-DKO) than in wild-type mice. The Gstm1/Gstt1-DKO mice, in which phase II detoxification genes were upregulated, exhibited more severe oxidative stress and higher outer hair cell apoptosis in the cochleae than the control mice. Thus, our study revealed that Gstm1 and Gstt1 protect auditory hair cells from cisplatin-induced ototoxicity in the CBA/CaJ mice, and genetic screening for GSTM1 and GSTT1 polymorphisms could help determine a standard cisplatin dose for cancer patients undergoing chemotherapy.


Asunto(s)
Cisplatino , Glutatión Transferasa , Ototoxicidad , Animales , Cisplatino/toxicidad , Glutatión Transferasa/genética , Humanos , Ratones , Ratones Endogámicos CBA , Ratones Endogámicos , Ototoxicidad/etiología , Ototoxicidad/genética , Ototoxicidad/prevención & control , Polimorfismo Genético
8.
Mol Biol Rep ; 50(2): 949-959, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36376536

RESUMEN

BACKGROUND: Host genetic characteristics and environmental factors interactions may play a crucial role in cervical carcinogenesis. We investigated the impact of functional genetic variants of four xenobiotic-metabolizing genes (AhR, CYP1A1, GSTM1, and GSTT1) on cervical cancer development in Tunisian women. METHODS: The AhR gene polymorphism was analyzed using the tetra-primer ARMS-PCR, whereas the CYP1A1 polymorphism genotypes were identified by PCR-RFLP. A multiplex ligation-dependent polymerase chain reaction approach was applied for the analysis of GSTM1 and GSTT1 polymorphisms. RESULTS: The homozygous A/A genotype of the AhR gene (rs2066853) and the heterozygous T/C genotype of the CYP1A1 SNP (CYP1A1-MspI) appeared to be associated with an increased risk of cervical tumorigenesis (ORa = 2.81; ORa = 5.52, respectively). Furthermore, a significantly increased risk of cervical cancer was associated with the GSTT1 null genotype (ORa = 2.65). However, the null GSTM1 genotype showed any significant association with the risk of cervical cancer compared to the wild genotype (ORa = 1.18; p = 0.784). Considering the combined effect, we noted a significantly higher association with cancer risk for individuals with at least two high-risk genotypes of CYP1A1/GSTT1 (ORa = 4.2), individuals with at least two high-risk genotypes of CYP1A1/GSTT1/AhR (ORa = 11.3) and individuals with at least two high-risk genotypes of CYP1A1/GSTM1/GSTT1/AhR exploitation low-risk genotype as a reference. CONCLUSION: This study indicated that the single-gene contribution and the combined effect of xenobiotic-metabolizing gene polymorphisms (AhR, CYP1A1-MspI, GSTM1, and GSTT1) may have a considerable association with increased cervical cancer risk.


Asunto(s)
Citocromo P-450 CYP1A1 , Neoplasias del Cuello Uterino , Humanos , Femenino , Citocromo P-450 CYP1A1/genética , Neoplasias del Cuello Uterino/genética , Xenobióticos , Polimorfismo Genético , Glutatión Transferasa/genética , Genotipo , Predisposición Genética a la Enfermedad , Factores de Riesgo , Estudios de Casos y Controles
9.
Environ Res ; 229: 115888, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37054833

RESUMEN

BACKGROUND: The effects of metal exposure on semen quality and the role of oxidative damage in this process remain unclear. METHODS: We recruited 825 Chinese male volunteers, and 12 seminal metals (Mn, Cu, Zn, Se, Ni, Cd, Pb, Co, Ag, Ba, Tl, and Fe), the total antioxidant capacity (TAC), and reduced glutathione were measured. Semen parameters and GSTM1/GSTT1-null genotypes were also detected. Bayesian kernel machine regression (BKMR) was applied to evaluate the effect of the mixed exposure to metals on semen parameters. The mediation of TAC and moderation of GSTM1/GSTT1 deletion were analyzed. RESULTS: Most seminal metal concentrations were correlated with each other. The BKMR models revealed a negative association between the semen volume and metal mixture, with Cd (cPIP = 0.60) and Mn (cPIP = 0.10) as the major contributors. Compared to fixing all scaled metals at their median value (50th percentiles), fixing the scaled metals at their 75th percentiles decreased the TAC by 2.17 units (95%CI: -2.60, -1.75). Mediation analysis indicated that Mn decreased the semen volume, with 27.82% of this association mediated by TAC. Both the BKMR and multi-linear models showed that seminal Ni was negatively correlated with sperm concentration, total sperm count, and progressive motility, which was modified by GSTM1/GSTT1. Furthermore, Ni and the total sperm count showed a negative association in GSTT1 and GSTM1 null males (ß[95%CI]: 0.328 [-0.521, -0.136]) but not in males with GSTT1 and/or GSTM1. Although Fe and the sperm concentration and total sperm count were positively correlated, they showed inverse "U" shapes in univariate analysis. CONCLUSION: Exposure to the 12 metals was negatively associated with semen volume, with Cd and Mn as the major contributors. TAC may mediate this process. GSTT1 and GSTM1 can modify the reduction in the total sperm count caused by seminal Ni exposure.


Asunto(s)
Antioxidantes , Glutatión Transferasa , Análisis de Semen , Adulto , Humanos , Masculino , Teorema de Bayes , Cadmio , Pueblos del Este de Asia , Eliminación de Gen , Metales/toxicidad , Semen , Glutatión Transferasa/genética , Manganeso
10.
Skin Res Technol ; 29(4): e13333, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37113088

RESUMEN

BACKGROUNDS: Acne vulgaris is a chronic inflammatory skin disease of the pilosebaceous unit affecting most teenagers and numerous adults throughout the world. The present study was designed to assess the association of the presence or absence of GSTM1, GSTT1, and single nucleotide polymorphisms rs1695 in GSTP1 and rs1042522 in TP53 gene with acne vulgaris. METHODS: The cross-sectional case-control study was conducted at the Institute of Zoology from May 2020 to March 2021 and included acne vulgaris patients (N = 100) and controls (N = 100) enrolled in Dera Ghazi Khan district, Pakistan. Multiplex and tetra-primer amplification refractory mutation system-polymerase chain reactions were applied to investigate the genotype in analyzed genes. The association of rs1695 and rs1042522 with acne vulgaris was studied either individually or in various combinations with GATM1 and T1. RESULTS: A significant association of absence of GSTT1 and mutant genotype at rs1695 (GG) and at rs1042522 (CC) in GSTP1 and TP53, respectively, was found to be associated with acne vulgaris in enrolled subjects. Subjects aged 10-25 years and smokers were more susceptible to acne vulgaris. CONCLUSION: Our results suggest that genotypes of glutathione S-transferases (GSTs) and TP53 are involved in protection against oxidative stress and may influence disease progression in acne vulgaris.


Asunto(s)
Acné Vulgar , Predisposición Genética a la Enfermedad , Adulto , Adolescente , Humanos , Incidencia , Estudios de Casos y Controles , Estudios Transversales , Predisposición Genética a la Enfermedad/genética , Factores de Riesgo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Acné Vulgar/epidemiología , Acné Vulgar/genética , Proteína p53 Supresora de Tumor/genética , Gutatión-S-Transferasa pi/genética
11.
Drug Metab Rev ; 54(1): 37-45, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35103568

RESUMEN

The GSTM1 and GSTT1 genes encode homonymous enzymes, which are responsible for the detoxification of several substances potentially harmful to the human body, such as air pollution, drugs, pesticides, and tobacco. However, some individuals may present a complete deletion of these genes and, consequently, an enzyme deficiency leading to an inadequate metabolism and, therefore, a higher susceptibility to some clinical conditions. Interethnic variations have also been described for both genes, making necessary the study of the deletion frequencies of GSTM1 and GSTT1 in different populations around the world. So, the aim of this study was to enable the synthesis and discussion of the main population differences of GSTM1 and GSTT1 polymorphisms in healthy volunteers. Searches were performed in the PubMed database, including 533 articles and 178,566 individuals in the analyses. We found an overrepresentation of European individuals and studies, and an underrepresentation of non-European ethnicities. Moreover, there are significant frequency differences among distinct ethnic groups: East Asians present the highest frequencies worldwide for GSTM1 and GSTT1 deletions, which could suggest higher disorders risk for this population; in contrast, Sub-Saharan Africans presented the lowest frequency of GSTM1 worldwide, corroborating evolution inferences performed previously for other genes codifying metabolism enzymes. Also, admixture is a relevant component when analyzing frequency values for both genes, but further studies focusing on this subject are warranted.


Asunto(s)
Predisposición Genética a la Enfermedad , Glutatión Transferasa , Genotipo , Glutatión Transferasa/genética , Voluntarios Sanos , Humanos , Polimorfismo Genético
12.
Am J Kidney Dis ; 80(1): 79-86, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34871703

RESUMEN

RATIONALE & OBJECTIVE: Loss of function of the product of the GSTM1 gene has been implicated in rapid progression of adult chronic kidney disease (CKD). Its role in pediatric CKD has not been previously described. STUDY DESIGN: Secondary analysis of a prospective observational cohort examining the association between deletions in GSTM1 and progression of CKD. SETTING & PARTICIPANTS: We used data and samples from the prospective Chronic Kidney Disease in Children (CKiD) cohort aged 1-16 years at enrollment with CKD. EXPOSURE: We defined the exposure as fewer than 2 GSTM1 alleles on real-time polymerase chain reaction amplification. OUTCOME: The primary outcome was a composite of 50% decrease in estimated glomerular filtration rate (eGFR) or start of kidney replacement therapy. Secondary outcomes included remission of proteinuria in children with glomerular disease and cardiovascular complications. ANALYTICAL APPROACH: The primary analysis was by Cox proportional hazards model. Analysis was adjusted for age, sex, race, ethnicity, body mass index category, diagnosis category, and eGFR. RESULTS: The analysis included 674 children. Their mean age at most recent visit was 11.9 years; 61% were male, and 20% were Black. There were 241 occurrences of the primary outcome at the time of analysis. After adjustment for baseline characteristics, the risk of progression of CKD for exposed children was 1.94 (95% CI, 1.27-2.97). The effect size was similar with either 1 or 2 deletions (autosomal dominant inheritance). The relationships between number of functional GSTM1 alleles and prespecified secondary outcomes were not statistically significant after adjustment. LIMITATIONS: Missing data, especially for secondary outcomes, and relatively small sample size compared to genetic studies in adults. CONCLUSIONS: GSTM1 deletion is associated with more rapid progression of pediatric CKD after adjustment in this large prospective cohort. No statistically significant associations were seen with secondary outcomes. If replicated, these findings may inform development of interventions for CKD in children.


Asunto(s)
Glutatión Transferasa/genética , Insuficiencia Renal Crónica , Niño , Progresión de la Enfermedad , Femenino , Tasa de Filtración Glomerular , Humanos , Masculino , Estudios Prospectivos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Terapia de Reemplazo Renal
13.
Mol Biol Rep ; 49(7): 6467-6474, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35507115

RESUMEN

BACKGROUND: Important risk factors for the most common sexually transmitted infection (STI) in the world, human papillomavirus (HPV), include early sexual activity, use of contraceptives, tobacco smoking, and immunological and genetic factors. This study aimed to investigate the relationship between GSTM1 and GSTT1 polymorphisms and HPV infection and associated risk factors in a group of women assisted in the public health system of southwestern Paraná, Brazil. METHODS AND RESULTS: A case-control study was designed with 21 women with HPV matched by age in the case group and 84 women without the virus in the control group. Viral detection was conducted via polymerase chain reaction (PCR) and GSTM1 and GSTT1 genotyping by Multiplex PCR. The results showed that the GSTT1 null allele was a protective factor against infection (ORadj 0.219; 95% CI 0.078-0.618; p = 0.004). No relationship was observed for the GSTM1 gene. Smoking was defined as a risk factor (ORadj 3.678; 95% CI 1.111-12.171; p = 0.033), increasing the chances of HPV by up to 3.6 times. CONCLUSION: This study showed, for the first time, the relationship between GSTM1 and GSTT1 genetic polymorphisms and HPV. We found that this relationship protected women from southern Brazil from viral infection, but not from susceptibility.


Asunto(s)
Glutatión Transferasa/genética , Infecciones por Papillomavirus , Brasil/epidemiología , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Papillomaviridae/genética , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/genética , Polimorfismo Genético/genética , Factores de Riesgo
14.
Xenobiotica ; 52(1): 99-104, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35138223

RESUMEN

This study was conducted to investigate the potential association of genetic polymorphisms of glutathione S-transferase M1/T1 (GSTM1, GSTT1), and N-acetyltransferase 2 (NAT2) genes and epidemiological parameters with the risk of HCC in the Algerian population.A case-control study including 132 confirmed HCC patients and 141 cancer-free controls was performed. Genotyping analysis was performed using conventional multiplex PCR and PCR-RFLP. Statistical analysis was performed using the Chi-square test. Logistic regression analysis was used to estimate odds ratios and 95% confidence intervals (95% CI).GSTM1 null and NAT2 slow acetylator genotypes confer an increased risk to HCC (OR = 1.88, 95% CI 1.16-3.05; OR = 2.30, 95% CI 1.26-4.18, respectively). This association was prevalent in smokers (OR = 2.00, 95% CI 1.05-3.8 and OR = 2.55, 95% CI 1.22-5.34, respectively). No significant association was observed for GSTT1 null genotype in the contribution to HCC risk (OR = 0.76, 95% CI 0.46-1.27).In conclusion, the GSTM1 and NAT2 gene polymorphisms are positively associated with the risk of HCC in older men and especially in smokers.


Asunto(s)
Arilamina N-Acetiltransferasa , Carcinoma Hepatocelular , Neoplasias Hepáticas , Anciano , Arilamina N-Acetiltransferasa/genética , Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/genética , Estudios de Casos y Controles , Genotipo , Glutatión Transferasa/genética , Humanos , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/genética , Masculino , Polimorfismo Genético
15.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232322

RESUMEN

In Peru, 24,581 people were diagnosed with tuberculosis (TB) in 2020. Although TB treatments are effective, 3.4-13% are associated with significant adverse drug reactions (ADRs), with drug-induced liver injury (DILI) considered the most predominant. Among the first-line antituberculosis drugs, isoniazid (INH) is the main drug responsible for the appearance of DILI. In the liver, INH is metabolized by the enzymes N-acetyltransferase-2 (NAT2), cytochrome P450 2E1 (CYP2E1), and glutathione S-transferase (GST) with two isoforms, GSTT1 and GSTM1. Based on previous studies, we hypothesized that interactions between the GSTT1 and GSTM1 null genotypes induce DILI in TB patients. In this cross-sectional study of 377 participants who completed their anti-TB treatment, we genotyped by revealing the presence or absence of 215- and 480-bp bands of GSTM1 and GSTT1, respectively. We found that the prevalence of the GSTM1 genotype was 52.79% and 47.21% for presence and null, respectively, and for GSTT1 it was 69.76% and 30.24% for presence and null, respectively. Neither genotype was prevalent in the patients who developed DILI (n = 16). We did not confirm our hypothesis; however, we found that the combination of GSTM1 present genotype, GSTT1 null genotype, fast NAT2 acetylators, and CYP2E1 c1/c1 genotype had a significant risk for the development of ADR (OR 11; p = 0.017; 95% CI: (0.54-186.35)). We propose that the presence of the GSTM1 present genotype, GSTT1 null genotype, fast NAT2 acetylators, and CYP2E1 c1/c1 genotype in the Peruvian population could be considered a risk factor for the development of ADR due to therapeutic drug intake.


Asunto(s)
Arilamina N-Acetiltransferasa , Enfermedad Hepática Inducida por Sustancias y Drogas , Glutatión Transferasa/genética , Tuberculosis , Antituberculosos/efectos adversos , Arilamina N-Acetiltransferasa/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Estudios Transversales , Citocromo P-450 CYP2E1/genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Isoniazida , Perú/epidemiología , Polimorfismo Genético , Tuberculosis/tratamiento farmacológico , Tuberculosis/genética
16.
Int J Mol Sci ; 23(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35682742

RESUMEN

Absence epilepsy syndromes are part of the genetic generalized epilepsies, the pathogenesis of which remains poorly understood, although a polygenic architecture is presumed. Current focus on single molecule or gene identification to elucidate epileptogenic drivers is unable to fully capture the complex dysfunctional interactions occurring at a genetic/proteomic/metabolomic level. Here, we employ a multi-omic, network-based approach to characterize the molecular signature associated with absence epilepsy-like phenotype seen in a well validated rat model of genetic generalized epilepsy with absence seizures. Electroencephalographic and behavioral data was collected from Genetic Absence Epilepsy Rats from Strasbourg (GAERS, n = 6) and non-epileptic controls (NEC, n = 6), followed by proteomic and metabolomic profiling of the cortical and thalamic tissue of rats from both groups. The general framework of weighted correlation network analysis (WGCNA) was used to identify groups of highly correlated proteins and metabolites, which were then functionally annotated through joint pathway enrichment analysis. In both brain regions a large protein-metabolite module was found to be highly associated with the GAERS strain, absence seizures and associated anxiety and depressive-like phenotype. Quantitative pathway analysis indicated enrichment in oxidative pathways and a downregulation of the lysine degradation pathway in both brain regions. GSTM1 and ALDH2 were identified as central regulatory hubs of the seizure-associated module in the somatosensory cortex and thalamus, respectively. These enzymes are involved in lysine degradation and play important roles in maintaining oxidative balance. We conclude that the dysregulated pathways identified in the seizure-associated module may be involved in the aetiology and maintenance of absence seizure activity. This dysregulated activity could potentially be modulated by targeting one or both central regulatory hubs.


Asunto(s)
Epilepsia Tipo Ausencia , Epilepsia Generalizada , Animales , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/genética , Epilepsia Generalizada/genética , Lisina , Proteómica , Ratas , Convulsiones/metabolismo
17.
J Pak Med Assoc ; 72(3): 457-463, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35320225

RESUMEN

Objective: To evaluate the genetic association of glutathione S transferase M1 and glutathione S transferase T1 genes insertion/deletion polymorphism with the risk of colorectal cancer. METHODS: This case-control study was conducted March 2018 and November 2019 at the University of Peshawar, Peshawar, Pakistan, and comprised blood samples from colorectal cancer patients and age- and gender-matched controls. Deoxyribonucleic acid was extracted from blood samples, and glutathione S transferase M1 and glutathione S transferase T1 genotyping was performed using polymerase chain reaction at the Institute of Radiation and Nuclear Medicine, Peshawar. Data regarding age, gender, location, smoking status, cancer stage and node involvement was collected on a predesigned proforma. Data was analysed using Minitab 17. RESULTS: The frequency of glutathione S transferase M1 was was significantly associated with colorectal cancer risk (p<0.01), while glutathione S transferase T1 null genotype showed non-significant association (p<0.43). The association between the combined deletion of glutathione S transferase M1 and glutathione S transferase T1 polymorphism and the colorectal risk was significant (p=0.011). Glutathione S transferase M1 and glutathione S transferase T1 deletions had non-significant association with age, smoking status, dwelling and tumour location (p>0.05) when compared with the wild genotypes in colorectal cancer cases. Conclusion: Glutathione S transferase M1 gene deletion was found to be associated with the risk of colorectal cancer development.


Asunto(s)
Neoplasias Colorrectales , Glutatión Transferasa , Estudios de Casos y Controles , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Glutatión Transferasa/genética , Humanos , Pakistán/epidemiología , Polimorfismo Genético
18.
J Pak Med Assoc ; 72(4): 714-720, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35614607

RESUMEN

OBJECTIVE: To assess the association of single nucleotide polymorphisms in fatty acid binding protein-2 (rs1799883) and glutathione S-transferase pi (rs1695) genes with presence/absence of glutathione S-transferase mu and glutathione S-transferase theta genes in type 2 diabetes. METHODS: The cross-sectional case-control study was conducted at Institute of Molecular Biology and Biotechnology during March till September 2019 and comprised type 2 diabetes patients and non-diabetic controls from two districts in southern Punjab. Polymerase chain reaction, polymerase chain reaction-restriction fragment length polymorphism and tetra-primer amplification refractory mutation system-polymerase chain reaction were applied to investigate glutathione S-transferase theta, mu and pi genes as well as fatty acid binding protein-2, as appropriate. The association of single nucleotide polymorphisms in all genes with the disease were studied either individually or in various combinations. Data was analysed using Minitab 18. RESULTS: Of the 448 subjects, 248(55.4%) were patients and 200(44.6%) were controls. Overall there were 213(47.5%) males and 235(52.5) were females, and 141(31.5%) were aged 30-46 years. The presence of rs1799883 in fatty acid binding protein-2 (p=0.03) and the absence of glutathione S-transferase mu gene (p<0.001) had significant association with type 2 diabetes, while the presence of glutathione S-transferase theta and rs1695 in glutathione S-transferase pi genes were not associated with the disease. Individuals with glutathione S-transferase mu gene null and Ileu/Ileu or Ileu/Val genotype of rs1695 in glutathione S-transferase pi gene have potential to develop type 2 diabetes in their lifetime (p<0.05). CONCLUSIONS: The presence of rs1799883 in fatty acid binding protein-2 and the absence of glutathione S-transferase mu gene were found to play significantly in the development of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteínas de Unión a Ácidos Grasos , Gutatión-S-Transferasa pi , Glutatión Transferasa , Estudios de Casos y Controles , Estudios Transversales , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Proteínas de Unión a Ácidos Grasos/genética , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Gutatión-S-Transferasa pi/genética , Glutatión Transferasa/genética , Humanos , Incidencia , Masculino , Polimorfismo de Nucleótido Simple/genética
19.
J Med Virol ; 93(9): 5446-5451, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33990973

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become a global health issue and develops into a broad range of illnesses from asymptomatic to fatal respiratory diseases. SARS-CoV-2 infection is associated with oxidative stress that triggers cytokine production, inflammation, and other pathophysiological processes. Glutathione-S-transferase (GST) is an important enzyme that catalyzes the conjugation of glutathione (GSH) with electrophiles to protect the cell from oxidative damage and participates in the antioxidant defense mechanism in the lungs. Thus, in this study, we investigated the role of GSTM1 and GSTT1 gene polymorphism with COVID-19 susceptibility, as well as its outcome. The study included 269 RT-PCR confirmed COVID-19 patients with mild (n = 149) and severe (n = 120) conditions. All subjects were genotyped for GSTM1 and GSTT1 by multiplex polymerase chain reaction (mPCR) followed by statistical analysis. The frequency of GSTM1-/- , GSTT1-/- and GSTM1-/- /GSTT1-/- was higher in severe COVID-19 patients as compared to mild patients but we did not observe a significant association. In the Cox hazard model, death was significantly 2.28-fold higher in patients with the GSTT1-/- genotype (p = 0.047). In combination, patients having GSTM1+/+ and GSTT1-/- genotypes showed a poor survival rate (p = 0.02). Our results suggested that COVID-19 patients with the GSTT1-/- genotype showed higher mortality.


Asunto(s)
COVID-19/genética , Predisposición Genética a la Enfermedad , Glutatión Transferasa/genética , Polimorfismo Genético , SARS-CoV-2/patogenicidad , Adulto , Anciano , Alelos , COVID-19/mortalidad , COVID-19/patología , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Femenino , Estudios de Seguimiento , Expresión Génica , Frecuencia de los Genes , Glutatión/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Estrés Oxidativo , Modelos de Riesgos Proporcionales , Índice de Severidad de la Enfermedad
20.
Mol Reprod Dev ; 88(2): 158-166, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33507590

RESUMEN

The dysregulation of microRNAs (miRNAs) plays an important role in asthenozoospermia. This study evaluated the sperm microRNA-423-5p (miR-423-5p) expression in asthenozoospermia and normozoospermia, exploring the role of miR-423-5p in asthenozoospermia. Eighty participants were divided into asthenozoospermic (AZS, n = 40) and normozoospermic (Norm, n = 40) groups. Fresh semen samples were collected and the sperm cells were separated. Quantitative Real-Time polymerase chain reaction was used to measure the sperm miR-423-5p level. Receiver operating characteristic curve (ROC) was employed to test the diagnostic performance of miR-423-5p in asthenospermia. Dual-reporter luciferase assay was adopted to confirm the target gene of miR-423-5p. The target gene level in asthenozoospermia and normozoospermia was measured, and the biological function of target gene in asthenozoospermia was evaluated. Results showed that the miR-423-5p expression level in the AZS group was higher than that in Norm group, which was positively correlated with the severity of asthenozoospermia. ROC analysis of miR-423-5p showed an area under curve (AUC) of 0.69 (95% confidence interval = 0.57-0.80, p <0 .01), with 80% sensitivity and 60% specificity. Glutathione S-transferase mu 1 (GSTM1) is a target gene of miR-423-5p, which significantly decreased in the AZS group. Compared with Norm group, glutathione S-transferase (GST) activity and total antioxidant capacity (TAC) level decreased, while malondialdehyde (MDA) level increased in the AZS group. Furthermore, GST activity and TAC level were negatively correlated with miR-423-5p expression, while MDA level was positively correlated with miR-423-5p expression. In conclusion, the sperm miR-423-5p level significantly was upregulated in asthenozoospermia. High-level miR-423-5p inhibited sperm motility through targeting GSTM1 to promote oxidative stress.


Asunto(s)
Astenozoospermia/metabolismo , Glutatión Transferasa/metabolismo , MicroARNs/metabolismo , Estrés Oxidativo , Astenozoospermia/enzimología , Astenozoospermia/genética , Humanos , Masculino , MicroARNs/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA