Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Exp Bot ; 75(9): 2644-2663, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488689

RESUMEN

l-Ascorbic acid (AsA) is an antioxidant with important roles in plant stress physiology, growth, and development. AsA also plays an essential role in human health, preventing scurvy. Humans do not synthesize AsA, which needs to be supplied via a diet rich in fresh produce. Research efforts have provided progress in the elucidation of a complex metabolic network with at least four routes leading to AsA formation in plants. In this review, three alternative pathways, namely the d-galacturonate, the l-gulose, and the myo-inositol pathways, are presented with the supporting evidence of their operation in multiple plant species. We critically discuss feeding studies using precursors and their conversion to AsA in plant organs, and research where the expression of key genes encoding enzymes involved in the alternative pathways showed >100% AsA content increase in the transgenics and in many cases accompanied by enhanced tolerance to multiple stresses. We propose that the alternative pathways are vital in AsA production in response to stressful conditions and to compensate in cases where the flux through the d-mannose/l-galactose pathway is reduced. The genes and enzymes that have been characterized so far in these alternative pathways represent important tools that are being used to develop more climate-tolerant crops.


Asunto(s)
Ácido Ascórbico , Plantas , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biosíntesis , Plantas/metabolismo , Plantas/genética , Vías Biosintéticas
2.
Nutr Res Rev ; : 1-18, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324277

RESUMEN

Pectin is composed of a group of complex polysaccharides that are naturally found in various plants and are associated with a range of beneficial health effects. Health outcomes from dietary pectin can vary depending on botanical origin, dietary dose and structure of pectin. The objective of this scoping review is to build a comprehensive overview of the current evidence available on intervention studies conducted in humans and to better understand the possible knowledge gaps in terms of structure-function relationships across the different health-related effects. PubMed and Embase databases were searched using PRISMA-ScR guidelines, yielding 141 references (from the initial 3704), representing 134 intervention studies performed between 1961 and 2022 that met inclusion criteria. Studies were divided into six categories, which included gut health, glycaemic response and appetite, fat metabolism, bioavailability of micronutrients, immune response and other topics. Review of these human intervention studies identified a variety of cohort characteristics and populations (life stage, health status, country), sources/types of pectin (i.e. citrus, sugarbeet, apple, other and non-defined), intervention timeframes (from one single intake to 168 d) and doses (0.1-50 g/d) that were tested for health outcomes in people. Gut health, post-prandial glucose regulation and maintenance of blood cholesterol represented the largest categories of studied outcomes. Further research to strengthen the structure-function relationships for pectin with health properties and associated outcomes is warranted and will benefit from a more precise description of physico-chemical characteristics and molecular compositions, such as degree of esterification, weight, degree of branching, viscosity, gel formation and solubility.

3.
J Plant Res ; 137(1): 125-142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37962734

RESUMEN

Wall-associated kinases (WAKs) are a unique family of proteins that are predominantly localized on the plasma membrane and simultaneously bound to the cell wall. WAKs play a pivotal role in signal transduction to regulate growth, defense, and response to environmental stimuli in plants. These kinases have been identified and characterized in various plant species, however, similar information for Catharanthus roseus is scarce. C. roseus is an evergreen ornamental plant that produces a repertoire of biologically active compounds. The plant is best characterized for the production of antineoplastic monoterpenoid indole alkaloids (MIAs) namely vinblastine and vincristine. Owing to the diverse composition of phytochemicals, C. roseus is known as a "model non-model" plant for secondary metabolite research. Genome analyses showed 37 putative CrWAK genes present in C. roseus, largely localized on the plasma membrane. Phylogenetic analysis revealed six clusters of CrWAKs. Diverse cis-acting elements, including those involved in defense responses, were identified on the promotor regions of CrWAK genes. The highest binding affinity (- 12.6 kcal/mol) was noted for CrWAK-22 against tri-galacturonic acid. Tri-galacturonic acid stimulated 2.5-fold higher production of vinblastine, sixfold upregulation of the expression of ORCA3 transcription factor, and 6.14-fold upregulation of CrWAK-22 expression. Based on these results it was concluded that the expression of CrWAK genes induced by biotic elicitors may have an important role in the production of MIAs. The current findings may serve as a basis for functional characterization and mechanistic explanation of the role of CrWAK genes in the biosynthesis of MIAs upon elicitation.


Asunto(s)
Catharanthus , Alcaloides de Triptamina Secologanina , Alcaloides de Triptamina Secologanina/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Simulación del Acoplamiento Molecular , Vinblastina/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Phytochem Anal ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693046

RESUMEN

INTRODUCTION: Pectin-oligosaccharides (POS) serve diverse purposes as a food ingredient, antimicrobial and biostimulant in plants, and their functionality is linked to the degree of esterification. Grape and broccoli wastes emerge as environmentally friendly alternatives to obtaining pectin, serving as a sustainable source to producing POS. For example, microwaves have proven to be an effective and sustainable method to extract polysaccharides from plant matrices. OBJECTIVE: This work aims to use grape and broccoli wastes as alternative sources for obtaining pectin by microwave-assisted extraction and biotransformation into POS, which possess biological properties. MATERIAL AND METHODS: The extraction conditions were identified at a power of 400 W, 300 s for the extraction of pectin from grape pomace and broccoli waste. Biotransformation of pectins into POS, using commercial enzyme preparations (Viscozyme L and Pectinase). Characterisation was carried out by Fourier-transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. RESULTS: Physicochemical analysis indicated grape pomace and broccoli waste pectins had galacturonic acid content of 63.81 ± 1.67 and 40.83 ± 2.85 mg 100 mg-1, low degree of esterification of 34.89% and 16.22%, respectively. Biotransformation of pectins into POS resulted in a 20% hydrolysis rate. The main enzymatic activity was polygalacturonase for the degradation of the main structure of the pectin. CONCLUSION: Production of POS from agro-industrial wastes by emerging technologies, such as the combined use of microwave-assisted extraction and enzymatic processes, represents an alternative method for the generation of bioactive compounds with distinctive properties suitable for different applications of interest.

5.
Fish Shellfish Immunol ; 132: 108513, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36584757

RESUMEN

A d-galacturonic acid-specific lectin, named AcL, was purified from the sea hare Aplysia californica by galactose-agarose affinity chromatography. AcL has a molecular mass of 27.5 kDa determined by MALDI-TOF mass spectrometry. This lectin shows a good affinity for d-galacturonic acid and a lower affinity for galactosides: raffinose, melibiose, α and ß-lactose, and d-galactose. We determined the amino acid sequence of AcL by trypsin digestion and subsequent peptide analysis by mass spectrometry, resulting in a 238 amino acid protein with a theoretical molecular mass of 26.4 kDa. The difference between the theoretical and experimental values can be attributed to post-translational modifications. Thiol-disulfide quantification discerned five disulfide bonds and three free cysteines. The structure of Acl is mainly comprised of beta sheets, determined by circular dichroism, and predicted with AlphaFold. Theoretical models depict three nearly identical tandem domains consisting of two beta sheets each. From docking analysis, we identified AcL glycan-binding sites as multiple conserved motifs in each domain. Furthermore, phylogenetic analysis based on its structure and sequence showed that AcL and its closest homologues (GalULs) form a clear monophyletic group, distinct from other glycan-binding proteins with a jelly-roll fold: lectins of types F and H. GalULs possess four conserved sequence regions that distinguish them and are either ligand-binding motifs or stabilizing network hubs. We suggest that this new family should be referred to as GalUL or D-type, following the traditional naming of lectins; D standing for depilans, the epithet for the species (Aplysia depilans) from which a lectin of this family was first isolated and described.


Asunto(s)
Aplysia , Liebres , Animales , Aplysia/química , Aplysia/metabolismo , Liebres/metabolismo , Galectinas/química , Filogenia , Galactosa/metabolismo , Polisacáridos/metabolismo
6.
J Sci Food Agric ; 103(1): 361-369, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35893577

RESUMEN

BACKGROUND: Acrylamide (AA) is a potential carcinogen formed in food rich in carbohydrate during heating. Recently, AA has been found in several fruit products, such as prune juice, sugarcane molasses and canned black olives. This study focused on the role of galacturonic acid (GalA), the main acid hydrolysis product of fruit pectin, in AA formation in three model systems - asparagine (Asn)/glucose (Glc), Asn/GalA, and Asn/Glc/GalA - during heating under different pH values (pH 3.8-7.8), Glc concentration (0-0.1 mol L-1 ), molar ratio of substrates (Asn/Glc = 1:1, 0.025-0.5 mol L-1 ) and temperature (120-180 °C) for 30 min, respectively. RESULTS: The results suggested that the addition of 0.1 mol L-1 GalA strongly accelerated AA formation in a manner dependent on pH value and temperature (P < 0.05). AA concentration under different Glc concentration and molar ratio of substrates suggested that GalA was more reactive than Glc when reacted with Asn. Furthermore, the Amadori rearrangement product/Schiff base/oxazolidine-5-one were identified as the intermediates formed in the Asn/GalA model system using ultra-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry. CONCLUSION: The results suggested that Maillard reaction between Asn and GalA might contribute to AA formation. This study is significant in elucidating the contribution of interaction between components for AA formation in fruit products. © 2022 Society of Chemical Industry.


Asunto(s)
Acrilamida , Reacción de Maillard , Acrilamida/química , Asparagina/química , Glucosa/química , Aceleración , Calor
7.
J Sci Food Agric ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559127

RESUMEN

BACKGROUND: Consumer preferences for boiled or fried pieces of roots, tubers and bananas (RTBs) are mainly related to their texture. Different raw and cooked RTBs were physiochemically characterized to determine the effect of biochemical components on their cooking properties. RESULTS: Firmness in boiled sweetpotato increases with sugar and amylose contents but no significant correlation was observed between other physicochemical characteristics and cooking behaviour. Hardness of boiled yam can be predicted by dry matter (DM) and galacturonic acid (GalA) levels. For cassava, no significant correlation was found between textural properties of boiled roots and DM, but amylose and Ca2+ content were correlated with firmness, negatively and positively, respectively. Water absorption of cassava root pieces boiled in calcium chloride solutions was much lower, providing indirect evidence that pectins are involved in determining cooking quality. A highly positive correlation between textural attributes and DM was observed for fried plantain, but no significant correlation was found with GalA, although frying slightly reduced GalA. CONCLUSION: The effect of main components on texture after cooking differs for the various RTBs. The effect of global DM and major components (i.e. starch, amylose) is prominent for yam, plantain and sweetpotato. Pectins also play an important role on the texture of boiled yam and play a prominent role for cassava through interaction with Ca2+ . © 2023 Bill and Melinda Gates Foundation. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

8.
J Sci Food Agric ; 103(6): 3194-3204, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36534030

RESUMEN

BACKGROUND: The physicochemical and functional properties of pectin (JFP) extracted from edible portions (including pericarp and seed) of raw jackfruit (an underutilized tropical fruit) at four different maturity stages (referred to as stages I, II, III, and IV) were characterized in terms of extraction yields, chemical composition, molecular weight, and antioxidant properties to evaluate its potential use in foods. RESULT: The JFP yield increased from 9.7% to 21.5% with fruit maturity, accompanied by an increase in the galacturonic acid content (50.1%, 57.1%, 63.6%, and 65.2%) for stages I-IV respectively. The molecular weight increased from 147 kDa in stage I to 169 kDa in stage III, but decreased to 114 kDa in stage IV, probably due to cell-wall degradation during maturation. The JFP was of the high methoxyl type and the degree of esterification increased from 65% to 87% with fruit maturity. The functional properties of JFP were similar to or better than those reported for commercial apple pectin, thus highlighting its potential as a food additive. Although the phenolics and flavonoids content of JFP decreased with fruit maturity, their antioxidant capacity increased, which may be correlated with the increased content of galacturonic acid upon fruit development. Gels prepared from JFP showed viscoelastic behavior. Depending on the maturity stage in which they were obtained, different gelation behavior was seen. CONCLUSION: The study confirmed the potential of pectin extracted from edible parts of jackfruit as a promising source of high-quality gelling pectin with antioxidant properties, for food applications. © 2022 Society of Chemical Industry.


Asunto(s)
Artocarpus , Pectinas , Pectinas/química , Artocarpus/química , Antioxidantes/análisis , Frutas/química
9.
Metab Eng ; 69: 1-14, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648971

RESUMEN

Pectin-rich plant biomass residues represent underutilized feedstocks for industrial biotechnology. The conversion of the oxidized monomer d-galacturonic acid (d-GalUA) to highly reduced fermentation products such as alcohols is impossible due to the lack of electrons. The reduced compound glycerol has therefore been considered an optimal co-substrate, and a cell factory able to efficiently co-ferment these two carbon sources is in demand. Here, we inserted the fungal d-GalUA pathway in a strain of the yeast S. cerevisiae previously equipped with an NAD-dependent glycerol catabolic pathway. The constructed strain was able to consume d-GalUA with the highest reported maximum specific rate of 0.23 g gCDW-1 h-1 in synthetic minimal medium when glycerol was added. By means of a 13C isotope-labelling analysis, carbon from both substrates was shown to end up in pyruvate. The study delivers the proof of concept for a co-fermentation of the two 'respiratory' carbon sources to ethanol and demonstrates a fast and complete consumption of d-GalUA in crude sugar beet pulp hydrolysate under aerobic conditions. The future challenge will be to achieve co-fermentation under industrial, quasi-anaerobic conditions.


Asunto(s)
Glicerol , Saccharomyces cerevisiae , Fermentación , Glicerol/metabolismo , Ácidos Hexurónicos , Pectinas/genética , Pectinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
J Biol Chem ; 295(35): 12461-12473, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32661196

RESUMEN

UDP-glucuronic acid is converted to UDP-galacturonic acid en route to a variety of sugar-containing metabolites. This reaction is performed by a NAD+-dependent epimerase belonging to the short-chain dehydrogenase/reductase family. We present several high-resolution crystal structures of the UDP-glucuronic acid epimerase from Bacillus cereus The geometry of the substrate-NAD+ interactions is finely arranged to promote hydride transfer. The exquisite complementarity between glucuronic acid and its binding site is highlighted by the observation that the unligated cavity is occupied by a cluster of ordered waters whose positions overlap the polar groups of the sugar substrate. Co-crystallization experiments led to a structure where substrate- and product-bound enzymes coexist within the same crystal. This equilibrium structure reveals the basis for a "swing and flip" rotation of the pro-chiral 4-keto-hexose-uronic acid intermediate that results from glucuronic acid oxidation, placing the C4' atom in position for receiving a hydride ion on the opposite side of the sugar ring. The product-bound active site is almost identical to that of the substrate-bound structure and satisfies all hydrogen-bonding requirements of the ligand. The structure of the apoenzyme together with the kinetic isotope effect and mutagenesis experiments further outlines a few flexible loops that exist in discrete conformations, imparting structural malleability required for ligand rotation while avoiding leakage of the catalytic intermediate and/or side reactions. These data highlight the double nature of the enzymatic mechanism: the active site features a high degree of precision in substrate recognition combined with the flexibility required for intermediate rotation.


Asunto(s)
Bacillus cereus/enzimología , Proteínas Bacterianas/química , Carbohidrato Epimerasas/química , Cristalografía por Rayos X , Ligandos , NAD/química , Oxidación-Reducción , Rotación , Azúcares de Uridina Difosfato/química
11.
Appl Microbiol Biotechnol ; 105(14-15): 5795-5807, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34268581

RESUMEN

Pectin-rich residues are considered as promising feedstocks for sustainable production of platform chemicals. Enzymatic hydrolysis of extracted sugar beet press pulp (SBPP) releases the main constituent of pectin, D-galacturonic acid (D-GalA). Using engineered Saccharomyces cerevisiae, D-GalA is then reduced to L-galactonate (L-GalOA) with sorbitol as co-substrate. The current work addresses the combination of enzymatic hydrolysis of pectin in SBPP with a consecutive optimized biotransformation of the released D-GalA to L-GalOA in simple batch processes in stirred-tank bioreactors. Process conditions were first identified with synthetic media, where a product concentration of 9.9 g L-1 L-GalOA was obtained with a product selectivity of 99% (L-GalOA D-GalA-1) at pH 5 with 4% (w/v) sorbitol within 48 h. A very similar batch process performance with a product selectivity of 97% was achieved with potassium citrate buffered SBPP hydrolysate, demonstrating for the first time direct production of L-GalOA from hydrolyzed biomass using engineered S. cerevisiae. Combining the hydrolysis process of extracted SBPP and the biotransformation process with engineered S. cerevisiae paves the way towards repurposing pectin-rich residues as substrates for value-added chemicals. KEY POINTS: • Efficient bioreduction of D-GalA with S. cerevisiae in stirred-tank reactors • Batch production of L-GalOA by engineered S. cerevisiae with high selectivity • Direct L-GalOA production from hydrolyzed sugar beet press pulp Bioreduction of D-galacturonic acid to L-galactonate with recombinant Saccharomyces cerevisiae enables for the first time the valorization of hydrolysates from extracted sugar beet press pulp for the sustainable production of value-added chemicals.


Asunto(s)
Beta vulgaris , Saccharomyces cerevisiae , Ácidos Hexurónicos , Hidrólisis , Saccharomyces cerevisiae/genética , Azúcares
12.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830042

RESUMEN

Shigella is a leading diarrheal cause of morbidity and mortality worldwide, especially in low- and middle-income countries and in children under five years of age. Increasing levels of antimicrobial resistance make vaccine development an even higher global health priority. S. flexneri serotype 6 is one of the targets of many multicomponent vaccines in development to ensure broad protection against Shigella. The O-antigen (OAg) is a key active ingredient and its content is a critical quality attribute for vaccine release in order to monitor their stability and to ensure appropriate immune response. Here, the optimization of two methods to quantify S. flexneri 6 OAg is reported together with the characterization of their performances. The optimized Dische colorimetric method allows a tenfold increment of the sensitivity with respect to the original method and is useful for fast analysis detecting selectively methyl-pentoses, as rhamnose in S. flexneri 6 OAg. Also, a more specific HPAEC-PAD method was developed, detecting the dimer galacturonic acid-galactosamine (GalA-GalN) coming from S. flexneri 6 OAg acid hydrolysis. These methods will facilitate characterization of S. flexneri 6 OAg based vaccines. The colorimetric method can be used for quantification of other polysaccharide containing methyl-pentoses, and the HPAEC-PAD could be extended to other polysaccharides containing uronic acids.


Asunto(s)
Antígenos O/química , Antígenos O/aislamiento & purificación , Shigella flexneri/química , Ácidos Hexurónicos/química , Ácidos Hexurónicos/aislamiento & purificación , Pentosas/química , Pentosas/aislamiento & purificación
13.
J Biol Chem ; 294(5): 1753-1762, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510137

RESUMEN

In the quest for a sustainable economy of the Earth's resources and for renewable sources of energy, a promising avenue is to exploit the vast quantity of polysaccharide molecules contained in green wastes. To that end, the decomposition of pectin appears to be an interesting target because this polymeric carbohydrate is abundant in many fruit pulps and soft vegetables. To quantitatively study this degradation process, here we designed a bioreactor that is continuously fed with de-esterified pectin (PGA). Thanks to the pectate lyases produced by bacteria cultivated in the vessel, the PGA is depolymerized into oligogalacturonates (UGA), which are continuously extracted from the tank. A mathematical model of our system predicted that the conversion efficiency of PGA into UGA increases in a range of coefficients of dilution until reaching an upper limit where the fraction of UGA that is extracted from the bioreactor is maximized. Results from experiments with a continuous reactor hosting a strain of the plant pathogenic bacterium Dickeya dadantii and in which the dilution coefficients were varied quantitatively validated the predictions of our model. A further theoretical analysis of the system enabled an a priori comparison of the efficiency of eight other pectate lyase-producing microorganisms with that of D. dadantii Our findings suggest that D. dadantii is the most efficient microorganism and therefore the best candidate for a practical implementation of our scheme for the bioproduction of UGA from PGA.


Asunto(s)
Reactores Biológicos , Enterobacteriaceae/metabolismo , Modelos Biológicos , Oligosacáridos/biosíntesis , Polisacáridos/metabolismo , Proteínas Bacterianas/metabolismo , Pectinas/metabolismo , Polisacárido Liasas/metabolismo , Factores de Virulencia/metabolismo
14.
Biochem Biophys Res Commun ; 521(1): 31-36, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31653344

RESUMEN

The epimerase MoeE5 from Streptomyces viridosporus converts UDP-glucuronic acid (UDP-GlcA) to UDP-galacturonic acid (UDP-GalA) to provide the first sugar in synthesizing moenomycin, a potent inhibitor against bacterial peptidoglycan glycosyltransferases. The enzyme belongs to the UDP-hexose 4-epimerase family, and uses NAD+ as its cofactor. Here we present the complex crystal structures of MoeE5/NAD+/UDP-GlcA and MoeE5/NAD+/UDP-glucose, determined at 1.48 Šand 1.66 Šresolution. The cofactor NAD+ is bound to the N-terminal Rossmann-fold domain and the substrate is bound to the smaller C-terminal domain. In both crystals the C4 atom of the sugar moiety of the substrate is in close proximity to the C4 atom of the nicotinamide of NAD+, and the O4 atom of the sugar is also hydrogen bonded to the side chain of Tyr154, suggesting a productive binding mode. As the first complex structure of this protein family with a bound UDP-GlcA in the active site, it shows an extensive hydrogen-bond network between the enzyme and the substrate. We further built a model with the product UDP-GalA, and found that the unique Arg192 of MoeE5 might play an important role in the catalytic pathway. Consequently, MoeE5 is likely a specific epimerase for UDP-GlcA to UDP-GalA conversion, rather than a promiscuous enzyme as some other family members.


Asunto(s)
Antibacterianos/biosíntesis , Oligosacáridos/biosíntesis , UDPglucosa 4-Epimerasa/metabolismo , Antibacterianos/química , Cristalografía por Rayos X , Modelos Moleculares , Oligosacáridos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces/enzimología , Especificidad por Sustrato , UDPglucosa 4-Epimerasa/química , UDPglucosa 4-Epimerasa/genética
15.
Microb Cell Fact ; 19(1): 156, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32736636

RESUMEN

BACKGROUND: Two marine fungi, a Trichoderma sp. and a Coniochaeta sp., which can grow on D-galacturonic acid and pectin, were selected as hosts to engineer for mucic acid production, assessing the suitability of marine fungi for production of platform chemicals. The pathway for biotechnologcial production of mucic (galactaric) acid from D-galacturonic acid is simple and requires minimal modification of the genome, optimally one deletion and one insertion. D-Galacturonic acid, the main component of pectin, is a potential substrate for bioconversion, since pectin-rich waste is abundant. RESULTS: Trichoderma sp. LF328 and Coniochaeta sp. MF729 were engineered using CRISPR-Cas9 to oxidize D-galacturonic acid to mucic acid, disrupting the endogenous pathway for D-galacturonic acid catabolism when inserting a gene encoding bacterial uronate dehydrogenase. The uronate dehydrogenase was expressed under control of a synthetic expression system, which fucntioned in both marine strains. The marine Trichoderma transformants produced 25 g L-1 mucic acid from D-galacturonic acid in equimolar amounts: the yield was 1.0 to 1.1 g mucic acid [g D-galacturonic acid utilized]-1. D-Xylose and lactose were the preferred co-substrates. The engineered marine Trichoderma sp. was more productive than the best Trichoderma reesei strain (D-161646) described in the literature to date, that had been engineered to produce mucic acid. With marine Coniochaeta transformants, D-glucose was the preferred co-substrate, but the highest yield was 0.82 g g-1: a portion of D-galacturonic acid was still metabolized. Coniochaeta sp. transformants produced adequate pectinases to produce mucic acid from pectin, but Trichoderma sp. transformants did not. CONCLUSIONS: Both marine species were successfully engineered using CRISPR-Cas9 and the synthetic expression system was functional in both species. Although Coniochaeta sp. transformants produced mucic acid directly from pectin, the metabolism of D-galacturonic acid was not completely disrupted and mucic acid amounts were low. The D-galacturonic pathway was completely disrupted in the transformants of the marine Trichoderma sp., which produced more mucic acid than a previously constructed T. reesei mucic acid producing strain, when grown under similar conditions. This demonstrated that marine fungi may be useful as production organisms, not only for native enzymes or bioactive compounds, but also for other compounds.


Asunto(s)
Organismos Acuáticos/metabolismo , Ascomicetos/metabolismo , Ácidos Hexurónicos/metabolismo , Azúcares Ácidos/metabolismo , Trichoderma/metabolismo , Organismos Acuáticos/genética , Ascomicetos/genética , Biotecnología , Sistemas CRISPR-Cas , Ingeniería Metabólica , Trichoderma/genética
16.
Bioprocess Biosyst Eng ; 43(9): 1549-1560, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32328731

RESUMEN

Pectinaceous agricultural residues rich in D-galacturonic acid (D-GalA), such as sugar beet pulp, are considered as promising feedstocks for waste-to-value conversions. Aspergillus niger is known for its strong pectinolytic activity. However, while specialized strains for production of citric acid or proteins are well characterized, this is not the case for the production of pectinases. We, therefore, systematically compared the pectinolytic capabilities of six A. niger strains (ATCC 1015, ATCC 11414, NRRL 3122, CBS 513.88, NRRL 3, and N402) using controlled batch cultivations in stirred-tank bioreactors. A. niger ATCC 11414 showed the highest polygalacturonase activity, specific protein secretion, and a suitable morphology. Furthermore, D-GalA release from sugar beet pulp was 75% higher compared to the standard lab strain A. niger N402. Our study, therefore, presents a robust initial strain selection to guide future process improvement of D-GalA production from agricultural residues and identifies a high-performance base strain for further genetic optimizations.


Asunto(s)
Aspergillus niger/enzimología , Proteínas Fúngicas/metabolismo , Pectinas/metabolismo , Poligalacturonasa/metabolismo , Beta vulgaris/química , Pectinas/química
17.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383833

RESUMEN

The structure of lipid A from lipopolysaccharide (LPS) of Rhodomicrobium vannielii ATCC 17100 (Rv) a phototrophic, budding bacterium was re-investigated using high-resolution mass spectrometry, NMR, and chemical degradation protocols. It was found that the (GlcpN)-disaccharide lipid A backbone was substituted by a GalpA residue that was connected to C-1 of proximal GlcpN. Some of this GalpA residue was ß-eliminated by alkaline de-acylation, which indicated the possibility of the presence of another so far unidentified substituent at C-4 in non-stoichiometric amounts. One Manp residue substituted C-4' of distal GlcpN. The lipid A backbone was acylated by 16:0(3-OH) at C-2 of proximal GlcpN, and by 16:0(3-OH), i17:0(3-OH), or 18:0(3-OH) at C-2' of distal GlcpN. Two acyloxy-acyl moieties that were mainly formed by 14:0(3-O-14:0) and 16:0(3-O-22:1) occupied the distal GlcpN of lipid A. Genes that were possibly involved in the modification of Rv lipid A were compared with bacterial genes of known function. The biological activity was tested at the model of human mononuclear cells (MNC), showing that Rv lipid A alone does not significantly stimulate MNC. At low concentrations of toxic Escherichia coli O111:B4 LPS, pre-incubation with Rv lipid A resulted in a substantial reduction of activity, but, when higher concentrations of E. coli LPS were used, the stimulatory effect was increased.


Asunto(s)
Lípido A/química , Rhodomicrobium/química , Cromatografía Liquida , Humanos , Lipopolisacáridos/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , Procesos Fototróficos , Rhodomicrobium/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
18.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121154

RESUMEN

The free-living Gram-negative bacterium Oligotropha carboxidovorans (formerly: Pseudomonas carboxydovorans), isolated from wastewater, is able to live in aerobic and, facultatively, in autotrophic conditions, utilizing carbon monoxide or hydrogen as a source of energy. The structure of O. carboxidovorans lipid A, a hydrophobic part of lipopolysaccharide, was studied using NMR spectroscopy and high-resolution mass spectrometry (MALDI-ToF MS) techniques. It was demonstrated that the lipid A backbone is composed of two d-GlcpN3N residues connected by a ß-(1→6) glycosidic linkage, substituted by galacturonic acids (d-GalpA) at C-1 and C-4' positions. Both diaminosugars are symmetrically substituted by 3-hydroxy fatty acids (12:0(3-OH) and 18:0(3-OH)). Ester-linked secondary acyl residues (i.e., 18:0, and 26:0(25-OH) and a small amount of 28:0(27-OH)) are located in the distal part of lipid A. These very long-chain hydroxylated fatty acids (VLCFAs) were found to be almost totally esterified at the (ω-1)-OH position with malic acid. Similarities between the lipid A of O. carboxidovorans and Mesorhizobium loti, Rhizobium leguminosarum, Caulobacter crescentus as well as Aquifex pyrophylus were observed and discussed from the perspective of the genomic context of these bacteria.


Asunto(s)
Bradyrhizobiaceae/metabolismo , Ácidos Hexurónicos/química , Lípido A/química , Malatos/química , Sustitución de Aminoácidos , Bradyrhizobiaceae/química , Bradyrhizobiaceae/genética , Secuencia de Carbohidratos , Lípido A/genética , Lípido A/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Plant Mol Biol ; 99(4-5): 421-436, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30707395

RESUMEN

KEY MESSAGE: A possible transcription factor TLP2 was identified to be involved in the regulation of HG biosynthesis in Arabidopsis seed mucilage. TLP2 can translocate into nucleus from plasma membrane by interacting with NF-YC3. The discovery of TLP2 gene function can further fulfill the regulatory network of pectin biosynthesis in Arabidopsis thaliana. Arabidopsis seed coat mucilage is an excellent model system to study the biosynthesis, function and regulation of pectin. Rhamnogalacturonan I (RG-I) and homogalacturonan (HG) are the major polysaccharides constituent of the Arabidopsis seed coat mucilage. Here, we identified a Tubby-like gene, Tubby-like protein 2 (TLP2), which was up-regulated in developing siliques when mucilage began to be produced. Ruthenium red (RR) staining of the seeds showed defective mucilage of tlp2-1 mutant after vigorous shaking compared to wild type (WT). Monosaccharide composition analysis revealed that the amount of total sugars and galacturonic acid (GalA) decreased significantly in the adherent mucilage (AM) of tlp2-1 mutant. Immunolabelling and dot immunoblotting analysis showed that unesterified HG decreased in the tlp2-1 mutant. Furthermore, TLP2 can translocate into nucleus by interacting with Nuclear Factor Y subunit C3 (NF-YC3) to function as a transcription factor. RNA-sequence and transactivation assays revealed that TLP2 could activate UDP-glucose 4-epimerase 1 (UGE1). In all, it is concluded that TLP2 could regulate the biosynthesis of HG possibly through the positive activation of UGE1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pectinas/biosíntesis , Mucílago de Planta/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Hexurónicos , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Polisacáridos , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ARN , Factores de Transcripción , Activación Transcripcional , Uridina Difosfato Glucosa Deshidrogenasa/metabolismo
20.
J Sci Food Agric ; 99(2): 868-876, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30009444

RESUMEN

BACKGROUND: Industrial extraction of orange juice produces a large amount of waste that affects the environment and gives rise to important economic losses; at the same time, information about the composition of the waste is still limited. The present study carried out an exhaustive chemical and physicochemical characterization of the residues in the waste, aiming to increase their potential application for the extraction of functional ingredients. RESULTS: Four different products (three solids and one liqueur) were provided by the industry. The overall characterization indicated that carbohydrates comprised the main components. During processing, carbohydrate derivatives were formed such as those corresponding to the initial steps of the Maillard reaction. In this sense, furosine was demonstrated to be a suitable indicator with respect to the control of the process. Although the phenolic content substantially decreased (by up to 57%) as the processing proceeded, the antioxidant capacity was affected to a much lesser extent (∼10%). Dehydrated products were rich in galacturonic acid and hardly any change was detected during their elaboration. The liqueur by-product was found to have a much higher level of fructose than glucose and sucrose. CONCLUSION: Orange juice waste obtained industrially under the conditions described in the present study could be used as a source of pectic derivatives or fructose in the case of solid or liquid by-products, respectively. The results reported here could diversify the present application of these products as a source of food ingredients, contributing to an improvement in their utilization. © 2018 Society of Chemical Industry.


Asunto(s)
Citrus sinensis/química , Residuos Industriales/análisis , Extractos Vegetales/análisis , Residuos/análisis , Antioxidantes/análisis , Fructosa/análisis , Frutas/química , Glucosa/análisis , Lisina/análogos & derivados , Lisina/análisis , Fenoles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA