RESUMEN
We sequenced and assembled using multiple long-read sequencing technologies the genomes of chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, owl monkey, and marmoset. We identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. We estimate that 819.47 Mbp or â¼27% of the genome has been affected by SVs across primate evolution. We identify 1,607 structurally divergent regions wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (e.g., CARD, C4, and OLAH gene families) and additional lineage-specific genes are generated (e.g., CKAP2, VPS36, ACBD7, and NEK5 paralogs), becoming targets of rapid chromosomal diversification and positive selection (e.g., RGPD gene family). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species.
Asunto(s)
Genoma , Primates , Animales , Humanos , Secuencia de Bases , Primates/clasificación , Primates/genética , Evolución Biológica , Análisis de Secuencia de ADN , Variación Estructural del GenomaRESUMEN
Terrestrial organisms developed circadian rhythms for adaptation to Earth's quasi-24-h rotation. Achieving precise rhythms requires diurnal oscillation of fundamental biological processes, such as rhythmic shifts in the cellular translational landscape; however, regulatory mechanisms underlying rhythmic translation remain elusive. Here, we identified mammalian ATXN2 and ATXN2L as cooperating master regulators of rhythmic translation, through oscillating phase separation in the suprachiasmatic nucleus along circadian cycles. The spatiotemporal oscillating condensates facilitate sequential initiation of multiple cycling processes, from mRNA processing to protein translation, for selective genes including core clock genes. Depleting ATXN2 or 2L induces opposite alterations to the circadian period, whereas the absence of both disrupts translational activation cycles and weakens circadian rhythmicity in mice. Such cellular defect can be rescued by wild type, but not phase-separation-defective ATXN2. Together, we revealed that oscillating translation is regulated by spatiotemporal condensation of two master regulators to achieve precise circadian rhythm in mammals.
Asunto(s)
Relojes Circadianos , Ratones , Animales , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/metabolismo , Procesamiento Proteico-Postraduccional , MamíferosRESUMEN
"What makes us human?" is a central question of many research fields, notably anthropology. In this review, we focus on the development of the human neocortex, the part of the brain with a key role in cognition, to gain neurobiological insight toward answering this question. We first discuss cortical stem and progenitor cells and human-specific genes that affect their behavior. We thus aim to understand the molecular foundation of the expansion of the neocortex that occurred in the course of human evolution, as this expansion is generally thought to provide a basis for our unique cognitive abilities. We then review the emerging evidence pointing to differences in the development of the neocortex between present-day humans and Neanderthals, our closest relatives. Finally, we discuss human-specific genes that have been implicated in neuronal circuitry and offer a perspective for future studies addressing the question of what makes us human.
Asunto(s)
Evolución Biológica , Neocórtex , Humanos , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Animales , Hombre de Neandertal/genética , Cognición , Neuronas/metabolismoRESUMEN
Understanding the basis for cellular growth, proliferation, and function requires determining the roles of essential genes in diverse cellular processes, including visualizing their contributions to cellular organization and morphology. Here, we combined pooled CRISPR-Cas9-based functional screening of 5,072 fitness-conferring genes in human HeLa cells with microscopy-based imaging of DNA, the DNA damage response, actin, and microtubules. Analysis of >31 million individual cells identified measurable phenotypes for >90% of gene knockouts, implicating gene targets in specific cellular processes. Clustering of phenotypic similarities based on hundreds of quantitative parameters further revealed co-functional genes across diverse cellular activities, providing predictions for gene functions and associations. By conducting pooled live-cell screening of â¼450,000 cell division events for 239 genes, we additionally identified diverse genes with functional contributions to chromosome segregation. Our work establishes a resource detailing the consequences of disrupting core cellular processes that represents the functional landscape of essential human genes.
Asunto(s)
Sistemas CRISPR-Cas , Genes Esenciales , Humanos , Células HeLa , Técnicas de Inactivación de Genes , FenotipoRESUMEN
The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , ADN-Topoisomerasas de Tipo I/metabolismo , SARS-CoV-2/metabolismo , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología , Animales , COVID-19/enzimología , COVID-19/patología , Chlorocebus aethiops , Humanos , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Inflamación/patología , Inflamación/virología , Mesocricetus , Ratones , Ratones Transgénicos , Células THP-1 , Células VeroRESUMEN
Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.
Asunto(s)
Heterogeneidad Genética , Neoplasias/genética , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/química , ADN de Neoplasias/metabolismo , Bases de Datos Genéticas , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Secuenciación Completa del GenomaRESUMEN
Genomically minimal cells, such as JCVI-syn3.0, offer a platform to clarify genes underlying core physiological processes. Although this minimal cell includes genes essential for population growth, the physiology of its single cells remained uncharacterized. To investigate striking morphological variation in JCVI-syn3.0 cells, we present an approach to characterize cell propagation and determine genes affecting cell morphology. Microfluidic chemostats allowed observation of intrinsic cell dynamics that result in irregular morphologies. A genome with 19 genes not retained in JCVI-syn3.0 generated JCVI-syn3A, which presents morphology similar to that of JCVI-syn1.0. We further identified seven of these 19 genes, including two known cell division genes, ftsZ and sepF, a hydrolase of unknown substrate, and four genes that encode membrane-associated proteins of unknown function, which are required together to restore a phenotype similar to that of JCVI-syn1.0. This result emphasizes the polygenic nature of cell division and morphology in a genomically minimal cell.
Asunto(s)
Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , ADN Bacteriano/genética , Genoma Bacteriano , Mycoplasma/genética , Biología Sintética/métodos , Proteínas Bacterianas/antagonistas & inhibidores , Sistemas CRISPR-Cas , Ingeniería GenéticaRESUMEN
Antibacterial agents target the products of essential genes but rarely achieve complete target inhibition. Thus, the all-or-none definition of essentiality afforded by traditional genetic approaches fails to discern the most attractive bacterial targets: those whose incomplete inhibition results in major fitness costs. In contrast, gene "vulnerability" is a continuous, quantifiable trait that relates the magnitude of gene inhibition to the effect on bacterial fitness. We developed a CRISPR interference-based functional genomics method to systematically titrate gene expression in Mycobacterium tuberculosis (Mtb) and monitor fitness outcomes. We identified highly vulnerable genes in various processes, including novel targets unexplored for drug discovery. Equally important, we identified invulnerable essential genes, potentially explaining failed drug discovery efforts. Comparison of vulnerability between the reference and a hypervirulent Mtb isolate revealed incomplete conservation of vulnerability and that differential vulnerability can predict differential antibacterial susceptibility. Our results quantitatively redefine essential bacterial processes and identify high-value targets for drug development.
Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Aminoacil-ARNt Sintetasas/metabolismo , Antituberculosos/farmacología , Teorema de Bayes , Evolución Biológica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , ARN Guía de Kinetoplastida/genéticaRESUMEN
Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.
Asunto(s)
Predisposición Genética a la Enfermedad , Genética de Población , Osteoartritis/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Osteoartritis/tratamiento farmacológico , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Caracteres Sexuales , Transducción de Señal/genéticaRESUMEN
Changes in appendage structure underlie key transitions in vertebrate evolution. Addition of skeletal elements along the proximal-distal axis facilitated critical transformations, including the fin-to-limb transition that permitted generation of diverse modes of locomotion. Here, we identify zebrafish mutants that form supernumerary long bones in their pectoral fins. These new bones integrate into musculature, form joints, and articulate with neighboring elements. This phenotype is caused by activating mutations in previously unrecognized regulators of appendage patterning, vav2 and waslb, that function in a common pathway. This pathway is required for appendage development across vertebrates, and loss of Wasl in mice causes defects similar to those seen in murine Hox mutants. Concordantly, formation of supernumerary bones requires Hox11 function, and mutations in the vav2/wasl pathway drive enhanced expression of hoxa11b, indicating developmental homology with the forearm. Our findings reveal a latent, limb-like pattern ability in fins that is activated by simple genetic perturbation.
Asunto(s)
Huesos/embriología , Extremidades/embriología , Pez Cebra/embriología , Actinas/metabolismo , Aletas de Animales/embriología , Animales , Secuencia de Bases , Tipificación del Cuerpo , Sistemas CRISPR-Cas/genética , Linaje de la Célula , Epistasis Genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Genes Reporteros , Células HeLa , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Mutación/genética , Fenotipo , Filogenia , Transducción de Señal/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Early genome-wide association studies (GWASs) led to the surprising discovery that, for typical complex traits, most of the heritability is due to huge numbers of common variants with tiny effect sizes. Previously, we argued that new models are needed to understand these patterns. Here, we provide a formal model in which genetic contributions to complex traits are partitioned into direct effects from core genes and indirect effects from peripheral genes acting in trans. We propose that most heritability is driven by weak trans-eQTL SNPs, whose effects are mediated through peripheral genes to impact the expression of core genes. In particular, if the core genes for a trait tend to be co-regulated, then the effects of peripheral variation can be amplified such that nearly all of the genetic variance is driven by weak trans effects. Thus, our model proposes a framework for understanding key features of the architecture of complex traits.
Asunto(s)
Regulación de la Expresión Génica/genética , Herencia/genética , Herencia Multifactorial/genética , Bases de Datos Genéticas , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Humanos , Modelos Teóricos , Fenotipo , Polimorfismo Genético/genética , Sitios de Carácter Cuantitativo/genéticaRESUMEN
Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas NLR/genética , Alelos , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Variación Genética , Genoma de Planta , Proteínas NLR/metabolismo , Enfermedades de las Plantas/genética , Inmunidad de la Planta , Especificidad de la EspecieRESUMEN
Bacteria and archaea possess a striking diversity of CRISPR-Cas systems divided into six types, posing a significant barrier to viral infection. As part of the virus-host arms race, viruses encode protein inhibitors of type I, II, and V CRISPR-Cas systems, but whether there are natural inhibitors of the other, mechanistically distinct CRISPR-Cas types is unknown. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB1, encoded by the Sulfolobus virus SIRV2. AcrIIIB1 exclusively inhibits CRISPR-Cas subtype III-B immunity mediated by the RNase activity of the accessory protein Csx1. AcrIIIB1 does not appear to bind Csx1 but, rather, interacts with two distinct subtype III-B effector complexes-Cmr-α and Cmr-γ-which, in response to protospacer transcript binding, are known to synthesize cyclic oligoadenylates (cOAs) that activate the Csx1 "collateral" RNase. Taken together, we infer that AcrIIIB1 inhibits type III-B CRISPR-Cas immunity by interfering with a Csx1 RNase-related process.
Asunto(s)
Proteínas Asociadas a CRISPR/fisiología , Sistemas CRISPR-Cas , Interacciones Huésped-Patógeno , Rudiviridae/metabolismo , Sulfolobus/virología , Ribonucleasas/metabolismoRESUMEN
Pediatric-onset colitis and inflammatory bowel disease (IBD) have significant effects on the growth of infants and children, but the etiopathogenesis underlying disease subtypes remains incompletely understood. Here, we report single-cell clustering, immune phenotyping, and risk gene analysis for children with undifferentiated colitis, Crohn's disease, and ulcerative colitis. We demonstrate disease-specific characteristics, as well as common pathogenesis marked by impaired cyclic AMP (cAMP)-response signaling. Specifically, infiltration of PDE4B- and TNF-expressing macrophages, decreased abundance of CD39-expressing intraepithelial T cells, and platelet aggregation and release of 5-hydroxytryptamine at the colonic mucosae were common in colitis and IBD patients. Targeting these pathways by using the phosphodiesterase inhibitor dipyridamole restored immune homeostasis and improved colitis symptoms in a pilot study. In summary, comprehensive analysis of the colonic mucosae has uncovered common pathogenesis and therapeutic targets for children with colitis and IBD.
Asunto(s)
Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/terapia , Mucosa Intestinal/patología , Antígenos CD/metabolismo , Apirasa/metabolismo , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Muerte Celular/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Niño , Estudios de Cohortes , Colon/patología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Dipiridamol/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad , Homeostasis/efectos de los fármacos , Humanos , Inmunoglobulina G/sangre , Memoria Inmunológica , Inflamación/patología , Enfermedades Inflamatorias del Intestino/sangre , Enfermedades Inflamatorias del Intestino/genética , Interferón Tipo I/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Metilprednisolona/farmacología , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismoRESUMEN
An important property of the host innate immune response during microbial infection is its ability to control the expression of antimicrobial effector proteins, but how this occurs post-transcriptionally is not well defined. Here, we describe a critical antibacterial role for the classic antiviral gene 2'-5'-oligoadenylate synthetase 1 (OAS1). Human OAS1 and its mouse ortholog, Oas1b, are induced by interferon-γ and protect against cytosolic bacterial pathogens such as Francisella novicida and Listeria monocytogenes in vitro and in vivo. Proteomic and transcriptomic analysis showed reduced IRF1 protein expression in OAS1-deficient cells. Mechanistically, OAS1 binds and localizes IRF1 mRNA to the rough endoplasmic reticulum (ER)-Golgi endomembranes, licensing effective translation of IRF1 mRNA without affecting its transcription or decay. OAS1-dependent translation of IRF1 leads to the enhanced expression of antibacterial effectors, such as GBPs, which restrict intracellular bacteria. These findings uncover a noncanonical function of OAS1 in antibacterial innate immunity.
Asunto(s)
2',5'-Oligoadenilato Sintetasa , Inmunidad Innata , Factor 1 Regulador del Interferón , 2',5'-Oligoadenilato Sintetasa/metabolismo , 2',5'-Oligoadenilato Sintetasa/genética , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Animales , Humanos , Ratones , Biosíntesis de Proteínas/inmunología , Listeria monocytogenes/inmunología , Ratones Noqueados , Ratones Endogámicos C57BL , Listeriosis/inmunología , Interferón gamma/metabolismo , Interferón gamma/inmunologíaRESUMEN
In response to viral infection, how cells balance translational shutdown to limit viral replication and the induction of antiviral components like interferons (IFNs) is not well understood. Moreover, how distinct isoforms of IFN-induced oligoadenylate synthetase 1 (OAS1) contribute to this antiviral response also requires further elucidation. Here, we show that human, but not mouse, OAS1 inhibits SARS-CoV-2 replication through its canonical enzyme activity via RNase L. In contrast, both mouse and human OAS1 protect against West Nile virus infection by a mechanism distinct from canonical RNase L activation. OAS1 binds AU-rich elements (AREs) of specific mRNAs, including IFNß. This binding leads to the sequestration of IFNß mRNA to the endomembrane regions, resulting in prolonged half-life and continued translation. Thus, OAS1 is an ARE-binding protein with two mechanisms of antiviral activity: driving inhibition of translation but also a broader, non-canonical function of protecting IFN expression from translational shutdown.
Asunto(s)
2',5'-Oligoadenilato Sintetasa , Interferones , Oligorribonucleótidos , Virosis , Fiebre del Nilo Occidental , Animales , Humanos , Ratones , 2',5'-Oligoadenilato Sintetasa/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo , Nucleótidos de Adenina , Antivirales/farmacología , Fiebre del Nilo Occidental/genética , Fiebre del Nilo Occidental/metabolismo , Virus del Nilo Occidental/metabolismo , Virus del Nilo Occidental/patogenicidadRESUMEN
How transcriptional bursting relates to gene regulation is a central question that has persisted for more than a decade. Here, we measure nascent transcriptional activity in early Drosophila embryos and characterize the variability in absolute activity levels across expression boundaries. We demonstrate that boundary formation follows a common transcription principle: a single control parameter determines the distribution of transcriptional activity, regardless of gene identity, boundary position, or enhancer-promoter architecture. We infer the underlying bursting kinetics and identify the key regulatory parameter as the fraction of time a gene is in a transcriptionally active state. Unexpectedly, both the rate of polymerase initiation and the switching rates are tightly constrained across all expression levels, predicting synchronous patterning outcomes at all positions in the embryo. These results point to a shared simplicity underlying the apparently complex transcriptional processes of early embryonic patterning and indicate a path to general rules in transcriptional regulation.
Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Activación Transcripcional , Animales , ARN Polimerasas Dirigidas por ADN/metabolismo , Drosophila melanogaster , Embrión no Mamífero/metabolismo , Modelos Teóricos , Regiones Promotoras GenéticasRESUMEN
Stem cells are highly resistant to viral infection compared to their differentiated progeny; however, the mechanism is mysterious. Here, we analyzed gene expression in mammalian stem cells and cells at various stages of differentiation. We find that, conserved across species, stem cells express a subset of genes previously classified as interferon (IFN) stimulated genes (ISGs) but that expression is intrinsic, as stem cells are refractory to interferon. This intrinsic ISG expression varies in a cell-type-specific manner, and many ISGs decrease upon differentiation, at which time cells become IFN responsive, allowing induction of a broad spectrum of ISGs by IFN signaling. Importantly, we show that intrinsically expressed ISGs protect stem cells against viral infection. We demonstrate the in vivo importance of intrinsic ISG expression for protecting stem cells and their differentiation potential during viral infection. These findings have intriguing implications for understanding stem cell biology and the evolution of pathogen resistance.
Asunto(s)
Inmunidad Innata , Células Madre Pluripotentes/inmunología , Virosis/inmunología , Animales , Células Cultivadas , Femenino , Células HEK293 , Humanos , Interferones/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Células Madre Pluripotentes/virología , Especificidad de la EspecieRESUMEN
Mosquito-borne flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), are a growing public health concern. Systems-level analysis of how flaviviruses hijack cellular processes through virus-host protein-protein interactions (PPIs) provides information about their replication and pathogenic mechanisms. We used affinity purification-mass spectrometry (AP-MS) to compare flavivirus-host interactions for two viruses (DENV and ZIKV) in two hosts (human and mosquito). Conserved virus-host PPIs revealed that the flavivirus NS5 protein suppresses interferon stimulated genes by inhibiting recruitment of the transcription complex PAF1C and that chemical modulation of SEC61 inhibits DENV and ZIKV replication in human and mosquito cells. Finally, we identified a ZIKV-specific interaction between NS4A and ANKLE2, a gene linked to hereditary microcephaly, and showed that ZIKV NS4A causes microcephaly in Drosophila in an ANKLE2-dependent manner. Thus, comparative flavivirus-host PPI mapping provides biological insights and, when coupled with in vivo models, can be used to unravel pathogenic mechanisms.
Asunto(s)
Virus del Dengue , Dengue , Proteínas de la Membrana , Proteínas Nucleares , Proteínas no Estructurales Virales , Infección por el Virus Zika , Virus Zika , Animales , Línea Celular Tumoral , Culicidae , Dengue/genética , Dengue/metabolismo , Dengue/patología , Virus del Dengue/genética , Virus del Dengue/metabolismo , Virus del Dengue/patogenicidad , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virus Zika/genética , Virus Zika/metabolismo , Virus Zika/patogenicidad , Infección por el Virus Zika/genética , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/patologíaRESUMEN
Human T cell receptors (TCRs) are critical for mediating immune responses to pathogens and tumors and regulating self-antigen recognition. Yet, variations in the genes encoding TCRs remain insufficiently defined. Detailed analysis of expressed TCR alpha, beta, gamma, and delta genes in 45 donors from four human populations-African, East Asian, South Asian, and European-revealed 175 additional TCR variable and junctional alleles. Most of these contained coding changes and were present at widely differing frequencies in the populations, a finding confirmed using DNA samples from the 1000 Genomes Project. Importantly, we identified three Neanderthal-derived, introgressed TCR regions including a highly divergent TRGV4 variant, which mediated altered butyrophilin-like molecule 3 (BTNL3) ligand reactivity and was frequent in all modern Eurasian population groups. Our results demonstrate remarkable variation in TCR genes in both individuals and populations, providing a strong incentive for including allelic variation in studies of TCR function in human biology.