Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(22): 4849-4860, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39008068

RESUMEN

This paper reports a flexible glucose biosensor which is modified by a reduced-swelling and conductive zwitterionic hydrogel enzyme membrane that contains two forms of chemical cross-links. One chemical cross-linking is induced by thermal initiators and forms the basal network of the hydrogel. Another cross-linking is achieved by the coordination interactions between the multivalent metal ion Al3+ and anionic group -COO- of zwitterionic poly-carboxy betaine (pCBMA), which significantly increase the cross-linking density of the zwitterionic hydrogel, improving the reduced-swelling property and reducing the pore size. The better reduced-swelling property and reduced diameters of pores within the zwitterionic hydrogel make less glucose oxidase (GOx) leakage, thus significantly improving the enzyme membrane's service life. By introducing the Al3+ and Cl-, the conductivity of the zwitterionic hydrogel is enhanced approximately 10.4-fold. According to the enhanced conductivity, the reduced-swelling property, and the high GOx loading capacity of the zwitterionic hydrogel, the sensitivity of the biosensor with GOx/pCBMA-Al3+ is significantly improved by 5 times and has a long service life. Finally, the proposed GOx/pCBMA-Al3+ biosensor was applied in non-invasive blood glucose detection on the human body, verifying the capability in practice.


Asunto(s)
Técnicas Biosensibles , Conductividad Eléctrica , Enzimas Inmovilizadas , Glucosa Oxidasa , Glucosa , Técnicas Biosensibles/métodos , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Enzimas Inmovilizadas/química , Glucosa/análisis , Glucosa/química , Hidrogeles/química , Humanos , Membranas Artificiales , Glucemia/análisis
2.
Luminescence ; 39(9): e4900, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39261303

RESUMEN

Glucose level is an important indicator of diabetes, and maintaining an appropriate physiological concentration of glucose is important for human health. However, traditional optical sensors are interfered by the interference of strong background autofluorescence and natural responsive luminescence, which severely limits their application in complex biological samples. Herein, as a novel glucose biosensing probe, green-emitting Zn2GeO4:Mn2+, Eu3+ (ZGME) persistent luminescence nanoparticles (PLNPs) with pH stimulus-responsive was prepared by a facile one-pot hydrothermal method. We also investigated the pH stimulus-responsive luminescence behaviour of ZGME over a range of pH values from 2.8 to 8.0. Taking advantage of the interesting property that ZGME photoluminescence intensity has a pH response, within an extraordinarily narrow pH range of 5.0-6.5 for highly selectivity and sensitive determination of glucose level in human samples by acid-responsive quenching and persistent luminescent performance. The detection results show high accuracy of the measured values of glucose in serum with a wide detection range (2.5 µg L-1-10 mg L-1) and low detection limit (0.5 µg L-1). Finally, the pH-responsive persistent luminescence also makes ZGME promising for high-level fingerprint information encryption. Hence, the established pH stimulation-responsive PLNPs-based biosensing probe offers excellent performance with high selective, accuracy and signal-to-noise ratio for detection of glucose level in human samples.


Asunto(s)
Técnicas Biosensibles , Glucemia , Luminiscencia , Humanos , Concentración de Iones de Hidrógeno , Glucemia/análisis , Nanopartículas/química , Mediciones Luminiscentes , Glucosa/análisis , Límite de Detección
3.
Mikrochim Acta ; 191(9): 558, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177820

RESUMEN

An innovative supramolecular architecture is reported for bienzymatic glucose biosensing based on the use of a nanohybrid made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with a Schiff base modified with two phenylboronic acid residues (SB-dBA) as platform for the site-specific immobilization of the glycoproteins glucose oxidase (GOx) and horseradish peroxidase (HRP). The analytical signal was obtained from amperometric experiments at - 0.050 V in the presence of 5.0 × 10-4 M hydroquinone as redox mediator. The concentration of GOx and HRP and the interaction time between the enzymes and the nanohybrid MWCNT-SB-dBA deposited at glassy carbon electrodes (GCEs) were optimized through a central composite design (CCD)/response surface methodology (RSM). The optimal concentrations of GOx and HRP were 3.0 mg mL-1 and 1.50 mg mL-1, respectively, while the optimum interaction time was 3.0 min. The bienzymatic biosensor presented a sensitivity of (24 ± 2) × 102 µA dL mg-1 ((44 ± 4) × 102 µA M-1), a linear range between 0.06 mg dL-1 and 21.6 mg dL-1 (3.1 µM-1.2 mM) (R2 = 0.9991), and detection and quantification limits of 0.02 mg dL-1 (1.0 µM) and 0.06 mg dL-1 (3.1 µM), respectively. The reproducibility for five sensors prepared with the same MWCNT-SB-dBA nanohybrid was 6.3%, while the reproducibility for sensors prepared with five different nanohybrids and five electrodes each was 7.9%. The GCE/MWCNT-SB-dBA/GOx-HRP was successfully used for the quantification of glucose in artificial human urine and commercial human serum samples.


Asunto(s)
Técnicas Biosensibles , Ácidos Borónicos , Enzimas Inmovilizadas , Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , Nanotubos de Carbono , Bases de Schiff , Nanotubos de Carbono/química , Bases de Schiff/química , Técnicas Biosensibles/métodos , Ácidos Borónicos/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa/análisis , Electrodos , Límite de Detección , Técnicas Electroquímicas/métodos , Glucemia/análisis
4.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400442

RESUMEN

Nanofiber technology is leading the revolution of wearable technology and provides a unique capability to fabricate smart textiles. With the novel fabrication technique of electrospinning, nanofibers can be fabricated and then manufactured into a durable conductive string for the application of smart textiles. This paper presents an electrospun nanofiber mesh-based (NF-Felt) string electrode with a conducting polymer coating for an electrochemical enzymatic glucose sensor. The surface area of a nanofiber matrix is a key physical property for enhanced glucose oxidase (GOx) enzyme binding for the development of an electrochemical biosensor. A morphological characterization of the NF-Felt string electrode was performed using scanning electron microscopy (SEM) and compared with a commercially available cotton-polyester (Cot-Pol) string coated with the same conducting polymer. The results from stress-strain testing demonstrated high stretchability of the NF-Felt string. Also, the electrochemical characterization results showed that the NF-Felt string electrode was able to detect a glucose concentration in the range between 0.0 mM and 30.0 mM with a sensitivity of 37.4 µA/mM·g and a detection limit of 3.31 mM. Overall, with better electrochemical performance and incredible flexibility, the NF-Felt-based string electrode is potentially more suitable for designing wearable biosensors for the detection of glucose in sweat.


Asunto(s)
Técnicas Biosensibles , Nanofibras , Dispositivos Electrónicos Vestibles , Glucosa/química , Nanofibras/química , Técnicas Biosensibles/métodos , Polímeros , Electrodos , Técnicas Electroquímicas/métodos , Glucosa Oxidasa/metabolismo
5.
Mikrochim Acta ; 190(8): 336, 2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37515610

RESUMEN

A novel magnetic nanozyme Fe3O4@MXene-Au nanocomposite, which possessed higher peroxidase-like activity than that of Fe3O4 nanoparticles and Fe3O4@MXene nanocomposites, was developed. The outstanding magnetic properties of the nanozyme endowed it with the ability of simple and rapid separation, achieving great recyclability. Based on Fe3O4@MXene-Au nanocomposites and glucose oxidase (Glu Ox), a highly selective colorimetric biosensor for glucose detection was developed. Fe3O4@MXene-Au nanocomposites can catalyze H2O2 produced from glucose catalyzed by glucose oxidase to ·OH and oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) with a significant absorbance at 652 nm. The linear range of glucose was 0-1.4 mM under optimal conditions, with a limit of detection (LOD) of 0.11 mM. Glucose in human whole blood was successfully detected with satisfactory recoveries. Furthermore, a facile agarose hydrogel detection platform was designed. With smartphone software, glucose detection can be realized by the agarose hydrogel platform, demonstrating the potential in on-site and visual detection of glucose.


Asunto(s)
Técnicas Biosensibles , Nanocompuestos , Humanos , Peroxidasa , Glucosa , Colorimetría , Glucosa Oxidasa , Teléfono Inteligente , Peróxido de Hidrógeno , Sefarosa , Peroxidasas
6.
Sensors (Basel) ; 23(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36617063

RESUMEN

In this study, we designed a new biosensing membrane for the development of an electrochemical glucose biosensor. To proceed, we used a chitosan-based hydrogel that entraps glucose oxidase enzyme (GOx), and we crosslinked the whole matrix using glutaraldehyde, which is known for its quick and reactive crosslinking behavior. Then, the stability of the designed biosensors was investigated over time, according to different storage conditions (in PBS solution at temperatures of 4 °C and 37 °C and in the presence or absence of glucose). In some specific conditions, we found that our biosensor is capable of maintaining its stability for more than six months of storage. We also included catalase to protect the biosensing membranes from the enzymatic reaction by-products (e.g., hydrogen peroxide). This design protects the biocatalytic activity of GOx and enhances the lifetime of the biosensor.


Asunto(s)
Técnicas Biosensibles , Quitosano , Glucosa Oxidasa , Glucosa , Enzimas Inmovilizadas , Electrodos
7.
Molecules ; 28(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37959700

RESUMEN

Herein, we present a novel biosensor based on nature-inspired poly(caffeic acid) (PCA) grafted to magnetite (Fe3O4) nanoparticles with glucose oxidase (GOx) from Aspergillus niger via adsorption technique. The biomolecular corona was applied to the fabrication of a biosensor system with a screen-printed electrode (SPE). The obtained results indicated the operation of the system at a low potential (0.1 V). Then, amperometric measurements were performed to optimize conditions like various pH and temperatures. The SPE/Fe3O4@PCA-GOx biosensor presented a linear range from 0.05 mM to 25.0 mM, with a sensitivity of 1198.0 µA mM-1 cm-2 and a limit of detection of 5.23 µM, which was compared to other biosensors presented in the literature. The proposed system was selective towards various interferents (maltose, saccharose, fructose, L-cysteine, uric acid, dopamine and ascorbic acid) and shows high recovery in relation to tests on real samples, up to 10 months of work stability. Moreover, the Fe3O4@PCA-GOx biomolecular corona has been characterized using various techniques such as Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Bradford assay.


Asunto(s)
Técnicas Biosensibles , Glucosa , Glucosa/química , Enzimas Inmovilizadas/química , Ácidos Cafeicos , Técnicas Biosensibles/métodos , Glucosa Oxidasa/química , Electrodos , Técnicas Electroquímicas
8.
Biotechnol Appl Biochem ; 69(4): 1354-1364, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34076915

RESUMEN

Gestational diabetes and jaundice are the correlated diseases predominantly found in mother and newborn child. Jaundice is a neonatal complication with an increased risk when mother has gestational diabetes. Mothers with diabetes at an early stage of gestational age are at higher risk for hyperbilirubinemia (jaundice) and hypoglycemia. So, it is mandatory to monitor the condition of diabetes and jaundice during the pregnancy period for a healthy child and safest delivery. On the other hand, nanotechnology has displayed a rapid advancement that can be implemented to overcome these issues. The development of high-performance diagnosis using appropriate biomarkers provides their efficacy in the detection gestational diabetes and jaundice. This review covers the aspects from a fast-developing field to generate nanosensors in the nanosized dimensions for the applications to overcome these complications by coupling diagnostics with biomarkers. Further, the serum-based biomarkers have been discussed for these inborn complications and also the diagnosis with the current trend.


Asunto(s)
Técnicas Biosensibles , Diabetes Gestacional , Ictericia , Biomarcadores , Glucemia , Diabetes Gestacional/diagnóstico , Femenino , Humanos , Recién Nacido , Embarazo
9.
Mikrochim Acta ; 189(1): 24, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34894290

RESUMEN

A novel molecularly imprinted electrochemical biosensor for glucose detection is reported based on a hierarchical N-rich carbon conductive-coated TNO structure (TNO@NC). Firstly, TNO@NC was fabricated by a novel polypyrrole-chemical vapor deposition (PPy-CVD) method with minimal waste generation. Afterward, the electrode modification with TNO@NC was performed by dropping TNO@NC particles on glassy carbon electrode surfaces by infrared heat lamp. Finally, the glucose-imprinted electrochemical biosensor was developed in presence of 75.0 mM pyrrole and 25.0 mM glucose in a potential range from + 0.20 to + 1.20 V versus Ag/AgCl via cyclic voltammetry (CV). The physicochemical and electrochemical characterizations of the fabricated molecularly imprinted biosensor was conducted by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) method, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and CV techniques. The findings demonstrated that selective, sensitive, and stable electrochemical signals were proportional to different glucose concentrations, and the sensitivity of molecularly imprinted electrochemical biosensor for glucose detection was estimated to be 18.93 µA µM-1 cm-2 (R2 = 0.99) at + 0.30 V with the limit of detection (LOD) of 1.0 × 10-6 M. Hence, it can be speculated that the fabricated glucose-imprinted biosensor may be used in a multitude of areas, including public health and food quality.


Asunto(s)
Técnicas Biosensibles/métodos , Glucemia/análisis , Carbono/química , Niobio/química , Óxidos/química , Titanio/química , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Límite de Detección , Impresión Molecular , Porosidad , Reproducibilidad de los Resultados
10.
Sensors (Basel) ; 21(3)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535400

RESUMEN

The control of glucose concentration is a crucial factor in clinical diagnosis and the food industry. Electrochemical biosensors based on reduced graphene oxide (rGO) and conducting polymers have a high potential for practical application. A novel thermal reduction protocol of graphene oxide (GO) in the presence of malonic acid was applied for the synthesis of rGO. The rGO was characterized by scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and Raman spectroscopy. rGO in combination with polyaniline (PANI), Nafion, and glucose oxidase (GOx) was used to develop an amperometric glucose biosensor. A graphite rod (GR) electrode premodified with a dispersion of PANI nanostructures and rGO, Nafion, and GOx was proposed as the working electrode of the biosensor. The optimal ratio of PANI and rGO in the dispersion used as a matrix for GOx immobilization was equal to 1:10. The developed glucose biosensor was characterized by a wide linear range (from 0.5 to 50 mM), low limit of detection (0.089 mM), good selectivity, reproducibility, and stability. Therefore, the developed biosensor is suitable for glucose determination in human serum. The PANI nanostructure and rGO dispersion is a promising material for the construction of electrochemical glucose biosensors.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanocompuestos , Nanofibras , Compuestos de Anilina , Técnicas Electroquímicas , Glucosa , Glucosa Oxidasa , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA