RESUMEN
Interleukin-6 (IL-6) is a pleiotropic cytokine with roles in immunity, tissue regeneration, and metabolism. Rapid production of IL-6 contributes to host defense during infection and tissue injury, but excessive synthesis of IL-6 and dysregulation of IL-6 receptor signaling is involved in disease pathology. Therapeutic agents targeting the IL-6 axis are effective in rheumatoid arthritis, and applications are being extended to other settings of acute and chronic inflammation. Recent studies reveal that selective blockade of different modes of IL-6 receptor signaling has different outcomes on disease pathology, suggesting novel strategies for therapeutic intervention. However, some inflammatory diseases do not seem to respond to IL-6 blockade. Here, we review the current state of IL-6-targeting approaches in the clinic and discuss how to apply the growing understanding of the immunobiology of IL-6 to clinical decisions.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Inflamación/tratamiento farmacológico , Interleucina-6/antagonistas & inhibidores , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Ensayos Clínicos como Asunto , Receptor gp130 de Citocinas/antagonistas & inhibidores , Receptor gp130 de Citocinas/inmunología , Humanos , Inflamación/inmunología , Interleucina-6/biosíntesis , Interleucina-6/deficiencia , Interleucina-6/inmunología , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Noqueados , Receptores de Interleucina-6/inmunología , Ribonucleasas/deficiencia , Factor de Transcripción STAT3/fisiología , Proteína 1 Supresora de la Señalización de Citocinas/fisiología , Proteína 3 Supresora de la Señalización de Citocinas/fisiologíaRESUMEN
Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling ß-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.
Asunto(s)
Factor Neurotrófico Ciliar , Receptor gp130 de Citocinas , Interleucina-6 , Transducción de Señal , Animales , Humanos , Ratones , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/genética , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Modelos Moleculares , Ingeniería de Proteínas/métodos , Estructura Terciaria de Proteína , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Receptores OSM-LIF/metabolismo , Receptores OSM-LIF/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Ratones Endogámicos C57BLRESUMEN
Synthetic cytokine receptors can modulate cellular functions based on an artificial ligand to avoid off-target and/or unspecific effects. However, ligands that can modulate receptor activity so far have not been used clinically because of unknown toxicity and immunity against the ligands. Here, we developed a fully synthetic cytokine/cytokine receptor pair based on the antigen-binding domain of the respiratory syncytial virus-approved mAb Palivizumab as a synthetic cytokine and a set of anti-idiotype nanobodies (AIPVHH) as synthetic receptors. Importantly, Palivizumab is neither cross-reactive with human proteins nor immunogenic. For the synthetic receptors, AIPVHH were fused to the activating interleukin-6 cytokine receptor gp130 and the apoptosis-inducing receptor Fas. We found that the synthetic cytokine receptor AIPVHHgp130 was efficiently activated by dimeric Palivizumab single-chain variable fragments. In summary, we created an in vitro nonimmunogenic full-synthetic cytokine/cytokine receptor pair as a proof of concept for future in vivo therapeutic strategies utilizing nonphysiological targets during immunotherapy.
Asunto(s)
Receptores Artificiales , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Palivizumab/farmacología , Palivizumab/uso terapéutico , Receptores Artificiales/metabolismo , Receptores Artificiales/uso terapéutico , Receptores de Citocinas , Citocinas , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Ligandos , Antivirales/farmacología , Antivirales/uso terapéuticoRESUMEN
At least 0.5% of people in the Western world develop inflammatory bowel disease (IBD). While antibodies that block tumor necrosis factor (TNF) α and Interleukin (IL-)23 have been approved for the treatment of IBD, IL-6 antibodies failed in the phase II clinical trial due to non-tolerable side effects. However, two clinical phase II studies suggest that inhibiting IL-6/soluble IL-6R (sIL-6R)-induced trans-signaling via the cytokine receptor gp130 benefit IBD patients with fewer adverse events. Here we develop inhibitors targeting a combination of IL-6/sIL-6R and TNF or IL-12/IL-23 signaling, named cs130-TNFVHHFc and cs130-IL-12/23VHHFc. Surface plasmon resonance experiments showed that recombinant cs130-TNFVHHFc and cs130-IL-12/23VHHFc bind with high affinity to IL-6/sIL-6R complexes and human TNFα (hTNFα) or IL-12/IL-23, respectively. Immunoprecipitation experiments have verified the higher ordered complex formation of the inhibitors with IL-6/sIL-6R and IL-12. We demonstrated that cs130-TNFVHHFc and cs130-IL-12/23VHHFc block IL-6/sIL-6R trans-signaling-induced proliferation and STAT3 phosphorylation of Ba/F3-gp130 cells, as well as hTNFα- or IL-23-induced signaling, respectively. In conclusion, cs130-TNFVHHFc and cs130-IL-12/23VHHFc represent a class of dimeric and bispecific chimeric cytokine inhibitors that consist of a soluble cytokine receptor fused to anti-cytokine nanobodies.
Asunto(s)
Receptor gp130 de Citocinas , Interleucina-12 , Interleucina-23 , Anticuerpos de Dominio Único , Factor de Necrosis Tumoral alfa , Humanos , Receptor gp130 de Citocinas/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Anticuerpos de Dominio Único/farmacología , Transducción de SeñalRESUMEN
BACKGROUND: Leukemia inhibitory factor (LIF) is a multifunctional member of the IL-6 cytokine family that activates downstream signaling pathways by binding to the heterodimer consisting of LIFR and gp130 on the cell surface. Previous research has shown that LIF is highly expressed in various tumor tissues (e.g. pancreatic cancer, breast cancer, prostate cancer, and colorectal cancer) and promotes cancer cell proliferation, migration, invasion, and differentiation. Moreover, the overexpression of LIF correlates with poor clinicopathological characteristics. Therefore, we hypothesized that LIF could be a promising target for the treatment of cancer. In this work, we developed the antagonist antibody 1G11 against LIF and investigated its anti-tumor mechanism and its therapeutic efficacy in mouse models. RESULTS: A series of single-chain variable fragments (scFvs) targeting LIF were screened from a naive human scFv phage library. These scFvs were reconstructed in complete IgG form and produced by the mammalian transient expression system. Among the antibodies, 1G11 exhibited the excellent binding activity to human, cynomolgus monkey and mouse LIF. Functional analysis demonstrated 1G11 could block LIF binding to LIFR and inhibit the intracellular STAT3 phosphorylation signal. Interestingly, 1G11 did not block LIF binding to gp130, another LIF receptor that is involved in forming the receptor complex together with LIFR. In vivo, intraperitoneal administration of 1G11 inhibited tumor growth in CT26 and MC38 models of colorectal cancer. IHC analysis demonstrated that p-STAT3 and Ki67 were decreased in tumor tissue, while c-caspase 3 was increased. Furthermore, 1G11 treatment improves CD3+, CD4 + and CD8 + T cell infiltration in tumor tissue. CONCLUSIONS: We developed antagonist antibodies targeting LIF/LIFR signaling pathway from a naive human scFv phage library. Antagonist anti-LIF antibody exerts antitumor effects by specifically reducing p-STAT3. Further studies revealed that anti-LIF antibody 1G11 increased immune cell infiltration in tumor tissues.
Asunto(s)
Factor Inhibidor de Leucemia , Anticuerpos de Cadena Única , Animales , Humanos , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/farmacología , Ratones , Factor Inhibidor de Leucemia/inmunología , Factor Inhibidor de Leucemia/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/inmunología , Receptor gp130 de Citocinas/inmunología , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/antagonistas & inhibidores , Biblioteca de Péptidos , Transducción de Señal , Femenino , Macaca fascicularis , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Atherosclerosis is a cardiovascular disease caused by cholesterol-laden arterial plaques. This study evaluated the correlation between interleukin-6 (IL-6), its receptors (IL6R/CD126), and glycoprotein 130 (gp130) alongside atherosclerosis biomarkers in a cohort of 142 subjects, equally divided between lean and obese individuals. Subsequent analyses used THP-1-derived macrophages to assess the biochemical impact of inhibiting IL-6 receptors. IL-6 secretion increased with atherosclerosis in obese subjects, while IL6R/CD126 and gp130 on monocytes decreased. Pharmacological gp130 inhibition altered lipid metabolism, increasing LDLR gene expression and cholesterol synthesis via SREBF2 and mevalonate kinase, along with HMG-CoA reductase at protein levels. gp130-deficient cells produced more cholesterol and had lower ABCA1 levels, suggesting hindered cholesterol efflux. Filipin III staining confirmed cholesterol retention in gp130-inhibited cells. Ex-vivo investigation on lean PBMCs further defined the impact of gp130 inhibition on the reduction of cholesterol efflux. Our results indicates gp130 is crucial for macrophage reverse cholesterol transport and may be a target for atherosclerosis treatments.
Asunto(s)
Aterosclerosis , Colesterol , Receptor gp130 de Citocinas , Macrófagos , Receptores de Interleucina-6 , Humanos , Aterosclerosis/metabolismo , Transporte Biológico , Colesterol/metabolismo , Receptor gp130 de Citocinas/metabolismo , Interleucina-6/metabolismo , Metabolismo de los Lípidos , Macrófagos/metabolismo , Obesidad/metabolismo , Receptores de Interleucina-6/metabolismo , Receptores de LDL/metabolismo , Transducción de Señal , Células THP-1RESUMEN
The tick-borne encephalitis virus (TBEV) serocomplex includes several medically important flavivirus members endemic to Europe, Asia, and North America, which can induce severe neuroinvasive or viscerotropic diseases with unclear mechanisms of pathogenesis. Langat virus (LGTV) shares a high sequence identity with TBEV but exhibits lower pathogenic potential in humans and serves as a model for virus-host interactions. In this study, we demonstrated that LGTV infection inhibits the activation of gp130/JAK/STAT (Janus kinases (JAK) and signal transducer and activator of transcription (STAT)) signaling, which plays a pivotal role in numerous biological processes. Our data show that the LGTV-infected cells had significantly lower phosphorylated STAT3 (pSTAT3) protein upon oncostatin M (OSM) stimulation than the mock-infected control. LGTV infection blocked the nuclear translocation of STAT3 without a significant effect on total STAT3 protein level. LGTV inhibited JAK1 activation and reduced gp130 protein expression in infected cells, with the viral NS5 protein mediating this effect. TBEV infection also reduces gp130 level. On the other hand, pretreatment of Vero cells with OSM significantly reduces LGTV replication, and STAT1/STAT2 knockdown had little effect on OSM-mediated antiviral effect, which suggests it is independent of STAT1/STAT2 and, instead, it is potentially mediated by STAT3 signlaing. These findings shed light on the LGTV and TBEV-cell interactions, offering insights for the future development of antiviral therapeutics and improved vaccines.
Asunto(s)
Fenómenos Biológicos , Virus de la Encefalitis Transmitidos por Garrapatas , Animales , Chlorocebus aethiops , Humanos , Quinasas Janus/metabolismo , Células Vero , Receptor gp130 de Citocinas/metabolismo , Antivirales/metabolismoRESUMEN
In Interleukin (IL)-6 signalling, IL-6 site I binds to the IL-6 receptor (IL-6R) first, following by IL-6 site II interaction to domain 2/3 of gp130 to form premature trimeric IL-6:IL-6R:gp130 receptor complexes. Formation of the mature hexameric receptor complex is then facilitated by the inter-trimeric interaction of IL-6 site III with domain 1 of the opposing gp130. The two gp130-associated Janus kinases (JAKs) trans-phosphorylate when their spatiotemporal pairing is correct, which causes the activation of STAT, ERK, and AKT pathways in a balanced manner. Since the intracellular domain (ICD) of IL-6R is not needed for STAT/ERK/AKT phosphorylation, we investigated the conditions under which a chimeric IL-6RECD-gp130TMD/ICD receptor protein confers biological activity. For IL-6RECD-gp130TMD/ICD, the extracellular domain (ECD) of IL-6R was fused to the transmembrane domain (TMD) and ICD of gp130. Co-expression of IL-6RECD-gp130TMD/ICD with signalling-deficient gp130 variants did not induce IL-6 signalling, suggesting that the assembly of hexameric complexes failed to dimerize the IL-6R-associated JAKs correctly. By mimicking the premature trimeric receptor complex, IL-6-mediated dimerization of IL-6RECD-gp130TMD/ICD with the single-cytokine-binding variant gp130ΔD1 induced signalling. Of note, IL-6 signalling via these synthetic gp130ΔD1:IL-6RECD-gp130TMD/ICD complexes resulted predominantly in STAT3 phosphorylation. A STAT3-dominated profile was also observed after IL-6-induced signalling mediated by a JAK-deficient IL-6RECD-gp130TMD/ICDΔJAK variant in complex with the JAK-proficient but STAT/ERK/AKT-deficient gp130JAKΔICD variant. Our data showed that effective ERK/AKT signalling could not be executed after intracellular domain swapping from gp130 to the IL-6R. Taken together, the chimeric IL-6R/gp130 receptor may be helpful in the creation of customized synthetic IL-6 signalling.
RESUMEN
In previous study, lower levels of serum GP130 were reported in children with MPP. GP130 is an important signal transducer, the down regulation of which may influence host immune responses. In this study, we aimed to analyze the regulatory mechanism of GP130 during MP infection. Firstly, the mRNA and protein levels of GP130 both decrease and then increase with increasing multiplicity of infection (MOI: 1 to 40) of MP. The lowest levels of GP130 were detected at MOI of 5. Then, heat treated MP but not trypsin treated MP or MP extracted proteins show regulatory effect to the expression of GP130. These indicate that the down regulation of GP130 is related to protein mediate adhesion process of MP. Gene expression analysis revealed that MP affected apoptosis and the TLR4 pathway in infected cells, and the mRNA level of IL-6 was correlated with that of GP130. Further, Z-VAD-FMK (pan-caspase inhibitor) can suppress the apoptosis induced by MP infection and restore GP130 at protein level. Further studies revealed that MP infection promoted TLR4 internalization but did not activate the NF-κB pathway. The levels of surface TLR4 showed correlation with the transcription of IL-6 and GP130. TAK242 (TLR4 inhibitor) and PS341 (proteasome inhibitor) can restore the decreased transcription of GP130, both of which were able to promote NF-κB pathway activation in MP-infected cells. These suggested that the regulation of TLR4/NF-κB pathway and induced apoptosis post MP infection are involved in the down-regulation of GP130 at transcription and protein levels, respectively.
RESUMEN
Colorectal cancer (CRC) is a worldwide health concern. Chronic inflammation is a risk factor for CRC, and interleukin-6 (IL-6) plays a pivotal role in this process. Arginine-specific mono-ADP-ribosyltransferase-1 (ART1) positively regulates inflammatory cytokines. ART1 knockdown reduces the level of glycoprotein 130 (gp130), a key transducer in the IL-6 signalling pathway. However, the relationship between ART1 and IL-6 and the resulting effects on IL-6-induced proliferation in CRC cells remain unclear. The aims of this study were to investigate the effects of ART1 knockdown on IL-6-induced cell proliferation in vitro and use an in vivo murine model to observe the growth of transplanted tumours. The results showed that compared with the control, ART1-sh cancer cells induced by IL-6 exhibited reduced viability, a lower rate of colony formation, less DNA synthesis, decreased protein levels of gp130, c-Myc, cyclin D1, Bcl-xL, and a reduced p-STAT3/STAT3 ratio (P < 0.05). Moreover, mice transplanted with ART1-sh CT26 cells that had high levels of IL-6 displayed tumours with smaller volumes (P < 0.05). ART1 and gp130 were colocalized in CT26, LoVo and HCT116 cells, and their expression was positively correlated in human CRC tissues. Overall, ART1 may serve as a promising regulatory factor for IL-6 signalling and a potential therapeutic target for human CRC.
Asunto(s)
Neoplasias Colorrectales , Interleucina-6 , Humanos , Animales , Ratones , Interleucina-6/genética , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Receptor gp130 de Citocinas/genética , Línea Celular Tumoral , Poli(ADP-Ribosa) Polimerasas/genética , Proliferación Celular , Neoplasias Colorrectales/patología , Proteínas Ligadas a GPI/metabolismoRESUMEN
BACKGROUND/OBJECTIVES: Debilitating abdominal pain is a common symptom affecting patients with chronic pancreatitis (CP). CP pain is dynamic due to multiple underlying mechanisms. The objective of this study was to 1) evaluate changes in pain phenotype at one year follow-up and 2) validate putative pain biomarkers in a prospective cohort study. METHODS: The Neuropathic and Nociceptive PROMIS-PQ questionnaires were used to classify pain for participants with in the PROCEED study. Putative serum biomarkers were measured via immunoassay. RESULTS: At enrollment, 17.6 % (120/681) subjects with CP reported no pain in the previous year. Of those, 29 % experienced pain during the 1 yr follow-up whereas 18 % of those with pain prior to enrollment reported no pain during the 1 yr follow-up period. Of the 393 subjects with PROMIS-PQ data at enrollment, 212 also had follow-up data at 1 yr. Approximately half (53.3 %) of those individuals changed pain phenotype between baseline and follow-up. At 1 yr, serum TGFß1 level was negatively correlated with nociceptive T-scores (p = 0.006). GP130 was significantly correlated with both nociceptive (p = 0.012) and neuropathic T-scores (p = 0.043) at 1 yr, which is consistent with the previously published findings. CONCLUSIONS: The positive association between TGFß1 and pain is not maintained over time, suggesting it is a poor pain biomarker. However, serum GP130 is a consistent biomarker for mixed-type pain in CP. Preclinical studies show that targeting TGFß1 or IL-6 (ligand for GP130) is sufficient to inhibit CP pain supporting further investigation of this as a potential therapeutic target.
RESUMEN
Interleukin 27 (IL-27) is a heterodimeric cytokine that elicits potent immunosuppressive responses. Comprised of EBI3 and p28 subunits, IL-27 binds GP130 and IL-27Rα receptor chains to activate the JAK/STAT signaling cascade. However, how these receptors recognize IL-27 and form a complex capable of phosphorylating JAK proteins remains unclear. Here, we used cryo electron microscopy (cryoEM) and AlphaFold modeling to solve the structure of the IL-27 receptor recognition complex. Our data show how IL-27 serves as a bridge connecting IL-27Rα (domains 1-2) with GP130 (domains 1-3) to initiate signaling. While both receptors contact the p28 component of the heterodimeric cytokine, EBI3 stabilizes the complex by binding a positively charged surface of IL-27Rα and Domain 1 of GP130. We find that assembly of the IL-27 receptor recognition complex is distinct from both IL-12 and IL-6 cytokine families and provides a mechanistic blueprint for tuning IL-27 pleiotropic actions.
Asunto(s)
Receptor gp130 de Citocinas , Interleucina-27 , Receptores de Interleucina , Receptor gp130 de Citocinas/química , Humanos , Interleucina-12 , Interleucina-27/química , Interleucina-6 , Interleucinas , Receptores de Interleucina/químicaRESUMEN
Acovenosigenin A ß-glucoside (AAG) is a cardiac glycoside derived from Streptocaulon juventas (Lour.) Merr, which exhibited the potential in treating lung cancer in our previous research. However, the action mechanism remains unclear. In this research, JAK2-STAT3 signaling pathway was predicted to be the critical regulation pathway based on the integrative analysis of transcriptome and proteome. Western blotting and qPCR assays were performed to identify that AAG can regulate JAK2-STAT3 signaling pathway and its downstream genes, such as c-Myc, Survivin, Cyclin B1, CDK1, Bcl-2. And this action of AAG depended on the suppression of STAT3 phosphorylation and its nuclear translocation through the experiments of Immunofluorescence, transient transfection and cryptotanshinone treatment. Additionally, AAG was discovered to mediate the JAK2-STAT3 pathway in IL-6-driven A549 and H460 cells, which in turn inhibited cell proliferation, promoted mitochondria-related apoptosis, and arrested the cell cycle progression. By molecular docking analysis, CETSA and SIP experiments, the protein of GP130 was identified as the specific target of AAG in A549 and H460 cells. Further studies suggested that AAG inhibited JAK2-STAT3 pathway and its downstream genes by targeting GP130 in nude mice xenograft model in vivo. This research presented that AAG exhibits the promising potential in the treatment of NSCLC.
Asunto(s)
Proliferación Celular , Glucósidos , Janus Quinasa 2 , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Transducción de Señal/efectos de los fármacos , Glucósidos/farmacología , Glucósidos/química , Proliferación Celular/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Proteoma/metabolismo , Animales , Ratones , Estructura Molecular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Ratones Desnudos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Línea Celular TumoralRESUMEN
Interleukin-6 (IL-6) is a pro-inflammatory cytokine elevated in cytokine storm syndromes, including hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS). It is also elevated in cytokine release syndrome (CRS) after immune activating cancer therapies such as chimeric antigen receptor (CAR) T-cells or bispecific T-cell engagers (BITEs) and in some patients after infection with SARS-CoV-2. The interaction of IL-6 with its receptor complex can happen in several forms, making effectively blocking this cytokine's effects clinically challenging. Fortunately, effective clinical agents targeting the IL-6 receptor (tocilizumab) and IL-6 directly (siltuximab) have been developed and are approved for use in humans. IL-6 blockade has now been used to safely and effectively treat several cytokine storm syndromes (CSS). Other methods of investigation in effective IL-6 blockade are underway.
Asunto(s)
Anticuerpos Monoclonales Humanizados , COVID-19 , Síndrome de Liberación de Citoquinas , Interleucina-6 , Receptores de Interleucina-6 , Humanos , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Interleucina-6/antagonistas & inhibidores , Interleucina-6/inmunología , Interleucina-6/metabolismo , Anticuerpos Monoclonales Humanizados/uso terapéutico , COVID-19/inmunología , Receptores de Interleucina-6/antagonistas & inhibidores , Receptores de Interleucina-6/inmunología , SARS-CoV-2/inmunología , Linfohistiocitosis Hemofagocítica/inmunología , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Síndrome de Activación Macrofágica/inmunología , Síndrome de Activación Macrofágica/tratamiento farmacológicoRESUMEN
Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown. In this study, PACAP/VIP levels were assessed in the brain of GFAP-IL6 mice. In addition, we utilised bi-genic GFAP-IL6 mice carrying the human sgp130-Fc transgene (termed GFAP-IL6/sgp130Fc mice) to determine whether trans-signalling inhibition rescued PACAP/VIP changes in the CNS. Transcripts and protein levels of PACAP and VIP, as well as their receptors PAC1, VPAC1 and VPAC2, were significantly increased in the cerebrum and cerebellum of GFAP-IL6 mice vs. wild type (WT) littermates. These results were paralleled by a robust activation of the JAK/STAT3, NF-κB and ERK1/2MAPK pathways in GFAP-IL6 mice. In contrast, co-expression of sgp130Fc in GFAP-IL6/sgp130Fc mice reduced VIP expression and activation of STAT3 and NF-κB pathways, but it failed to rescue PACAP, PACAP/VIP receptors and Erk1/2MAPK phosphorylation. We conclude that forced expression of IL-6 in astrocytes induces the activation of the PACAP/VIP neuropeptide system in the brain, which is only partly modulated upon IL-6 trans-signalling inhibition. Increased expression of PACAP/VIP neuropeptides and receptors may represent a homeostatic response of the CNS to an uncontrolled IL-6 synthesis and its neuroinflammatory consequences.
Asunto(s)
Encéfalo , Interleucina-6 , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Transducción de Señal , Péptido Intestinal Vasoactivo , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Ratones , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/genética , Encéfalo/metabolismo , Astrocitos/metabolismo , Humanos , Ratones Transgénicos , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Sistema Nervioso Central/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Masculino , Ratones Endogámicos C57BLRESUMEN
IL6 is a proinflammatory cytokine that binds to membrane-bound IL6 receptor (IL6R) or soluble IL6R to signal via gp130 in cis or trans, respectively. We tested the hypothesis that sgp130Fc, which is believed to be a selective IL6 trans-signalling inhibitor, is in fact a non-specific inhibitor of gp130 signalling. In human cancer and primary cells, sgp130Fc inhibited IL6, IL11, OSM and CT1 cis-signalling. The IC50 values of sgp130Fc for IL6 and OSM cis-signalling were markedly (20- to 200-fold) lower than the concentrations of sgp130Fc used in mouse studies and clinical trials. sgp130 inhibited IL6 and OSM signalling in the presence of an ADAM10/17 inhibitor and the absence of soluble IL6R or OSMR, with effects that were indistinguishable from those of a gp130 neutralising antibody. These data show that sgp130Fc does not exclusively block IL6 trans-signalling and reveal instead that broad inhibition of gp130 signalling likely underlies its therapeutic effects. This proposes global or modular inhibition of gp130 as a therapeutic approach for treating human disease.
Asunto(s)
Citocinas , Interleucina-6 , Ratones , Humanos , Animales , Citocinas/farmacología , Receptor gp130 de Citocinas/metabolismo , Interleucina-6/metabolismo , Transducción de Señal , Receptores de Interleucina-6RESUMEN
Introduction: The cytokine interleukin-11 (IL-11) binds on its target cells to a membrane-bound IL-11R, which results in homodimerization of the signal-transducing ß-receptor gp130. Recent studies have uncovered a pro- inflammatory role in several diseases, including different tumor entities, and mouse models have revealed a crucial role of the IL-11/IL-11R axis in gastric cancer. However, studies regarding human gastric cancer are sparse, and whether the results obtained in mouse models also hold true in the human situation is little investigated. Material and methods: We analyzed gene expression of IL11RA, IL11, IL6R, IL6 and IL6ST in different gastric tumor and immune cell lines. Furthermore, we stimulated these cell lines with exogenous cytokines and determined intracellular signaling. Finally, we analyzed gene expression data of gastric tumor patients and correlated them with overall patient survival. Results: This study showed that different gastric tumor cell lines respond to IL-6 classic and trans-signaling, but only slightly to stimulation with IL-11. We observed that monocyte-like cell lines expressed high levels of IL-6R and responded to IL-6, but not to stimulation with IL-11. Using gene expression data, we found that IL11RA and IL11 are not overexpressed in human gastric cancer tissue and do not correlate with patient survival. However, low IL6 expression is associated with higher overall survival. Conclusions: We provided evidence for IL-6 but not IL-11 signaling in gastric tumor cells and demonstrated that IL6 expression in gastric tumors is associated with overall survival of patients.
RESUMEN
Genetic variants in IL6ST encoding the shared cytokine receptor for the IL-6 cytokine family GP130 have been associated with a diverse number of clinical phenotypes and disorders. We provide a molecular classification for 59 reported rare IL6ST pathogenic or likely pathogenic variants and additional polymorphisms. Based on loss- or gain-of-function, cytokine selectivity, mono- and biallelic associations, and variable cellular mosaicism, we grade six classes of IL6ST variants and explore the potential for additional variants. We classify variants according to the American College of Medical Genetics and Genomics criteria. Loss-of-function variants with (i) biallelic complete loss of GP130 function that presents with extended Stüve-Wiedemann Syndrome; (ii) autosomal recessive hyper-IgE syndrome (HIES) caused by biallelic; and (iii) autosomal dominant HIES caused by monoallelic IL6ST variants both causing selective IL-6 and IL-11 cytokine loss-of-function defects; (iv) a biallelic cytokine-specific variant that exclusively impairs IL-11 signaling, associated with craniosynostosis and tooth abnormalities; (v) somatic monoallelic mosaic constitutively active gain-of-function variants in hepatocytes that present with inflammatory hepatocellular adenoma; and (vi) mosaic constitutively active gain-of-function variants in hematopoietic and non-hematopoietic cells that are associated with an immune dysregulation syndrome. In addition to Mendelian IL6ST coding variants, there are common non-coding cis-acting variants that modify gene expression, which are associated with an increased risk of complex immune-mediated disorders and trans-acting variants that affect GP130 protein function. Our taxonomy highlights IL6ST as a gene with particularly strong functional and phenotypic diversity due to the combinatorial biology of the IL-6 cytokine family and predicts additional genotype-phenotype associations.
Asunto(s)
Receptor gp130 de Citocinas , Interleucina-11 , Síndrome de Job , Humanos , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Interleucina-11/metabolismo , Interleucina-6/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Factor de Transcripción STAT3/metabolismoRESUMEN
Patients with autosomal dominant (AD) hyper-IgE syndrome (HIES) suffer from a constellation of manifestations including recurrent bacterial and fungal infections, severe atopy, and skeletal abnormalities. This condition is typically caused by monoallelic dominant-negative (DN) STAT3 variants. In 2020, we described 12 patients from eight kindreds with DN IL6ST variants resulting in a new form of AD HIES. These variants encoded truncated GP130 receptors, with intact extracellular and transmembrane domains, but lacking the intracellular recycling motif and the four STAT3-binding residues, resulting in an inability to recycle and activate STAT3. We report here two new DN variants of IL6ST in three unrelated families with HIES-AD. The biochemical and clinical impacts of these variants are different from those of the previously reported variants. The p.(Ser731Valfs*8) variant, identified in seven patients from two families, lacks the recycling motif and all the STAT3-binding residues, but its levels on the cell surface are only slightly increased and it underlies mild biological phenotypes with variable clinical expressivity. The p.(Arg768*) variant, identified in a single patient, lacks the recycling motif and the three most distal STAT3-binding residues. This variant accumulates at the cell surface and underlies severe biological and clinical phenotypes. The p.(Ser731Valfs*8) variant shows that a DN GP130 expressed at near normal levels on the cell surface can underlie heterogeneous clinical presentations, ranging from mild to severe. The p.(Arg768*) variant demonstrates that a truncated GP130 protein retaining one STAT3-binding residue can underlie severe HIES.
Asunto(s)
Hipersensibilidad Inmediata , Síndrome de Job , Humanos , Síndrome de Job/diagnóstico , Síndrome de Job/genética , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Fenotipo , Factor de Transcripción STAT3 , Hipersensibilidad Inmediata/complicaciones , Mutación/genéticaRESUMEN
Psoriasis is mainly characterized by abnormal hyperplasia of keratinocytes and immune cells infiltrating into the dermis and epidermis. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) is a highly conserved HECT type E3 ligase that plays an important role in regulating physiological and pathological processes. Here, we identify NEDD4L as a negative regulator of psoriasis. Nedd4l significantly inhibits imiquimod (IMQ)-induced skin hyperplasia, and this effect is attributed to the inhibitory effect of NEDD4L on IL-6/GP130 signaling in keratinocytes. Mechanistically, NEDD4L directly interacts with GP130 and mediates its Lys-27-linked ubiquitination and proteasomal degradation. Moreover, the expression of NEDD4L is downregulated in the epidermis from IMQ-treated mice and psoriasis patients and negatively correlates with the protein levels of GP130 and p-STAT3 in clinical samples. Collectively, we uncover an inhibitory role of NEDD4L in the pathogenesis of psoriasis and suggest a new therapeutic strategy for the treatment of psoriasis.