Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Chem Rec ; 20(6): 570-595, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31833648

RESUMEN

Secondary Li-ion batteries have been paid attention to wide-range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium-ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium-ion (Li-ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li-ion batteries over the decades because of their superior properties such as cost-efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li-ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono- and multilayer polyolefin separators if they are modified using suitable methods and materials.

2.
Molecules ; 24(20)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627459

RESUMEN

In order to improve the flame retardancy of polyacrylonitrile (PAN) fabrics, glycidyl methacrylate (GMA) was first grafted onto the surface of PAN fabric (PAN-g-GMA) by means of UV-induced photo grafting polymerization process. Then, PAN-g-GMA was chemically grafted with chitosan to obtain a bigrafted PAN fabric (PAN-g-GMA-g-CS). Finally, the flame-retardant PAN fabric (FR-PAN) was prepared by phosphorylation. The structure and elemental analysis of the samples were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The thermal degradation properties and combustion characteristics of the fabrics were accessed by thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and cone calorimeter (CC). The results show that the onset thermal decomposition temperature of FR-PAN fabric is lower than that of the control sample due to the degradation of the grafting groups. The combustion test indicates that the FR-PAN fabric has an excellent flame-retardant property and the combustion rate is significantly reduced. In addition, the char residue of the burned FR-PAN fabric is over 97%, indicating excellent char-forming ability.


Asunto(s)
Resinas Acrílicas/efectos de la radiación , Quitosano/química , Retardadores de Llama/análisis , Textiles/análisis , Compuestos Epoxi/química , Retardadores de Llama/síntesis química , Retardadores de Llama/efectos de la radiación , Humanos , Ensayo de Materiales , Metacrilatos/química , Fosforilación , Polimerizacion/efectos de la radiación , Rayos Ultravioleta
3.
J Environ Sci (China) ; 26(5): 1203-11, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25079652

RESUMEN

Removal of noxious dyes is gaining public and technological attention. Herein grafting polymerization was employed to produce a novel adsorbent using acrylic acid and carboxymethyl cellulose for dye removal. Scanning electron microscopy and Fourier-transform infrared spectroscopy verified the adsorbent formed under optimized reaction conditions. The removal ratio of adsorbent to Methyl Orange, Disperse Blue 2BLN and malachite green chloride reached to 84.2%, 79.6% and 99.9%, respectively. The greater agreement between the calculated and experimental results suggested that pseudo second-order kinetic model better represents the kinetic adsorption data. Equilibrium adsorptions of dyes were better explained by the Temkin isotherm. The results implied that this new cellulose-based absorbent had the universality for removal of dyes through the chemical adsorption mechanism.


Asunto(s)
Acrilatos/química , Carboximetilcelulosa de Sodio/química , Colorantes/química , Contaminantes Químicos del Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo
4.
Int J Biol Macromol ; 240: 124330, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023881

RESUMEN

In this study, a chemically modified lignin additive was successfully prepared to improve the physicochemical properties of biodegradable polycaprolactone (PCL)-based nanofibers. The molecular weight and surface functional group characteristics of lignin were effectively controlled through a solvent fractionation process using ethanol. Then, PCL-g-lignin was successfully synthesized by using ethanol-fractionated lignin as a platform for the PCL grafting process. Finally, PCL/PCL-g-lignin composite nanofibers were simply prepared by adding PCL-g-lignin to the PCL doping solution and performing a solution blow spinning process. The addition of PCL-g-lignin could dramatically improve the physical and chemical properties of PCL nanofibers, and in particular, the tensile strength (0.28 MPa) increased by approximately 280 % compared to the conventional PCL. In addition, the lignin moiety present in PCL-g-lignin was able to impart UV blocking properties to PCL nanofibers, and as a result, it was possible to effectively suppress the photolysis phenomenon that occurred rapidly in existing PCL nanofibers. Therefore, PCL-g-lignin may be widely used not only as a reinforcing agent of existing biodegradable nanofibers but also as a functional additive for UV protection.


Asunto(s)
Lignina , Nanofibras , Lignina/química , Nanofibras/química , Poliésteres/química , Resistencia a la Tracción , Fotólisis
5.
Polymers (Basel) ; 14(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35335516

RESUMEN

In medical environments, polymeric surfaces tend to become contaminated, hindering the treatment and recovery from diseases. Biofouling-resistant materials, such as zwitterionic polymers, may mitigate this problem. In this work, the modification of PVC catheters with a binary graft of 4-vinylpyridine (4VP) and sulfobetaine methacrylate (SBMA) by the oxidative pre-irradiation method is proposed to develop pH-responsive catheters with an antifouling capacity. The ionizing radiation allowed us to overcome limitations in the synthesis associated with the monomer characteristics. In addition, the grafted materials showed a considerable increase in their hydrophilic character and antifouling capacity, significantly decreasing the protein adsorption compared to the unmodified catheters. These materials have potential for the development of a combined antimicrobial and antifouling capabilities system to enhance prophylactic activity or even to help treat infections.

6.
J Chromatogr A ; 1651: 462337, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34157476

RESUMEN

Here, a m-xylene bisphosphonate immobilized tentacle-type cellulose monolith (BP-PCM) is prepared by atom transfer radical polymerization for lysozyme purification. In the preparation, the m-xylene bisphosphonate was anchored glycidyl methacrylate and then polymerized to enhance the flexibility of the ligands to improve lysozyme adsorption capacity, and glycerol monomethacrylate serves as spacer to further optimize the layers structure and ligands density of the grafted tentacles for satisfactory adsorption capacity. The maximum static and dynamic adsorption capacity (10% breakthrough) of BP-PCM reach to 169.6 and 102.6 mg mL-1, respectively. Moreover, BP-PCM displays weak nonspecific adsorption and is able to successfully enrich lysozyme from diluted chicken egg white, indicating the excellent selectivity. The results demonstrated that BP-PCM is promising for use as high-capacity protein chromatography.


Asunto(s)
Celulosa/química , Técnicas de Química Analítica/métodos , Cromatografía , Difosfonatos/química , Muramidasa/aislamiento & purificación , Adsorción , Técnicas de Química Analítica/instrumentación , Compuestos Epoxi/química , Ligandos , Metacrilatos/química , Muramidasa/química , Polimerizacion , Porosidad
7.
Polymers (Basel) ; 13(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34451364

RESUMEN

A novel high-efficient flame retardant epoxy grafted poly-acrylic resin modified by phosphorus and nitrogen was successfully synthesized by radical grafting polymerization and solution polymerization simultaneously. The flame retardancy of copolymer resin was investigated using thermogravimetric analysis (TGA), cone calorimetric test (CONE), limiting oxygen index (LOI) and so on. The micro-morphology and chemical composition of char formed after a CONE calorimetric test was analyzed using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The Kissinger method was used to evaluate the kinetics of thermal decomposition on copolymer resin. The results showed that the flame retardant property of copolymer resin increased with the increase in phosphorus content. With the increase in nitrogen content, however, the flame retardant property first increased and then decreased. The flame retardant property of the resin was the best and the limiting oxygen index could reach 34.3% when the phosphorus content and nitrogen content of the copolymer resin were 6.45 wt% and 2.33 wt%, respectively. Meanwhile, nitrogen-containing compounds will interact with phosphorus-containing compounds to form P-N intermediates during combustion, which have stronger dehydration and carbonization and could further enhance the flame retardant performance of the resin and generate phosphorus-nitrogen synergistic interactions.

8.
Membranes (Basel) ; 11(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34677527

RESUMEN

In this work, a facile preparation method was proposed to reduce natural organics fouling of hydrophobic membrane via UV grafting polymerization with methacrylic acid (MAAc) and methyl acrylamide (MAAm) as hydrophilic monomers, followed by multihydrogen bond self-assembly. The resulting poly(vinylidene fluoride)-membranes were characterized with respect to monomer ratio, chemical structure and morphology, surface potential, and water contact angle, as well as water flux and organic foulants ultrafiltration property. The results indicated that the optimal membrane modified with a poly(MAAc-co-MAAm) polymer gel layer derived from a 1:1 monomer ratio exhibited superior hydrophilicity and excellent gel layer stability, even after ultrasonic treatment or soaking in acid or alkaline aqueous solution. The initial water contact angle of modified membranes was only 36.6° ± 2.9, and dropped to 0° within 13 s. Moreover, flux recovery rates (FRR) of modified membranes tested by bovine serum albumin (BSA), humic acid (HA), and sodium alginate (SA) solution, respectively, were all above 90% after one-cycle filtration (2 h), significantly higher than that of the pure membrane (70-76%). The total fouling rates (Rt) of the pure membrane for three foulants were as high as 47.8-56.2%, while the Rt values for modified membranes were less than 30.8%. Where Rt of BSA dynamic filtration was merely 10.7%. The membrane designed through grafting a thin-layer hydrophilic hydrogel possessed a robust antifouling property and stability, which offers new insights for applications in pure water treatment or protein purification.

9.
Carbohydr Polym ; 220: 79-85, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31196553

RESUMEN

Industrial ecology, sustainable manufacturing, and green chemistry have been considered platform-based approaches to the reduction of the environmental footprint. Recently, nanofibrillated cellulose (NFC) has gained significant interest due to its mechanical properties, biodegradability, and availability. These outstanding properties of NFC have encouraged the development of a more sustainable substrate for electronics. In this context, the combination of NFC and conductive polymers may create a new class of biocomposites to be used in place of conventional electronics which are not optimally designed for use in flexible and mechanically robust devices. In this study, polythiophene was grafted onto nanocellulose surface at appropriate reaction times to obtain a strong, flexible, foldable films with capacity for electrical conductivity. Nanocomposites films were synthesized by a one-step reaction in which a 3-methyl thiophene monomer was oxidatively polymerized onto nanocellulose backbone. The nature of the fabricated NFC films changed from insulator to semiconductor material upon oxidative polymerization.

10.
ACS Appl Mater Interfaces ; 10(38): 32747-32759, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30157634

RESUMEN

Poly( N-isopropylacrylamide) (PNIPAAm), a typical thermoresponsive polymer, exhibits potential application in smart materials. However, bulk PNIPAAm hydrogel monoliths undergo slow volume phase transition at least tens of minutes to hours as determined by the shape and size of polymers due to the formation of the skin layer. In this regard, novel macroporous sponges with rapid thermoresponse are prepared via grafting polymerization of N-isopropylacrylamide (NIPAAm) onto the macroporous poly(vinyl alcohol) formaldehyde (PVF) network as confirmed by attenuated total reflection-infrared (ATR IR) and 1H NMR spectra. As prepared PVF- g-PNIPAAm sponges display interconnected open-cell structures, and their average pore sizes and porosities are ∼90 µm and >85%, respectively. The equilibrium swelling ratio of PVF- g-PNIPAAm sponges varies from 11 to 50 with temperature. The volume phase transition temperature is at 30-34 °C, as detected in the DSC curves of swollen samples. These features indicate that the existence of the original PVF network exerts almost no influence on the PNIPAAm temperature responsibility. As prepared samples can reach the swelling equilibrium in less than 80 s, and their rapid swelling kinetics can be fitted using the pseudo-first-order rate kinetic equation. Notably, the samples also display rapid deswelling rate in less than 40 s at relative high temperature (48 °C), thereby indicating a superfast responsive behavior to temperature change. The PVF- g-PNIPAAm sponges exhibit rapid and reversible thermoresponse in repeatable swelling-deswelling cycles, which can satisfy the need of special smart materials. In particular, combined with iodine solution (i.e., PVF- g-PNIPAAm/I2), these sponges can serve as a novel temperature indicator and exhibit excellent antibacterial performances.


Asunto(s)
Acrilamidas/química , Materiales Biocompatibles/química , Formaldehído/química , Hidrogeles/química , Temperatura , Polímeros/química , Alcohol Polivinílico/química
11.
Materials (Basel) ; 9(6)2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28773561

RESUMEN

Polyurethane (PU) is the fifth most common polymer in the general consumer market, following Polypropylene (PP), Polyethylene (PE), Polyvinyl chloride (PVC), and Polystyrene (PS), and the most common polymer for thermosetting resins. In particular, polyurethane has excellent hardness and heat resistance, is a widely used material for electronic products and automotive parts, and can be used to create products of various physical properties, including rigid and flexible foams, films, and fibers. However, the use of polar polymer polyurethane as an impact modifier of non-polar polymers is limited due to poor combustion resistance and impact resistance. In this study, we used gamma irradiation at 25 and 50 kGy to introduce the styrene of hydrophobic monomer on the polyurethane as an impact modifier of the non-polar polymer. To verify grafted styrene, we confirmed the phenyl group of styrene at 690 cm-1 by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) and at 6.4-6.8 ppm by ¹H-Nuclear Magnetic Resonance (¹H-NMR). Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA) and contact angle analysis were also used to confirm styrene introduction. This study has confirmed the possibility of applying high-functional composite through radiation-based techniques.

12.
Carbohydr Polym ; 147: 178-187, 2016 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-27178923

RESUMEN

Hydrophilic luffa sponges are prepared by grafting polymerization of acrylamide (AM) on luffa cylindrica and subsequent partial hydrolysis under alkaline conditions. Attenuated total reflection infrared spectroscopy is used to verify the composition of the grafted (luffa-g-PAM) and hydrolyzed (luffa-g-(PAM-co-PAANa)) samples. Alkalization conditions, including aqueous NaOH concentrations, alkalization temperature, and time, are studied extensively. Optimized conditions are then obtained. The grafting percentage (GP) of polyacrylamide increases with the feed ratios of [AM]/[OH] and [Ce]/[OH], reaction temperature, and time. Furthermore, the GP can reach up to 160%. Pristine, alkalized, grafted, and hydrolyzed luffa sponges show rapid absorption kinetics, and the pseudo second-order rate equation is applied to describe their kinetic procedure. Reaction conditions, such as [AM]/[OH], [Ce]/[OH], reaction temperature and time, influence the water absorption capacities of grafted and hydrolyzed samples. The hydrolyzed luffa sponges particularly exhibit high water absorption capacities of 75gg(-1). The absorption mechanism is also discussed.

13.
Carbohydr Polym ; 121: 348-54, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25659709

RESUMEN

The copolymer of starch grafted with polystyrene (starch-g-PS) was synthesized with high grafting percentage by utilizing the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac) as solvent and potassium persulfate as initiator. The effect of various parameters upon the polymerization were studied including: initiator concentration, styrene:starch weight ratio, the reaction time and temperature. Grafting percentages were calculated using an FT-IR calibration method, with values up to 114%. The resulting copolymer was characterized using FT-IR, SEM, WAXD and TGA, which demonstrated that polystyrene side chains were evenly distributed on the starch backbone. Our results indicate that ionic liquid dissolution of starch, prior to polystyrene grafting, is a versatile methodology for the synthesis of amphiphilic, polysaccharide-based graft copolymers, having high grafting percent.

14.
J Biomater Sci Polym Ed ; 25(10): 1045-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24854325

RESUMEN

Gemini surfactants (GS) with sugar-containing head-groups and different alkyl chains were successfully prepared. Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) elastomer was grafted with glycidyl methacrylate (GMA) by means of UV-induced graft polymerization, and then the pGMA-grafted film was chemically immobilized with the GS. The surface graft polymerization was confirmed by ATR-FTIR and XPS. The wettability and hemocompatibility of the modified surface were characterized by means of water contact angle, protein adsorption, and platelet adhesion assays. The results showed that amphiphilic surfactant-containing polymer surfaces presented protein-resistant behavior and anti-platelet adhesion after functionalization with GS, GS1 and GS2. Besides, the hemocompatibility of the modified surface deteriorated as the length of hydrophobic chain of GS increased.


Asunto(s)
Materiales Biocompatibles/química , Carbohidratos/química , Elastómeros/química , Poliestirenos/química , Compuestos de Amonio Cuaternario/química , Tensoactivos/química , Adsorción , Animales , Materiales Biocompatibles/farmacología , Bovinos , Lactosa/química , Ensayo de Materiales , Adhesividad Plaquetaria/efectos de los fármacos , Conejos , Albúmina Sérica Bovina/química , Agua/química , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA