Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Physiology (Bethesda) ; 38(2): 0, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256636

RESUMEN

The significance of the coupling delay, which is the time required for interactions between coupled oscillators, in various oscillatory dynamics has been investigated mathematically for more than three decades, but its biological significance has been revealed only recently. In the segmentation clock, which regulates the periodic formation of somites in embryos, Hes7 expression oscillates synchronously between neighboring presomitic mesoderm (PSM) cells, and this synchronized oscillation is controlled by Notch signaling-mediated coupling between PSM cells. Recent studies have shown that inappropriate coupling delays dampen and desynchronize Hes7 oscillations, as simulated mathematically, leading to the severe fusion of somites and somite-derived tissues such as the vertebrae and ribs. These results indicate the biological significance of the coupling delay in synchronized Hes7 oscillations in the segmentation clock. The recent development of an in vitro PSM-like system will facilitate the detailed analysis of the coupling delay in synchronized oscillations.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Somitos , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Somitos/metabolismo , Transducción de Señal/fisiología
2.
J Biol Chem ; 293(31): 12167-12176, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29895619

RESUMEN

Somites are a pair of epithelial spheres beside a neural tube and are formed with an accurate periodicity during embryogenesis in vertebrates. It has been known that Hes7 is one of the core clock genes for somitogenesis, and its expression domain is restricted in the presomitic mesoderm (PSM). However, the molecular mechanism of how Hes7 transcription is regulated is not clear. Here, using transgenic mice and luciferase-based reporter assays and in vitro binding assays, we unravel the mechanism by which Hes7 is expressed exclusively in the PSM. We identified a Hes7 essential region residing -1.5 to -1.1 kb from the transcription start site of mouse Hes7, and this region was indispensable for PSM-specific Hes7 expression. We also present detailed analyses of cis-regulatory elements within the Hes7 essential region that directs Hes7 expression in the PSM. Hes7 expression in the PSM was up-regulated through the E-box, T-box, and RBPj-binding element in the Hes7 essential region, presumably through synergistic signaling involving mesogenin1, T-box6 (Tbx6), and Notch. Furthermore, we demonstrate that Tbx18, Ripply2, and Hes7 repress the activation of the Hes7 essential region by the aforementioned transcription factors. Our findings reveal that a unified transcriptional regulatory network involving a Hes7 essential region confers robust PSM-specific Hes7 gene expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Mesodermo/metabolismo , Receptor Notch1/metabolismo , Somitos/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Elementos E-Box , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Mesodermo/química , Mesodermo/embriología , Ratones , Receptor Notch1/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Somitos/embriología , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética
3.
Am J Med Genet A ; 161A(9): 2244-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23897666

RESUMEN

Spondylocostal dysotosis (SCD) is a rare developmental congenital abnormality of the axial skeleton. Mutation of genes in the Notch signaling pathway cause SCD types 1-5. Dextrocardia with situs inversus is a rare congenital malformation in which the thoracic and abdominal organs are mirror images of normal. Such laterality defects are associated with gene mutations in the Nodal signaling pathway or cilia assembly or function. We investigated two distantly related individuals with a rare combination of severe segmental defects of the vertebrae (SDV) and dextrocardia with situs inversus. We found that both individuals were homozygous for the same mutation in HES7, and that this mutation caused a significant reduction of HES7 protein function; HES7 mutation causes SCD4. Two other individuals with SDV from two unrelated families were found to be homozygous for the same mutation. Interestingly, although the penetrance of the vertebral defects was complete, only 3/7 had dextrocardia with situs inversus, suggesting randomization of left-right patterning. Two of the affected individuals presented with neural tube malformations including myelomeningocele, spina bifida occulta and/or Chiari II malformation. Such neural tube phenotypes are shared with the originally identified SCD4 patient, but have not been reported in the other forms of SCD. In conclusion, it appears that mutation of HES7 is uniquely associated with defects in vertebral, heart and neural tube formation, and this observation will help provide a discriminatory diagnostic guide in patients with SCD, as well as inform molecular genetic testing.


Asunto(s)
Anomalías Múltiples/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dextrocardia/genética , Cardiopatías Congénitas/genética , Hernia Diafragmática/genética , Mutación , Situs Inversus/genética , Anomalías Múltiples/diagnóstico , Sustitución de Aminoácidos , Animales , Mapeo Cromosómico , Hibridación Genómica Comparativa , Consanguinidad , Dextrocardia/diagnóstico , Femenino , Genotipo , Cardiopatías Congénitas/diagnóstico , Hernia Diafragmática/diagnóstico , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Linaje , Fenotipo , Situs Inversus/diagnóstico
4.
Front Pediatr ; 11: 1201999, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37691774

RESUMEN

Background: Spondylocostal dysostosis 4 (SCDO4) is characterized by short stature (mainly short trunk), dyspnea, brain meningocele, and spina bifida occulta, which is caused by homozygous or compound heterozygous HES7 (HES family bHLH transcription factor 7) variants. The incidence of SCDO4 remains unknown due to the extremely low number of cases. This study reveals a novel homozygous HES7 splicing variant causing SCDO4 and reviews all the previously reported HES7 variants and corresponding symptoms, providing a comprehensive overview of the phenotypes and genotypes of HES7 variants. Case presentation: This case report focuses on a Chinese neonate who was first hospitalized for tachypnea, cleft palate, and short trunk. After a series of auxiliary examinations, the patient was also found to have deformities of vertebrae and rib, left hydronephrosis, and patent foramen ovale. He underwent surgery for congenital hydronephrosis at 5 months old and underwent cleft palate repair when he was 1 year old. After two and half years of follow-up, the boy developed normally. A novel homozygous HES7 splicing variant (c.226+1G>A, NM_001165967.2) was identified in the proband by whole-exome sequencing and verified by Sanger sequencing. The variant was inherited from both parents and minigene assays demonstrated that this variant resulted in the retention of intron3 in the HES7 transcript. Including this case, a total of six HES7 variants and 13 patients with SCDO4 have been reported. Conclusions: Our findings expand the genotype-phenotype knowledge of SCDO4 and provide new evidence for genetic counseling.

5.
Stem Cell Reports ; 18(12): 2328-2343, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37949072

RESUMEN

Sus scrofa domesticus (pig) has served as a superb large mammalian model for biomedical studies because of its comparable physiology and organ size to humans. The derivation of transgene-free porcine induced pluripotent stem cells (PiPSCs) will, therefore, benefit the development of porcine-specific models for regenerative biology and its medical applications. In the past, this effort has been hampered by a lack of understanding of the signaling milieu that stabilizes the porcine pluripotent state in vitro. Here, we report that transgene-free PiPSCs can be efficiently derived from porcine fibroblasts by episomal vectors along with microRNA-302/367 using optimized protocols tailored for this species. PiPSCs can be differentiated into derivatives representing the primary germ layers in vitro and can form teratomas in immunocompromised mice. Furthermore, the transgene-free PiPSCs preserve intrinsic species-specific developmental timing in culture, known as developmental allochrony. This is demonstrated by establishing a porcine in vitro segmentation clock model that, for the first time, displays a specific periodicity at ∼3.7 h, a timescale recapitulating in vivo porcine somitogenesis. We conclude that the transgene-free PiPSCs can serve as a powerful tool for modeling development and disease and developing transplantation strategies. We also anticipate that they will provide insights into conserved and unique features on the regulations of mammalian pluripotency and developmental timing mechanisms.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Animales , Ratones , Porcinos , Reprogramación Celular , Diferenciación Celular , Transgenes , Mamíferos
6.
Methods Mol Biol ; 2525: 321-332, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35836080

RESUMEN

Somites are formed sequentially by the segmentation of the anterior parts of the presomitic mesoderm (PSM), and such periodical somite formation is crucial to ensure the proper vertebrae. In the mouse embryo, Hes7, a segmentation clock gene, controls this periodic event with new somites forming every 2 h. Hes7 oscillations are synchronized between neighboring PSM cells and propagate from the posterior to the anterior PSM in the form of traveling waves. However, the exact mechanisms that generate these oscillatory dynamics and control synchronization are still unclear. Given that the half-life of Hes7 is too short to be monitored with most fluorescent proteins, time-lapse bioluminescence imaging (BLI) is a suitable tool to monitor the chronological Hes7 expression dynamics. In this chapter, we introduce a ubiquitinated luciferase reporter which enables the visualization of Hes7 expression dynamics with high temporal and spatial resolution in living cells and tissues.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Somitos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Ratones , Somitos/metabolismo , Imagen de Lapso de Tiempo
7.
J Dev Biol ; 9(1)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572886

RESUMEN

Spondylocostal dysostosis (SCDO) is a rare heritable congenital condition, characterized by multiple severe malformations of the vertebrae and ribs. Great advances were made in the last decades at the clinical level, by identifying the genetic mutations underlying the different forms of the disease. These were matched by extraordinary findings in the Developmental Biology field, which elucidated the cellular and molecular mechanisms involved in embryo body segmentation into the precursors of the axial skeleton. Of particular relevance was the discovery of the somitogenesis molecular clock that controls the progression of somite boundary formation over time. An overview of these concepts is presented, including the evidence obtained from animal models on the embryonic origins of the mutant-dependent disease. Evidence of an environmental contribution to the severity of the disease is discussed. Finally, a brief reference is made to emerging in vitro models of human somitogenesis which are being employed to model the molecular and cellular events occurring in SCDO. These represent great promise for understanding this and other human diseases and for the development of more efficient therapeutic approaches.

8.
Gene Expr Patterns ; 35: 119094, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31899345

RESUMEN

During somite segmentation, the expression of clock genes such as Hes7 oscillates synchronously in the presomitic mesoderm (PSM). This synchronous oscillation slows down in the anterior PSM, leading to wave-like propagating patterns from the posterior to anterior PSM. Such dynamic expression depends on Notch signaling and is critical for somite formation. However, it remains to be determined how slowing oscillations in the anterior PSM are controlled, and whether the expression of the Notch ligand Delta-like1 (Dll1) oscillates on the surface of individual PSM cells, as postulated to be responsible for synchronous oscillation. Here, by using Dll1 fluorescent reporter mice, we performed live-imaging of Dll1 expression in PSM cells and found the oscillatory expression of Dll1 protein on the cell surface regions. Furthermore, a comparison of live-imaging of Dll1 and Hes7 oscillations revealed that the delay from Dll1 peaks to Hes7 peaks increased in the anterior PSM, suggesting that the Hes7 response to Dll1 becomes slower in the anterior PSM. These results raise the possibility that Dll1 protein oscillations on the cell surface regulate synchronous Hes7 oscillations, and that the slower response of Hes7 to Dll1 leads to slower oscillations in the anterior PSM.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Relojes Biológicos , Proteínas de Unión al Calcio/genética , Regulación del Desarrollo de la Expresión Génica , Somitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al Calcio/metabolismo , Ratones , Morfogénesis , Somitos/embriología
9.
Cell Rep ; 28(9): 2247-2255.e5, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461642

RESUMEN

Defects in somitogenesis result in vertebral malformations at birth known as spondylocostal dysostosis (SCDO). Somites are formed with a species-specific periodicity controlled by the "segmentation clock," which comprises a group of oscillatory genes in the presomitic mesoderm. Here, we report that a segmentation clock model derived from human embryonic stem cells shows many hallmarks of the mammalian segmentation clock in vivo, including a dependence on the NOTCH and WNT signaling pathways. The gene expression oscillations are highly synchronized, displaying a periodicity specific to the human clock. Introduction of a point of mutation into HES7, a specific mutation previously associated with clinical SCDO, eliminated clock gene oscillations, successfully reproducing the defects in the segmentation clock. Thus, we provide a model for studying the previously inaccessible human segmentation clock to better understand the mechanisms contributing to congenital skeletal defects.


Asunto(s)
Relojes Biológicos , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas/citología , Somitos/citología , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias Humanas/metabolismo , Humanos , Receptores Notch/genética , Receptores Notch/metabolismo , Somitos/embriología , Somitos/metabolismo , Vía de Señalización Wnt/genética
10.
FEBS J ; 281(1): 146-56, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24165510

RESUMEN

Somite segmentation, a prominent periodic event in the development of vertebrates, is instructed by cyclic expression of several genes, including Hes7 and Lunatic fringe (Lfng). Transcriptional regulation accounts for the cyclic expression. In addition, because the expression patterns vary in a cycle, rapid turnover of mRNAs should be involved in the cyclic expression, although its contribution remains unclear. Here, we demonstrate that 3'-UTR-dependent rapid turnover of Lfng and Hes7 plays a critical role in their dynamic expression patterns. The regions active in the transcription of Lfng and Hes7 are wholly overlapped in the posterior presomitic mesoderm (PSM) of the mouse embryo. However, their distribution patterns are slightly different; Hes7 mRNA shows a broader distribution pattern than Lfng mRNA in the posterior PSM. Lfng mRNA is less stable than Hes7 mRNA, where their 3'-UTRs are responsible for the different stability. Using transgenic mice expressing Venus under the control of the Hes7 promoter, which leads to cyclic transcription in the PSM, we reveal that the Lfng 3'-UTR provides the narrow distribution pattern of Lfng mRNA, whereas the Hes7 3'-UTR contributes the relatively broad distribution pattern of Hes7 mRNA. Thus, we conclude that 3'-UTR-dependent mRNA stability accounts for the differential distribution patterns of Lfng and Hes7 mRNA. Our findings suggest that 3'-UTR-dependent regulation of mRNA turnover plays a crucial role in the diverse patterns of mRNA distribution during development.


Asunto(s)
Regiones no Traducidas 3'/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Regulación del Desarrollo de la Expresión Génica , Glicosiltransferasas/fisiología , ARN Mensajero/metabolismo , Animales , Western Blotting , Tipificación del Cuerpo , Femenino , Células HEK293 , Humanos , Hibridación in Situ , Masculino , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Somitos/citología , Somitos/metabolismo
11.
Gene Regul Syst Bio ; 1: 35-42, 2007 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19936076

RESUMEN

Vertebrae and other mammalian repetitive structures are formed from embryonic organs called somites. Somites arise sequentially from the unsegmented presomitic mesoderm (PSM). In mice, a new bilateral pair of somites arise every two hours from the rostral PSM. On the other hand, cells are added to the caudal side of the PSM due to cell proliferation of the tail bud. Somite formation correlates with cycles of cell-autonomous expression in the PSM of genes like Hes7. Because the somitogenesis is a highly dynamic and coordinated process, this event has been subjected to extensive theoretical modeling. Here, we describe the current understanding about the somitogenesis in mouse embryos with an emphasis on insights gained from computer simulations. It is worth noting that the combination of experiments and computer simulations has uncovered dynamical properties of the somitogenesis clock such as the transcription/translation delays, the half-life and the synchronization mechanism across the PSM. Theoretical models have also been useful to provide predictions and rigorous hypothesis about poorly understood processes such as the mechanisms by which the temporal PSM oscillations are arrested and converted into an spatial pattern. We aim at reviewing this theoretical literature in such a way that experimentalists might appreciate the resulting conclusions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA