RESUMEN
Th17 cells provide protection at barrier tissues but may also contribute to immune pathology. The relevance and induction mechanisms of pathologic Th17 responses in humans are poorly understood. Here, we identify the mucocutaneous pathobiont Candida albicans as the major direct inducer of human anti-fungal Th17 cells. Th17 cells directed against other fungi are induced by cross-reactivity to C. albicans. Intestinal inflammation expands total C. albicans and cross-reactive Th17 cells. Strikingly, Th17 cells cross-reactive to the airborne fungus Aspergillus fumigatus are selectively activated and expanded in patients with airway inflammation, especially during acute allergic bronchopulmonary aspergillosis. This indicates a direct link between protective intestinal Th17 responses against C. albicans and lung inflammation caused by airborne fungi. We identify heterologous immunity to a single, ubiquitous member of the microbiota as a central mechanism for systemic induction of human anti-fungal Th17 responses and as a potential risk factor for pulmonary inflammatory diseases.
Asunto(s)
Candida albicans/inmunología , Células Th17/inmunología , Células Th17/metabolismo , Aspergillus fumigatus/inmunología , Aspergillus fumigatus/patogenicidad , Candida albicans/patogenicidad , Reacciones Cruzadas/inmunología , Fibrosis Quística/inmunología , Fibrosis Quística/microbiología , Humanos , Inmunidad , Inmunidad Heteróloga/inmunología , Células Th17/fisiologíaRESUMEN
Understanding the genetic design principles that determine protein production remains a major challenge. Although the key principles of gene expression were discovered 50 years ago, additional factors are still being uncovered. Both protein-coding and non-coding sequences harbor elements that collectively influence the efficiency of protein production by modulating transcription, mRNA decay, and translation. The influences of many contributing elements are intertwined, which complicates a full understanding of the individual factors. In natural genes, a functional balance between these factors has been obtained in the course of evolution, whereas for genetic-engineering projects, our incomplete understanding still limits optimal design of synthetic genes. However, notable advances have recently been made, supported by high-throughput analysis of synthetic gene libraries as well as by state-of-the-art biomolecular techniques. We discuss here how these advances further strengthen understanding of the gene expression process and how they can be harnessed to optimize protein production.
Asunto(s)
Código Genético , Biosíntesis de Proteínas/genética , Algoritmos , Animales , Biotecnología , Humanos , Estabilidad del ARN , Transcripción GenéticaRESUMEN
Ebolaviruses cause severe disease in humans, and identification of monoclonal antibodies (mAbs) that are effective against multiple ebolaviruses are important for therapeutics development. Here we describe a distinct class of broadly neutralizing human mAbs with protective capacity against three ebolaviruses infectious for humans: Ebola (EBOV), Sudan (SUDV), and Bundibugyo (BDBV) viruses. We isolated mAbs from human survivors of ebolavirus disease and identified a potent mAb, EBOV-520, which bound to an epitope in the glycoprotein (GP) base region. EBOV-520 efficiently neutralized EBOV, BDBV, and SUDV and also showed protective capacity in relevant animal models of these infections. EBOV-520 mediated protection principally by direct virus neutralization and exhibited multifunctional properties. This study identified a potent naturally occurring mAb and defined key features of the human antibody response that may contribute to broad protection. This multifunctional mAb and related clones are promising candidates for development as broadly protective pan-ebolavirus therapeutic molecules.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , Ebolavirus/inmunología , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/inmunología , Células 3T3 , Adulto , Animales , Células CHO , Línea Celular , Chlorocebus aethiops , Cricetulus , Modelos Animales de Enfermedad , Drosophila , Femenino , Hurones , Cobayas , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunoglobulina G/inmunología , Células Jurkat , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células THP-1 , Células VeroRESUMEN
Cystargolides are natural products originally isolated from Kitasatospora cystarginea NRRL B16505 as inhibitors of the proteasome. They are composed of a dipeptide backbone linked to a ß-lactone warhead. Recently, we identified the cystargolide biosynthetic gene cluster, but systematic genetic analyses had not been carried out because of the lack of a heterologous expression system. Here, we report the discovery of a homologous cystargolide biosynthetic pathway in Streptomyces durhamensis NRRL-B3309 by genome mining. The gene cluster was cloned via transformation-associated recombination and heterologously expressed in Streptomyces coelicolor M512. We demonstrate that it contains all genes necessary for the production of cystargolide A and B. Single gene deletion experiments reveal that only five of the eight genes from the initially proposed gene cluster are essential for cystargolide synthesis. Additional insights into the cystargolide pathway could be obtained from in vitro assays with CysG and chemical complementation of the respective gene knockout. This could be further supported by the in vitro investigation of the CysG homolog BelI from the belactosin biosynthetic gene cluster. Thereby, we confirm that CysG and BelI catalyze a cryptic SAM-dependent transfer of a methyl group that is critical for the construction of the cystargolide and belactosin ß-lactone warheads.
Asunto(s)
Dipéptidos , Metiltransferasas , Streptomycetaceae , Vías Biosintéticas , Dipéptidos/metabolismo , Lactonas/metabolismo , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Familia de Multigenes , Streptomyces coelicolor/genética , Streptomycetaceae/enzimología , Streptomycetaceae/genéticaRESUMEN
Plant mitochondrial and chloroplast transcripts are subject to numerous events of specific cytidine-to-uridine (C-to-U) RNA editing to correct genetic information. Key protein factors for this process are specific RNA-binding pentatricopeptide repeat (PPR) proteins, which are encoded in the nucleus and post-translationally imported into the two endosymbiotic organelles. Despite hundreds of C-to-U editing sites in the plant organelles, no comparable editing has been found for nucleo-cytosolic mRNAs raising the question why plant RNA editing is restricted to chloroplasts and mitochondria. Here, we addressed this issue in the model moss Physcomitrium patens, where all PPR-type RNA editing factors comprise specific RNA-binding and cytidine deamination functionalities in single proteins. To explore whether organelle-type RNA editing can principally also take place in the plant cytosol, we expressed PPR56, PPR65 and PPR78, three editing factors recently shown to also function in a bacterial setup, together with cytosolic co-transcribed native targets in Physcomitrium. While we obtained unsatisfying results upon their constitutive expression, we found strong cytosolic RNA editing under hormone-inducible expression. Moreover, RNA-Seq analyses revealed varying numbers of up to more than 900 off-targets in other cytosolic transcripts. We conclude that PPR-mediated C-to-U RNA editing is not per se incompatible with the plant cytosol but that its limited target specificity has restricted its occurrence to the much less complex transcriptomes of mitochondria and chloroplast in the course of evolution.
Asunto(s)
Bryopsida , Cloroplastos , Citosol , Mitocondrias , Edición de ARN , ARN de Planta , Cloroplastos/metabolismo , Cloroplastos/genética , Citosol/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citidina/metabolismo , Citidina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Regulación de la Expresión Génica de las Plantas , Uridina/metabolismo , Uridina/genéticaRESUMEN
Linear, unbranched (1,3;1,4)-ß-glucans (mixed-linkage glucans or MLGs) are commonly found in the cell walls of grasses, but have also been detected in basal land plants, algae, fungi and bacteria. Here we show that two family GT2 glycosyltransferases from the Gram-positive bacterium Sarcina ventriculi are capable of synthesizing MLGs. Immunotransmission electron microscopy demonstrates that MLG is secreted as an exopolysaccharide, where it may play a role in organizing individual cells into packets that are characteristic of Sarcina species. Heterologous expression of these two genes shows that they are capable of producing MLGs in planta, including an MLG that is chemically identical to the MLG secreted from S. ventriculi cells but which has regularly spaced (1,3)-ß-linkages in a structure not reported previously for MLGs. The tandemly arranged, paralogous pair of genes are designated SvBmlgs1 and SvBmlgs2. The data indicate that MLG synthases have evolved different enzymic mechanisms for the incorporation of (1,3)-ß- and (1,4)-ß-glucosyl residues into a single polysaccharide chain. Amino acid variants associated with the evolutionary switch from (1,4)-ß-glucan (cellulose) to MLG synthesis have been identified in the active site regions of the enzymes. The presence of MLG synthesis in bacteria could prove valuable for large-scale production of MLG for medical, food and beverage applications.
Asunto(s)
Glicosiltransferasas , beta-Glucanos , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , beta-Glucanos/metabolismo , Pared Celular/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismoRESUMEN
The corona virus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2) spurred a worldwide race for the development of an efficient vaccine. Various strategies were pursued; however, the first vaccines to be licensed presented the SARS-CoV-2 spike protein either in the context of a non-replicating adenoviral vector or as an mRNA construct. While short-term efficacies have extensively been characterized, the duration of protection, the need for repeated boosting, and reasonable vaccination intervals have yet to be defined. We here describe the adaptive immune response resulting from homologous and heterologous vaccination regimen at 18 months after primary vaccination. To that extent, we monitored 176 healthcare workers, the majority of whom had recovered from previous SARS-CoV-2 infection. In summary, we find that differences depending on primary immunization continue to exist 18 months after the first vaccination and these findings hold true irrespective of previous infection with the virus. Homologous primary immunization with BNT162b2 was repeatedly shown to produce higher antibody levels and slower antibody decline, leading to more effective in vitro neutralization capacities. Likewise, cellular responses resulting from in vitro re-stimulation were more pronounced after primary immunization involving BNT162b2. In contrast, IL-2 producing memory T helper and cytotoxic T cells appeared independent from the primary vaccination regimen. Despite these differences, comparable infection rates among all vaccination groups suggest comparable real-life protection.IMPORTANCEVaccination against the severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2) was shown to avert severe courses of corona virus disease 2019 (COVID-19) and to mitigate spreading of the virus. However, the duration of protection and need for repeated boosting have yet to be defined. Monitoring and comparing the immune responses resulting from various vaccine strategies are therefore important to fill knowledge gaps and prepare for future pandemics.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Inmunidad Celular , Inmunidad Humoral , ARN , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del CoronavirusRESUMEN
Adeno-associated virus (AAV) is a Dependoparvovirus with a ssDNA ~4.7 kb genome in a ~25 nm icosahedral capsid structure. AAV genomes encode nine known functional proteins from two open reading frames between two inverted terminal repeats (ITRs). In recombinant AAV vectors for gene therapy use, the AAV genome is replaced with a transgene of interest flanked by ITRs and subsequently packaged within an AAV capsid made up of three viral structural proteins (VP1, VP2, and VP3) in an approximate 1:1:10 ratio, respectively. The AAV capsid, particularly VP3, has traditionally been ascribed to capsid-cellular receptor binding. However, AAV9 VP1/VP2 exhibits a capsid-promoter interaction that can alter neuronal cellular tropism in the rat and non-human primate central nervous system. This capsid-promoter interaction is altered by AAV9EU (AAV9 with six glutamates inserted at aa139) which exhibits a significant reduction in nuclear transgene DNA, a decrease in neuronal transduction, and a reduction in vivo relative transgene mRNA levels. AAV9EU has six amino acid insertions in VP1, VP2, and MAAP (membrane-associated accessory protein), but no combination of VP with MAAP recapitulated the AAV9EU in vivo phenotype. Surprisingly, AAV9 produced in the absence of MAAP9 exhibits an increase in relative transgene levels. While co-infusing two AAV9 vectors, differing only in transgene and MAAP9 presence during production, exhibit a significantly increased in vivo transgene fluorescence intensity by fivefold of both transgenes. Together, an MAAP9-related activity acts both in cis and in trans to increase AAV9 transgene mRNA levels and AAV9 transgene protein levels in vivo. IMPORTANCE: Recombinant adeno-associated viruses (AAVs) are used extensively in clinical gene therapy for treating a range of tissues and pathologies in humans. In particular, AAV9 occupies a prominent position in central nervous system (CNS) gene therapy given its central role in ongoing clinical trials and an FDA-approved therapeutic. Despite its widespread use, recent studies have identified unique roles for the AAV capsid in in vivo transgene expression; for example, interior-facing capsid residues of AAV VP1 and VP2 modulate cellular transgene expression in vivo. The following experiments identified that the AAV9 MAAP protein exerts a significant influence on in vivo transgene expression. This finding could further explain how AAV can remain latent after infection in vivo. Together, these studies provide novel functional insights that highlight the importance of further understanding basic AAV biology.
RESUMEN
Coronaviruses are evolutionarily successful RNA viruses, common to multiple avian, amphibian and mammalian hosts. Despite their ubiquity and potential impact, knowledge of host immunity to coronaviruses remains incomplete, partly owing to the lack of overt pathogenicity of endemic human coronaviruses (HCoVs), which typically cause common colds. However, the need for deeper understanding became pressing with the zoonotic introduction of three novel coronaviruses in the past two decades, causing severe acute respiratory syndromes in humans, and the unfolding pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This renewed interest not only triggered the discovery of two of the four HCoVs, but also uncovered substantial cellular and humoral cross-reactivity with shared or related coronaviral antigens. Here, we review the evidence for cross-reactive B cell memory elicited by HCoVs and its potential impact on the puzzlingly variable outcome of SARS-CoV-2 infection. The available data indicate targeting of highly conserved regions primarily in the S2 subunits of the spike glycoproteins of HCoVs and SARS-CoV-2 by cross-reactive B cells and antibodies. Rare monoclonal antibodies reactive with conserved S2 epitopes and with potent virus neutralising activity have been cloned, underscoring the potential functional relevance of cross-reactivity. We discuss B cell and antibody cross-reactivity in the broader context of heterologous humoral immunity to coronaviruses, as well as the limits of protective immune memory against homologous re-infection. Given the bidirectional nature of cross-reactivity, the unprecedented current vaccination campaign against SARS-CoV-2 is expected to impact HCoVs, as well as future zoonotic coronaviruses attempting to cross the species barrier. However, emerging SARS-CoV-2 variants with resistance to neutralisation by vaccine-induced antibodies highlight a need for targeting more constrained, less mutable parts of the spike. The delineation of such cross-reactive areas, which humoral immunity can be trained to attack, may offer the key to permanently shifting the balance of our interaction with current and future coronaviruses in our favour.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Antivirales , Humanos , Inmunidad HumoralRESUMEN
Aquaporins can facilitate the passive movement of water, small polar molecules, and some ions. Here, we examined solute selectivity for the barley Nodulin 26-like Intrinsic Protein (HvNIP2;1) embedded in liposomes and examined through stopped-flow light scattering spectrophotometry and Xenopus laevis oocyte swelling assays. We found that HvNIP2;1 permeates water, boric and germanic acids, sucrose, and lactose but not d-glucose or d-fructose. Other saccharides, such as neutral (d-mannose, d-galactose, d-xylose, d-mannoheptaose) and charged (N-acetyl d-glucosamine, d-glucosamine, d-glucuronic acid) aldoses, disaccharides (cellobiose, gentiobiose, trehalose), trisaccharide raffinose, and urea, glycerol, and acyclic polyols, were permeated to a much lower extent. We observed apparent permeation of hydrated KCl and MgSO4 ions, while CH3COONa and NaNO3 permeated at significantly lower rates. Our experiments with boric acid and sucrose revealed no apparent interaction between solutes when permeated together, and AgNO3 or H[AuCl4] blocked the permeation of all solutes. Docking of sucrose in HvNIP2;1 and spinach water-selective SoPIP2;1 aquaporins revealed the structural basis for sucrose permeation in HvNIP2;1 but not in SoPIP2;1, and defined key residues interacting with this permeant. In a biological context, sucrose transport could constitute a novel element of plant saccharide-transporting machinery. Phylogenomic analyses of 164 Viridiplantae and 2993 Archaean, bacterial, fungal, and Metazoan aquaporins rationalized solute poly-selectivity in NIP3 sub-clade entries and suggested that they diversified from other sub-clades to acquire a unique specificity of saccharide transporters. Solute specificity definition in NIP aquaporins could inspire developing plants for food production.
Asunto(s)
Acuaporinas , Hordeum , Metaloides , Agua , Animales , Acuaporinas/metabolismo , Glucosamina , Hordeum/metabolismo , Metaloides/metabolismo , Sacarosa , Agua/metabolismoRESUMEN
A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.
Asunto(s)
Arabidopsis , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Plantas Tolerantes a la Sal , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Secuencia de Aminoácidos , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Salino/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismoRESUMEN
Infections with persistent or latent viruses alter host immune homeostasis and have potential to affect the outcome of concomitant acute viral infections such as influenza A virus (IAV). Gammaherpesviruses establish life-long infections and require an on-going immune response to control reactivation. We have used a murine model of co-infection to investigate the response to IAV infection in mice latently infected with the gammaherpesvirus MHV-68. Over the course of infection, latently infected BALB/c mice showed less weight loss, clinical signs, pulmonary cellular infiltration and expression of inflammatory mediators than naïve mice infected with IAV and had significantly more activated CD8+ T cells in the lungs. Four days after IAV infection, virus spread in the lungs of latently infected animals was significantly lower than in naïve animals. By 7 days after IAV infection latently infected lungs express elevated levels of cytokines and chemokines indicating they are primed to respond to the secondary infection. Investigation at an early time point showed that 24 h after IAV infection co-infected animals had higher expression of IFNß and Ddx58 (RIG-I) and a range of ISGs than mice infected with IAV alone suggesting that the type I IFN response plays a role in the protective effect. This effect was mouse strain dependent and did not occur in 129/Sv/Ev mice. These results offer insight into innate immune mechanisms that could be utilized to protect against IAV infection and highlight on-going and persistent viral infections as a significant factor impacting the severity of acute respiratory infections.
Asunto(s)
Coinfección , Gammaherpesvirinae , Virus de la Influenza A , Gripe Humana , Interferón Tipo I , Animales , Ratones , Humanos , Linfocitos T CD8-positivos , Ratones Endogámicos BALB CRESUMEN
West Nile virus (WNV) is the leading cause of mosquito-borne illness in the USA. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vector Culex tarsalis is also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells and C. tarsalis mosquitoes. The titres of both WNV strains - WN02-1956 and NY99 - were suppressed by EILV in C6/36 cells as early as 48-72 h post-superinfection at both m.o.i. values tested in our study. The titres of WN02-1956 at both m.o.i. values remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titres. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. In C. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes, EILV enhanced NY99 infection titres at 3 days post-superinfection, but this effect disappeared at 7 days post-superinfection. In contrast, WN02-1956 infection titres were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, in C. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains.
Asunto(s)
Culex , Mosquitos Vectores , Sobreinfección , Virus del Nilo Occidental , Animales , Culex/virología , Virus del Nilo Occidental/fisiología , Mosquitos Vectores/virología , Sobreinfección/virología , Línea Celular , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/virología , Replicación ViralRESUMEN
Tissue-resident memory CD4 T (TRM ) cells induced by infection with Bordetella pertussis persist in respiratory tissues and confer long-term protective immunity against reinfection. However, it is not clear how they are maintained in respiratory tissues. Here, we demonstrate that B. pertussis-specific CD4 TRM cells produce IL-17A in response to in vitro stimulation with LPS or heat-killed Klebsiella pneumoniae (HKKP) in the presence of dendritic cells. Furthermore, IL-17A-secreting CD4 TRM cells expand in the lung and nasal tissue of B. pertussis convalescent mice following in vivo administration of LPS or HKKP. Bystander activation of CD4 TRM cells was suppressed by anti-IL-12p40 but not by anti-MHCII antibodies. Furthermore, purified respiratory tissue-resident, but not circulating, CD4 T cells from convalescent mice produced IL-17A following direct stimulation with IL-23 and IL-1ß or IL-18. Intranasal immunization of mice with a whole-cell pertussis vaccine induced respiratory CD4 TRM cells that were reactivated following stimulation with K. pneumoniae. Furthermore, the nasal pertussis vaccine conferred protective immunity against B. pertussis but also attenuated infection with K. pneumoniae. Our findings demonstrate that CD4 TRM cells induced by respiratory infection or vaccination can undergo bystander activation and confer heterologous immunity to an unrelated respiratory pathogen.
Asunto(s)
Bordetella pertussis , Tos Ferina , Animales , Ratones , Bordetella pertussis/fisiología , Tos Ferina/prevención & control , Linfocitos T CD4-Positivos , Interleucina-17 , Klebsiella pneumoniae , Inmunidad Heteróloga , Lipopolisacáridos , Memoria Inmunológica , Vacuna contra la Tos FerinaRESUMEN
Reexposure to a pathogen triggers the activation of memory T cells that have already encountered a similar microbe. These long-lived CD4 T cells either circulate through the blood and tissues or reside within organs and are referred to as tissue-resident T cells (CD4 TRM ). In the current issue of the European Journal of Immunology [Eur. J. Immunol. 2023. 53: 2250247] issue, Curham et al. found that tissue-resident memory CD4 T cells in the lung and nasal tissues can respond to noncognate immune challenges. CD4 TRM cells, which were formed in response to Bordetella pertussis, proliferated and produced IL-17A in response to a secondary challenge with heat-killed Klebsiella pneumonia or lipopolysaccharide (LPS). This bystander response depends on the presence of dendritic cells that provide inflammatory cytokines. Furthermore, post K. pneumonia, intranasal immunization with whole cell pertussis vaccine reduced bacterial burden in the nasal tissue in a CD4 T-cell-dependent manner. The study indicates that the noncognate activation of TRM may serve as an innate-like immune response that rapidly develops before establishing a new pathogen-specific adaptive immune response.
Asunto(s)
Linfocitos T CD4-Positivos , Células T de Memoria , Humanos , Amigos , Bordetella pertussis , Vacuna contra la Tos Ferina , Memoria InmunológicaRESUMEN
The transfer of nitrogen fixation (nif) genes from diazotrophs to non-diazotrophic hosts is of increasing interest for engineering biological nitrogen fixation. A recombinant Escherichia coli strain expressing Azotobacter vinelandii 18 nif genes (nifHDKBUSVQENXYWZMF, nifiscA, and nafU) were previously constructed and showed nitrogenase activity. In the present study, we constructed several E. coli strain derivatives in which all or some of the 18 nif genes were additionally integrated into the fliK locus of the chromosome in various combinations. E. coli derivatives with the chromosomal integration of nifiscA, nifU, and nifS, which are involved in the biosynthesis of the [4Fe-4S] cluster of dinitrogenase reductase, exhibited enhanced nitrogenase activity. We also revealed that overexpression of E. coli fldA and ydbK, which encode flavodoxin and flavodoxin-reducing enzyme, respectively, enhanced nitrogenase activity, likely by facilitating electron transfer to dinitrogenase reductase. The additional expression of nifM, putatively involved in maturation of dinitrogenase reductase, further enhanced nitrogenase activity and the amount of soluble NifH. By combining these factors, we successfully improved nitrogenase activity 10-fold.
Asunto(s)
Azotobacter vinelandii , Escherichia coli , Fijación del Nitrógeno , Nitrogenasa , Azotobacter vinelandii/genética , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nitrogenasa/metabolismo , Nitrogenasa/genética , Fijación del Nitrógeno/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismoRESUMEN
Bacillus subtilis is a Gram-positive bacterium that is frequently used in the bioindustry for the production of various proteins, because of its superior protein secretion capacities. To determine optimal conditions for protein secretion by B. subtilis, a quick and sensitive method for measuring protein secretion is crucial. A fast and universal assay is most useful for detecting diverse proteins in a high-throughput manner. In this study, we introduce a split-luciferase-based method for measuring protein secretion by B. subtilis. The NanoBiT system was used to monitor secretion of four different proteins: xylanase A, amylase M, protein glutaminase A, and GFP nanobody. Our findings underscore the split-luciferase system as a quick, sensitive, and user-friendly method.
Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Luciferasas/metabolismo , Luciferasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Transporte de Proteínas , Amilasas/metabolismo , Glutaminasa/metabolismoRESUMEN
Streptococcus thermophilus holds promise as a chassis for producing and secreting heterologous proteins. Used for thousands of years to ferment milk, this species has generally recognized as safe (GRAS) status in the USA and qualified presumption of safety (QPS) status in Europe. In addition, it can be easily genetically modified thanks to its natural competence, and it secretes very few endogenous proteins, which means less downstream processing is needed to purify target proteins, reducing costs. Extracellular degradation of heterologous proteins can be eliminated by introducing mutations that inactivate the genes encoding the bacterium's three major surface proteases. Here, we constructed an inducible expression system that utilizes a peptide pheromone (SHP1358) and a transcriptional regulator (Rgg1358) involved in quorum-sensing regulation. We explored the functionality of a complete version of the system, in which the inducer is produced by the bacterium itself, by synthesizing a luciferase reporter protein. This complete version was assessed with bacteria grown in a chemically defined medium but also in vivo, in the faeces of germ-free mice. We also tested an incomplete version, in which the inducer had to be added to the culture medium, by synthesizing luciferase and a secreted form of elafin, a human protein with therapeutic properties. Our results show that, in our system, protein production can be modulated by employing different concentrations of the SHP1358 inducer or other SHPs with closed amino acid sequences. We also constructed a genetic background in which all system leakiness was eliminated. In conclusion, with this new inducible expression system, we have added to the set of tools currently used to produce secreted proteins in S. thermophilus, whose myriad applications include the delivery of therapeutic peptides or proteins.
Asunto(s)
Proteínas Bacterianas , Percepción de Quorum , Proteínas Recombinantes , Streptococcus thermophilus , Percepción de Quorum/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ratones , Regulación Bacteriana de la Expresión Génica , Transactivadores/genética , Transactivadores/metabolismo , Feromonas/metabolismo , Feromonas/genéticaRESUMEN
BACKGROUND: The immunity induced by primary vaccination is effective against COVID-19; however, booster vaccines are needed to maintain vaccine-induced immunity and improve protection against emerging variants. Heterologous boosting is believed to result in more robust immune responses. This study investigated the safety and immunogenicity of the Razi Cov Pars vaccine (RCP) as a heterologous booster dose in people primed with Beijing Bio-Institute of Biological Products Coronavirus Vaccine (BBIBP-CorV). METHODS: We conducted a randomized, double-blind, active-controlled trial in adults aged 18 and over primarily vaccinated with BBIBP-CorV, an inactivated SARS-CoV-2 vaccine. Eligible participants were randomly assigned (1:1) to receive a booster dose of RCP or BBIBP-CorV vaccines. The primary outcome was neutralizing antibody activity measured by a conventional virus neutralization test (cVNT). The secondary efficacy outcomes included specific IgG antibodies against SARS-CoV-2 spike (S1 and receptor-binding domain, RBD) antigens and cell-mediated immunity. We measured humoral antibody responses at 2 weeks (in all participants) and 3 and 6 months (a subgroup of 101 participants) after the booster dose injection. The secondary safety outcomes were solicited and unsolicited immediate, local, and systemic adverse reactions. RESULTS: We recruited 483 eligible participants between December 7, 2021, and January 13, 2022. The mean age was 51.9 years, and 68.1% were men. Neutralizing antibody titers increased about 3 (geometric mean fold increase, GMFI = 2.77, 95% CI 2.26-3.39) and 21 (GMFI = 21.51, 95% CI 16.35-28.32) times compared to the baseline in the BBIBP-CorV and the RCP vaccine groups. Geometric mean ratios (GMR) and 95% CI for serum neutralizing antibody titers for RCP compared with BBIBP-CorV on days 14, 90, and 180 were 6.81 (5.32-8.72), 1.77 (1.15-2.72), and 2.37 (1.62-3.47) respectively. We observed a similar pattern for specific antibody responses against S1 and RBD. We detected a rise in gamma interferon (IFN-γ), tumor necrosis factor (TNF-α), and interleukin 2 (IL-2) following stimulation with S antigen, particularly in the RCP group, and the flow cytometry examination showed an increase in the percentage of CD3 + /CD8 + lymphocytes. RCP and BBIBP-CorV had similar safety profiles; we identified no vaccine-related or unrelated deaths. CONCLUSIONS: BBIBP-CorV and RCP vaccines as booster doses are safe and provide a strong immune response that is more robust when the RCP vaccine is used. Heterologous vaccines are preferred as booster doses. TRIAL REGISTRATION: This study was registered with the Iranian Registry of Clinical Trial at www.irct.ir , IRCT20201214049709N4. Registered 29 November 2021.
Asunto(s)
Vacunas contra la COVID-19 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Productos Inactivados , Adulto , Masculino , Humanos , Adolescente , Persona de Mediana Edad , Femenino , Vacunas contra la COVID-19/efectos adversos , Irán , Anticuerpos Neutralizantes , Anticuerpos AntiviralesRESUMEN
BACKGROUND: To combat coronavirus disease 2019 (COVID-19), booster vaccination strategies are important. However, the optimal administration of booster vaccine platforms remains unclear. Herein, we aimed to assess the benefits and harms of three or four heterologous versus homologous booster regimens. METHODS: From November 3 2022 to December 21, 2023, we searched five databases for randomised clinical trials (RCT). Reviewers screened, extracted data, and assessed bias risks independently with the Cochrane risk-of-bias 2 tool. We conducted meta-analyses and trial sequential analyses (TSA) on our primary (all-cause mortality; laboratory confirmed symptomatic and severe COVID-19; serious adverse events [SAE]) and secondary outcomes (quality of life [QoL]; adverse events [AE] considered non-serious). We assessed the evidence with the GRADE approach. Subgroup analyses were stratified for trials before and after 2023, three or four boosters, immunocompromised status, follow-up, risk of bias, heterologous booster vaccine platforms, and valency of booster. RESULTS: We included 29 RCTs with 43 comparisons (12,538 participants). Heterologous booster regimens may not reduce the relative risk (RR) of all-cause mortality (11 trials; RR 0.86; 95% CI 0.33 to 2.26; I2 0%; very low certainty evidence); laboratory-confirmed symptomatic COVID-19 (14 trials; RR 0.95; 95% CI 0.72 to 1.25; I2 0%; very low certainty); or severe COVID-19 (10 trials; RR 0.51; 95% CI 0.20 to 1.33; I2 0%; very low certainty). For safety outcomes, heterologous booster regimens may have no effect on SAE (27 trials; RR 1.15; 95% CI 0.68 to 1.95; I2 0%; very low certainty) but may raise AE considered non-serious (20 trials; RR 1.19; 95% CI 1.08 to 1.32; I2 64.4%; very low certainty). No data on QoL was available. Our TSAs showed that the cumulative Z curves did not reach futility for any outcome. CONCLUSIONS: With our current sample sizes, we were not able to infer differences of effects for any outcomes, but heterologous booster regimens seem to cause more non-serious AE. Furthermore, more robust data are instrumental to update this review.