Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37571670

RESUMEN

The response of Timepix3 detectors with 300 µm and 500 µm thick HR GaAs:Cr sensors was studied with particle beams at the Danish Centre for Particle Therapy in Aarhus, Denmark. Therefore, the detectors were irradiated at different angles with protons of 240 MeV. The precise per-pixel time and energy measurements were exploited in order to determine the charge carrier transport properties. Using the tracks left by the penetrating charged particles hitting the sensor at the grazing angle, we were able to determine the charge collection efficiency, the charge carrier drift times across the sensor thickness, the dependency of the electron, and for the first time, the hole drift velocity on the electric field. Moreover, extracting the dependence of the charge cloud size on the interaction depth for different bias voltages, it was possible to determine the dependence of the diffusion coefficient on the applied bias voltage. A good agreement was found with the previously reported values for n-type GaAs. The measurements were conducted for different detector assemblies to estimate the systematic differences between them, and to generalize the results. The experimental findings were implemented into the Allpix Squared simulation framework and validated by a comparison of the measurement and simulation for the 241Am γ-ray source.

2.
Sensors (Basel) ; 22(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36236613

RESUMEN

This manuscript attempts to present a proof of concept from a physics perspective of a hybrid detective system based on the utilization of contrast agents with the purpose of indicating breast tissue abnormalities. In the present concept, the photon-counting module of the detector is set up to the K-characteristic radiation emitted by the contrast agent. Τwo X-ray spectra were used: 40 kV- W/Al (1.6 mm) and 50 kV- W/Al (1.6 mm) with additional filtration of 0.3 mm Gd. Iodine (I) contrast agent was studied as a ''fingerprint'' for tissue abnormality indication. A computational Monte Carlo model, based on previously published validated tabulated data and tissue experimental measurements, was developed with the purpose of showing that the present concept has practical potential; however, with a weakness of not being accompanied by experimental validation. The study considered two types of internal tissue layers (fibrous/tumor with thickness values of 0.2-2.5 mm) within an external layer of fat tissue (4 and 8 cm). Quantitative (number of encountered K-photons) and qualitative (tumor-fibrous ratio) advantages of using X-ray spectra of a higher tube voltage (50 kV) and of counting the Κα photons were found. In addition, the quantitative and qualitative benefits were correspondingly more dominant at high (2.5 mm) and low (0.2 mm) tissue thickness values. In conclusion, by utilizing suitable contrast agents as ''fingerprint'' tissue abnormalities, the acquisition of combined morphological and functional imaging features (through the counting of K-X-rays) could enhance breast imaging in its present form and lead to advanced prognostic capabilities of breast abnormalities.


Asunto(s)
Medios de Contraste , Yodo , Método de Montecarlo , Fantasmas de Imagen , Fotones , Física
3.
J Synchrotron Radiat ; 26(Pt 4): 1226-1237, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274448

RESUMEN

Recent advances in segmented low-gain avalanche detectors (LGADs) make them promising for the position-sensitive detection of low-energy X-ray photons thanks to their internal gain. LGAD microstrip sensors fabricated by Fondazione Bruno Kessler have been investigated using X-rays with both charge-integrating and single-photon-counting readout chips developed at the Paul Scherrer Institut. In this work it is shown that the charge multiplication occurring in the sensor allows the detection of X-rays with improved signal-to-noise ratio in comparison with standard silicon sensors. The application in the tender X-ray energy range is demonstrated by the detection of the sulfur Kα and Kß lines (2.3 and 2.46 keV) in an energy-dispersive fluorescence spectrometer at the Swiss Light Source. Although further improvements in the segmentation and in the quantum efficiency at low energy are still necessary, this work paves the way for the development of single-photon-counting detectors in the soft X-ray energy range.

4.
J Synchrotron Radiat ; 23(Pt 6): 1462-1473, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27787252

RESUMEN

MÖNCH is a 25 µm-pitch charge-integrating detector aimed at exploring the limits of current hybrid silicon detector technology. The small pixel size makes it ideal for high-resolution imaging. With an electronic noise of about 110 eV r.m.s., it opens new perspectives for many synchrotron applications where currently the detector is the limiting factor, e.g. inelastic X-ray scattering, Laue diffraction and soft X-ray or high-resolution color imaging. Due to the small pixel pitch, the charge cloud generated by absorbed X-rays is shared between neighboring pixels for most of the photons. Therefore, at low photon fluxes, interpolation algorithms can be applied to determine the absorption position of each photon with a resolution of the order of 1 µm. In this work, the characterization results of one of the MÖNCH prototypes are presented under low-flux conditions. A custom interpolation algorithm is described and applied to the data to obtain high-resolution images. Images obtained in grating interferometry experiments without the use of the absorption grating G2 are shown and discussed. Perspectives for the future developments of the MÖNCH detector are also presented.

5.
J Synchrotron Radiat ; 23(2): 385-94, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26917124

RESUMEN

JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a `software mask' or a `cluster finding' algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy-dispersive detection system.

6.
J Instrum ; 112016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27226807

RESUMEN

We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.

7.
Oncotarget ; 7(35): 56676-56689, 2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-27494855

RESUMEN

The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break (DSB) formation and repair kinetic. The size and the number of residual nuclear γ-H2AX foci increased as a function of linear energy transfer (LET) and RBE, reminiscent of enhanced DNA-damage complexity and accumulation of non-repairable DSB. These data confirm the high relevance of complex DSB formation as a central determinant of cell fate and reliable biological surrogates for cell survival/ RBE. The multi-scale simulation, physical and radiobiological characterization of novel clinical quality beams presented here constitutes a first step towards development of high precision biologically individualized radiotherapy.


Asunto(s)
Carbono/uso terapéutico , Radioterapia de Iones Pesados/métodos , Helio/uso terapéutico , Neoplasias/radioterapia , Oxígeno/uso terapéutico , Terapia de Protones/métodos , Células A549 , Linaje de la Célula , Supervivencia Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Histonas/metabolismo , Humanos , Transferencia Lineal de Energía , Método de Montecarlo , Radiometría , Efectividad Biológica Relativa , Reproducibilidad de los Resultados , Programas Informáticos
8.
IUCrJ ; 2(Pt 3): 371-83, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25995846

RESUMEN

Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA