Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 159, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724926

RESUMEN

The Hyphomicrobiales bacterial order (previously Rhizobiales) exhibits a wide range of lifestyle characteristics, including free-living, plant-association, nitrogen-fixing, and association with animals (Bartonella and Brucella). This study explores the diversity and evolutionary strategies of bacteriophages within the Hyphomicrobiales order, comparing animal-associated (AAB) with non-animal-associated bacteria (NAAB). We curated 560 high-quality complete genomes of 58 genera from this order and used the PHASTER server for prophage annotation and classification. For 19 genera with representative genomes, we curated 96 genomes and used the Defense-Finder server to summarize the type of anti-phage systems (APS) found in this order. We analyzed the genetic repertoire and length distributions of prophages, estimating evolutionary rates and comparing intact, questionable, and incomplete prophages in both groups. Analyses of best-fit parameters and bootstrap sensitivity were used to understand the evolutionary processes driving prophage gene content. A total of 1860 prophages distributed in Hyphomicrobiales were found, 695 in AAB and 1165 in the NAAB genera. The results revealed a similar number of prophages per genome in AAB and NAAB and a similar length distribution, suggesting shared mechanisms of genetic acquisition of prophage genes. Changes in the frequency of specific gene classes were observed between incomplete and intact prophages, indicating preferential loss or enrichment in both groups. The analysis of best-fit parameters and bootstrap sensitivity tests indicated a higher selection coefficient, induction rate, and turnover in NAAB genomes. We found 68 types of APS in Hyphomicrobiales; restriction modification (RM) and abortive infection (Abi) were the most frequent APS found for all Hyphomicrobiales, and within the AAB group. This classification of APS showed that NAAB genomes have a greater diversity of defense systems compared to AAB, which could be related to the higher rates of prophage induction and turnover in the latter group. Our study provides insights into the distributions of both prophages and APS in Hyphomicrobiales genomes, demonstrating that NAAB carry more defense systems against phages, while AAB show increased prophage stability and an increased number of incomplete prophages. These results suggest a greater role for domesticated prophages within animal-associated bacteria in Hyphomicrobiales.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Profagos , Profagos/genética , Animales , Genoma Bacteriano/genética , Filogenia , Genoma Viral/genética , Bacterias/virología , Bacterias/genética , Bacterias/clasificación , Variación Genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38619983

RESUMEN

The alphaproteobacterial order Hyphomicrobiales consists of 38 families comprising at least 152 validly published genera as of January 2024. The order Hyphomicrobiales was first described in 1957 and underwent important revisions in 2020. However, we show that several inconsistencies in the taxonomy of this order remain and we argue that there is a need for a consistent framework for defining families within the order. We propose a common genome-based framework for defining families within the order Hyphomicrobiales, suggesting that families represent monophyletic groups in core-genome phylogenies that share pairwise average amino acid identity values above ~75 % when calculated from a core set of 59 proteins. Applying this framework, we propose the formation of four new families and to reassign the genera Salaquimonas, Rhodoblastus, and Rhodoligotrophos into Salaquimonadaceae fam. nov., Rhodoblastaceae fam. nov., and Rhodoligotrophaceae fam. nov., respectively, and the genera Albibacter, Chenggangzhangella, Hansschlegelia, and Methylopila into Methylopilaceae fam. nov. We further propose to unify the families Bartonellaceae, Brucellaceae, Phyllobacteriaceae, and Notoacmeibacteraceae as Bartonellaceae; the families Segnochrobactraceae and Pseudoxanthobacteraceae as Segnochrobactraceae; the families Lichenihabitantaceae and Lichenibacteriaceae as Lichenihabitantaceae; and the families Breoghaniaceae and Stappiaceae as Stappiaceae. Lastly, we propose to reassign several genera to existing families. Specifically, we propose to reassign the genus Pseudohoeflea to the family Rhizobiaceae; the genera Oricola, Roseitalea, and Oceaniradius to the family Ahrensiaceae; the genus Limoniibacter to the emended family Bartonellaceae; the genus Faunimonas to the family Afifellaceae; and the genus Pseudochelatococcus to the family Chelatococcaceae. Our data also support the recent proposal to reassign the genus Prosthecomicrobium to the family Kaistiaceae.


Asunto(s)
Alphaproteobacteria , Beijerinckiaceae , Humanos , Filogenia , Análisis de Secuencia de ADN , Ácidos Grasos/química , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Beijerinckiaceae/genética
3.
Antonie Van Leeuwenhoek ; 117(1): 67, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607451

RESUMEN

A bacterial strain PJ23T was isolated from the rhizosphere soil of Elymus dahuricus Turcz. sampled from a temperate semi-arid steppe in the northern of Inner Mongolia Autonomous Region, China. The strain is Gram-stain-negative, aerobic, light-pink, short rod-shaped, and non-spore-forming. Cell growth could be observed at 4-29℃ (optimal at 24℃), pH 6.0-8.6 (optimal at 8.0) and in the presence of 0-5.0% (w/v) NaCl (optimal at 2.5%). The major cellular fatty acids of strain PJ23T were Summed feature 8 (C18:1 ω6c and/or C18:1 ω7c) (39.42%) and C16:0 (9.60%). The polar lipids were phosphatidylcholine, two unidentified glycolipids, one unidentified aminophospholipid, and two other unidentified polar lipids. The major respiratory quinone was ubiquinone-10. Phylogeny analysis based on 16S rRNA gene sequences retrieved from the genomes showed that, the strain was closely related to the species Terrihabitans soli IZ6T and Flaviflagellibacter deserti SYSU D60017T, with the sequence similarities of 96.79% and 96.15%, respectively. The G + C content was 65.23 mol% calculated on draft genome sequencing. Between the strains PJ23T and Terrihabitans soli IZ6T, the average nucleotide identity (ANI), amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) was 73.39%,71.12% and 15.7%, these values were lower than the proposed and generally accepted species boundaries of ANI, AAI and dDDH, respectively. Based on phenotypic, chemotaxonomic, and phylogenetic characteristics, strain PJ23T represents a novel species of Terrihabitans, for which the name Terrihabitans rhizophilus sp. nov. is proposed. The type strain is PJ23T (= KCTC 92977 T = CGMCC 1.61577 T).


Asunto(s)
Alphaproteobacteria , Rizosfera , Filogenia , ARN Ribosómico 16S/genética , Aminoácidos , Ácidos Grasos , ADN
4.
Arch Microbiol ; 205(6): 232, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37166571

RESUMEN

A Gram-negative, strictly aerobic, chemoorganotrophic, bacteriochlorophyll a-containing, slow-growing bacterium was isolated from the lichen Flavocetraria nivalis and designated strain BP6-180914 T. Cells of this strain were large nonmotile rods, which reproduced by binary fission. Cells grew under oxic conditions and were able to utilize sugars and several polysaccharides, including starch and pectin. Strain BP6-180914 T was psychrotolerant and moderately acidophilic growing at 4-35 °C (optimum 20-28 °C) and between pH 4.0 and 7.5 (optimum 4.5-5.5). The major fatty acids were C18:1ω7c, C19:0 cyclo, C16:0 and C18:0. The polar lipids were diphosphatidylglycerols, phosphatidylglycerols, phosphatidylethanolamines, phosphatidylcholines, unidentified aminolipids, and a number of glycolipids, the major one being an unidentified glycolipid. The quinone was Q-10. The DNA G + C content was 63.65%. Comparative 16S rRNA gene sequence analysis revealed that strain BP6-180914 T was a member of the order Hyphomicrobiales and belonged to the family Lichenihabitantaceae defined by the lichen-dwelling facultative aerobic chemo-organotroph Lichenihabitans psoromatis (92.7% sequence similarity). The results of phylogenomic and genomic relatedness analyses showed that strain BP6-180914 T could clearly be distinguished from other species in the order Hyphomicrobiales with average nucleotide identity values of < 74.05% and genome-to-genome distance values of < 21.1%. The AAI value of 65.9% between strain BP6-180914 T and L. psoromatis allowed us to assign this strain to the novel genus of the family Lichenihabitantaceae. Therefore, it is proposed that strain BP6-180914 T represents a novel species in a new genus, Lichenifustis flavocetrariae gen. nov., sp. nov.; strain BP6-180914 T (= KCTC 92872 T = VKM B-3641 T = UQM 41506 T) is the type strain.


Asunto(s)
Alphaproteobacteria , Líquenes , Líquenes/microbiología , Ubiquinona/química , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , Alphaproteobacteria/genética , Glucolípidos/análisis , ADN Bacteriano/genética , Filogenia , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Fosfolípidos/análisis
5.
Artículo en Inglés | MEDLINE | ID: mdl-35138241

RESUMEN

Two Gram-reaction-negative strains, designated as B13T and MA2-2, were isolated from two different aromatic hydrocarbon-degrading enrichment cultures and characterized using a polyphasic approach to determine their taxonomic position. The two strains had identical 16S rRNA gene sequences and were most closely related to Pinisolibacter ravus E9T (97.36 %) and Siculibacillus lacustris SA-279T (96.33 %). Cells were facultatively aerobic rods and motile with a single polar flagellum. The strains were able to degrade ethylbenzene as sole source of carbon and energy. The assembled genome of strain B13T had a total length of 4.91 Mb and the DNA G+C content was 68.8 mol%. The predominant fatty acids (>5 % of the total) of strains B13T and MA2-2 were C18 : 1 ω7c/C18 : 1 ω6c, C16 : 1 ω7c/C16 : 1 ω6c and C16 : 0. The major ubiquinone of strain B13T was Q10, while the major polar lipids were phosphatidyl-N-methylethanolamine, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and a phospholipid. Based on phenotypic characteristics and phylogenetic data, it is concluded that strains B13T and MA2-2 are members of the genus Pinisolibacter and represent a novel species for which the name Pinisolibacter aquiterrae sp. nov. is proposed. The type strain of the species is strain B13T (=LMG 32346T=NCAIM B.02665T).


Asunto(s)
Alphaproteobacteria/clasificación , Benceno , Filogenia , Xilenos , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Benceno/metabolismo , ADN Bacteriano/genética , Ácidos Grasos/química , Hidrocarburos Aromáticos/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Xilenos/metabolismo
6.
ACS Synth Biol ; 13(5): 1537-1548, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38718218

RESUMEN

Members of the alphaproteobacterial order Rhodobacterales are metabolically diverse and highly abundant in the ocean. They are becoming increasingly interesting for marine biotechnology, due to their ecological adaptability, wealth of versatile low-copy-number plasmids, and their ability to produce secondary metabolites. However, molecular tools for engineering strains of this bacterial lineage are limited. Here, we expand the genetic toolbox by establishing standardized, modular repABC-based plasmid vectors of four well-characterized compatibility groups from the Roseobacter group applicable in the Rhodobacterales, and likely in further alphaproteobacterial orders (Hyphomicrobiales, Rhodospirillales, Caulobacterales). We confirmed replication of these newly constructed pABC vectors in two members of Rhodobacterales, namely, Dinoroseobacter shibae DFL 12 and Rhodobacter capsulatus B10S, as well as in two members of the alphaproteobacterial order Hyphomicrobiales (synonym: Rhizobiales; Ensifer meliloti 2011 and "Agrobacterium fabrum" C58). Maintenance of the pABC vectors in the biotechnologically valuable orders Rhodobacterales and Hyphomicrobiales facilitates the shuttling of genetic constructs between alphaproteobacterial genera and orders. Additionally, plasmid replication was verified in one member of Rhodospirillales (Rhodospirillum rubrum S1) as well as in one member of Caulobacterales (Caulobacter vibrioides CB15N). The modular construction of pABC vectors and the usage of four compatible replication systems, which allows their coexistence in a host cell, are advantageous features for future implementations of newly designed synthetic pathways. The vector applicability was demonstrated by functional complementation of a nitrogenase mutant phenotype by two complementary pABC-based plasmids in R. capsulatus.


Asunto(s)
Alphaproteobacteria , Vectores Genéticos , Plásmidos , Plásmidos/genética , Vectores Genéticos/genética , Alphaproteobacteria/genética , Especificidad del Huésped/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA