Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 50(3): 723-737.e7, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30850344

RESUMEN

Microglia from different nervous system regions are molecularly and anatomically distinct, but whether they also have different functions is unknown. We combined lineage tracing, single-cell transcriptomics, and electrophysiology of the mouse retina and showed that adult retinal microglia shared a common developmental lineage and were long-lived but resided in two distinct niches. Microglia in these niches differed in their interleukin-34 dependency and functional contribution to visual-information processing. During certain retinal-degeneration models, microglia from both pools relocated to the subretinal space, an inducible disease-associated niche that was poorly accessible to monocyte-derived cells. This microglial transition involved transcriptional reprogramming of microglia, characterized by reduced expression of homeostatic checkpoint genes and upregulation of injury-responsive genes. This transition was associated with protection of the retinal pigmented epithelium from damage caused by disease. Together, our data demonstrate that microglial function varies by retinal niche, thereby shedding light on the significance of microglia heterogeneity.


Asunto(s)
Homeostasis/fisiología , Microglía/patología , Degeneración Retiniana/patología , Animales , Modelos Animales de Enfermedad , Epitelio Corneal/patología , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Retina/patología , Regulación hacia Arriba/fisiología
2.
Semin Immunol ; 54: 101517, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34774392

RESUMEN

IL-34 is a cytokine that shares one of its receptors with CSF-1. It has long been thought that CSF-1 receptor (CSF-1R) receives signals only from CSF-1, but the identification of IL-34 reversed this stereotype. Regardless of low structural homology, IL-34 and CSF-1 emanate similar downstream signaling through binding to CSF-1R and provoke similar but different physiological events afterward. In addition to CSF-1R, protein-tyrosine phosphatase (PTP)-ζ and Syndecan-1 were also identified as IL-34 receptors and shown to be at play. Although IL-34 expression is limited to particular tissues in physiological conditions, previous studies have revealed that it is upregulated in several diseases. In cancer, IL-34 is produced by several types of tumor cells and contributes to therapy resistance and disease progression. A recent study has demonstrated that tumor cell-derived IL-34 abrogates immunotherapy efficacy through myeloid cell remodeling. On the other hand, IL-34 expression is downregulated in some brain and dermal disorders. Despite accumulating insights, our understanding of IL-34 may not be even close to its nature. This review aims to comprehensively describe the physiological and pathological roles of IL-34 based on its similarity and differences to CSF-1 and discuss the rationale for its disease-dependent expression pattern.


Asunto(s)
Citocinas , Receptor de Factor Estimulante de Colonias de Macrófagos , Encéfalo , Citocinas/metabolismo , Humanos , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Transducción de Señal
3.
Semin Immunol ; 54: 101511, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34743926

RESUMEN

Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.


Asunto(s)
Factores Estimulantes de Colonias , Factor Estimulante de Colonias de Granulocitos , Animales , Factores Estimulantes de Colonias/fisiología , Hematopoyesis , Humanos , Macrófagos , Ratones , Microglía
4.
Proc Natl Acad Sci U S A ; 119(14): e2111804119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35353625

RESUMEN

The receptor for colony stimulating factor 1 (CSF-1R) is important for the survival and function of myeloid cells that mediate pathology during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). CSF-1 and IL-34, the ligands of CSF-1R, have similar bioactivities but distinct tissue and context-dependent expression patterns, suggesting that they have different roles. This could be the case in EAE, given that CSF-1 expression is up-regulated in the CNS, while IL-34 remains constitutively expressed. We found that targeting CSF-1 with neutralizing antibody halted ongoing EAE, with efficacy superior to CSF-1R inhibitor BLZ945, whereas IL-34 neutralization had no effect, suggesting that pathogenic myeloid cells were maintained by CSF-1. Both anti­CSF-1 and BLZ945 treatment greatly reduced the number of monocyte-derived cells and microglia in the CNS. However, anti­CSF-1 selectively depleted inflammatory microglia and monocytes in inflamed CNS areas, whereas BLZ945 depleted virtually all myeloid cells, including quiescent microglia, throughout the CNS. Anti­CSF-1 treatment reduced the size of demyelinated lesions and microglial activation in the gray matter. Lastly, we found that bone marrow­derived immune cells were the major mediators of CSF-1R­dependent pathology, while microglia played a lesser role. Our findings suggest that targeting CSF-1 could be effective in ameliorating MS pathology, while preserving the homeostatic functions of myeloid cells, thereby minimizing risks associated with ablation of CSF-1R­dependent cells.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Factor Estimulante de Colonias de Macrófagos , Esclerosis Múltiple , Animales , Benzotiazoles/farmacología , Benzotiazoles/uso terapéutico , Sistema Nervioso Central/inmunología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Factor Estimulante de Colonias de Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inmunología , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Ácidos Picolínicos/farmacología , Ácidos Picolínicos/uso terapéutico , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores
5.
Scand J Gastroenterol ; 59(1): 78-84, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37698305

RESUMEN

AIMS: Interleukin-34 (IL-34) and macrophage colony-stimulating factor (CSF-1) have similar functions, such as promoting the formation of liver fibrosis. This study aimed to evaluate and compare the diagnostic value of serum IL-34 and CSF-1 for significant liver fibrosis in patients with chronic hepatitis B (CHB). METHODS: A total of 369 CHB patients, consisting of 208 HBeAg-negative patients and 161 HBeAg-positive patients, were enrolled in this study. Additionally, 72 healthy individuals served as healthy controls (HCs). Serum levels of IL-34 and CSF-1 were measured using the enzyme-linked immunosorbent assay method. Liver fibrosis grades were assessed using the modified Scheuer scoring system. RESULTS: Serum IL-34 and CSF-1 levels exhibited significant elevation in both HBeAg-negative and HBeAg-positive patients in comparison to HCs (p < 0.001). IL-34 emerged as an independent factor linked to significant liver fibrosis, whereas CSF-1 did not exhibit such an association. Receiver operating characteristic (ROC) analysis indicated higher areas under the curves (AUCs) for IL-34 (0.814, p < 0.001 and 0.673, p < 0.001) when diagnosing significant liver fibrosis in HBeAg-negative and HBeAg-positive patients, respectively, as opposed to CSF-1 (0.602, p < 0.001; 0.619, p = 0.385). Within the HBeAg-negative patient subgroup, the AUC for IL-34 surpassed that of FIB-4 (p = 0.009) and APRI (p = 0.045). CONCLUSION: Serum IL-34 has the potential to be a straightforward and practical biomarker that demonstrates superior performance to serum CSF-1 in the diagnosis of significant liver fibrosis in CHB patients, especially within the HBeAg-negative patients.


Asunto(s)
Hepatitis B Crónica , Interleucinas , Cirrosis Hepática , Humanos , Antígenos e de la Hepatitis B , Hepatitis B Crónica/complicaciones , Interleucinas/sangre , Cirrosis Hepática/diagnóstico , Factor Estimulante de Colonias de Macrófagos/sangre , Curva ROC
6.
BMC Cardiovasc Disord ; 24(1): 2, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166811

RESUMEN

BACKGROUND: Inflammatory markers may provide insights into the underlying mechanisms of slow coronary flow (SCF), including subclinical atherosclerosis and endothelial dysfunction. Interleukin-34 (IL-34), known for its role in immuno-inflammatory diseases, might hold significance in SCF. We aimed to explore the potential association between IL-34 and SCF in patients undergoing diagnostic elective coronary angiography. METHODS: This observational, cross-sectional study enrolled 256 participants: 124 with SCF and 132 with normal coronary flow (NCF). All participants had undergone outpatient coronary angiography for suspected coronary artery disease. SCF assessment employed the TIMI frame count (TFC) for quantifying coronary flow rate. RESULTS: SCF patients exhibited significantly elevated TFC in all three major coronary arteries compared to controls (p < 0.05). IL-34 displayed a noteworthy positive correlation with average TFC [for all participants: r = 0.514, p < 0.001; for SCF patients: r = 0.526, p < 0.001; for normal controls: r = -0.288, p > 0.05]. Similarly, high-sensitivity C-reactive protein (hsCRP) showed a significant and positive relationship with average TFC [for all participants: r = 0.504, p < 0.001; for SCF patients: r = 0.558, p < 0.001; for normal controls: r = -0.148, p > 0.05]. SCF patients presented coronary arteries of larger size compared to controls. CONCLUSION: Mean coronary diameter and IL-34 emerged as independent predictors of SCF. Additionally, hsCRP, mean coronary diameter, and IL-34 exhibited a positive correlation with mean TFC values. IL-34 appears to be a more effective indicator than hsCRP in SCF patients.


Asunto(s)
Proteína C-Reactiva , Circulación Coronaria , Humanos , Biomarcadores , Velocidad del Flujo Sanguíneo , Angiografía Coronaria , Circulación Coronaria/fisiología , Estudios Transversales , Interleucinas/sangre , Interleucinas/química
7.
Yi Chuan ; 46(6): 478-489, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38886151

RESUMEN

Metronidazole (MTZ), a commonly used anti-infective drug in clinical practice, has also been employed as a prodrug in cell-targeted ablation systems in scientific research, exhibiting significant application value. However, it has been demonstrated that MTZ can induce neurotoxic symptoms to some extent during its use, and there is currently a lack of effective means to circumvent its toxicity in both clinical and research settings, which limits its application. Therefore, exploring the specific mechanisms underlying MTZ-induced neurotoxic symptoms and elucidating countermeasures will enhance the practical value of MTZ. In this study, using a zebrafish spinal cord injury regeneration model, we confirmed that MTZ neurotoxicity leads to impaired axon regeneration in the central nervous system. By overexpressing il34 in the central nervous system of zebrafish, we eliminated the inhibitory effect of MTZ on axonal regeneration and demonstrated that the pro-regenerative effect against MTZ neurotoxicity is not caused by excessive macrophages/microglia chemoattracted by interleukin 34(Il34). Transcriptome sequencing analysis and GO enrichment analysis of differentially expressed genes between groups revealed that Il34 may counteract MTZ neurotoxicity and promote spinal cord injury repair through biological processes that enhance cellular adhesion and cell location. In summary, our work uncovers a possible cause of MTZ neurotoxicity and provides a new perspective for eliminating MTZ toxicity.


Asunto(s)
Metronidazol , Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Pez Cebra , Animales , Metronidazol/farmacología , Metronidazol/efectos adversos , Regeneración de la Medula Espinal/efectos de los fármacos , Traumatismos de la Médula Espinal/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo
8.
Clin Immunol ; 251: 109635, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37150238

RESUMEN

IL-34 shares a common receptor with M-CSF, while it can bind to other distinct receptors including protein-tyrosine phosphatase zeta (PTPζ), and syndecan1 (SDC-1). In physiological conditions, IL-34 has a critical role in the maintenance and development of Langerhans and microglial cells in part through PTPζ ligation. Conversely, in autoimmune diseases such as rheumatoid arthritis (RA), SDC-1-induced phosphorylation of M-CSFR was responsible for the pathological effect of IL-34 in patient cells and/or preclinical models. Intriguingly, enrichment of IL-34 is strongly linked to rheumatoid factor (RF), disease activity score (DAS)28, erythrocyte sedimentation rate (ESR), c-reactive protein (CRP), and radiographic progression. In parallel, IL-34-induced naïve cell reprogramming into glycolytic RA CD14+CD86+GLUT1+ macrophage was dysregulated via M-CSFR or SDC-1 antibody therapy. Moreover, the inflammatory and erosive imprints of IL-34 arthritic mice were mitigated by glucose uptake inhibition and SDC-1, or RAG deficiency through nullifying macrophage metabolic rewiring and their ability to advance Th1/Th17 cell polarization. Consistently, IL-34-/- and SDC-1-/- mice could effectively impair CIA joint inflammation, osteoclast formation, and neovascularization by restraining monocyte infiltration as well as suppressing the inflammatory macrophage and T effector cell reconfiguration via metabolic deactivation. In conclusion, targeting IL-34/SDC-1 signaling, or its interconnected metabolites can uniquely intercept the crosstalk between glycolytic RA myeloid and lymphoid cells and their ability to trigger arthritis.


Asunto(s)
Artritis Reumatoide , Animales , Ratones , Diferenciación Celular , Interleucinas/metabolismo , Macrófagos , Monocitos , Humanos
9.
Pharmacol Res ; 187: 106566, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423789

RESUMEN

Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, is a type I single transmembrane protein mainly expressed in myeloid cells, such as monocytes, macrophages, glial cells, and osteoclasts. The endogenous ligands, colony-stimulating factor-1 (CSF-1) and Interleukin-34 (IL-34), activate CSF-1R and downstream signaling pathways including PI3K-AKT, JAK-STATs, and MAPKs, and modulate the proliferation, differentiation, migration, and activation of target immune cells. Over the past decades, the promising therapeutic potential of CSF-1R signaling inhibition has been widely studied for decreasing immune suppression and escape in tumors, owing to depletion and reprogramming of tumor-associated macrophages. In addition, the excessive activation of CSF-1R in inflammatory diseases is consecutively uncovered in recent years, which may result in inflammation in bone, kidney, lung, liver and central nervous system. Agents against CSF-1R signaling have been increasingly investigated in preclinical or clinical studies for inflammatory diseases treatment. However, the pathological mechanism of CSF-1R in inflammation is indistinct and whether CSF-1R signaling can be identified as biomarkers remains controversial. With the background information aforementioned, this review focus on the dialectical roles of CSF-1R and its ligands in regulating innate immune cells and highlights various therapeutic implications of blocking CSF-1R signaling in inflammatory diseases.


Asunto(s)
Inflamación , Terapia Molecular Dirigida , Fosfatidilinositol 3-Quinasas , Receptor de Factor Estimulante de Colonias de Macrófagos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ligandos , Factor Estimulante de Colonias de Macrófagos/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/farmacología
10.
Immunol Invest ; 52(2): 224-240, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36562687

RESUMEN

Interleukin-34 (IL-34) is a cytokine that plays important roles at steady state and in diseases. The induced or inhibited expression of IL-34 by stimuli has been deeply investigated. However, the regulation of IL-34 basal expression is largely unknown. The aim of this study is to investigate whether IL-34 expression is regulated by a general transcription factor Specificity Protein 1 (Sp1) at transcription level. By using bioinformatic software, four putative Sp1-binding sites overlapping GC boxes were found in the core promoter region of IL-34. Alignment of the core promoter sequences of mammalian IL-34 showed GC box-C (-62/-57) and D (-11/-6) were conserved in some mammals. Luciferase assay results showed that only deletion of GC box-C (-62/-57) significantly reduced luciferase activities of IL-34 core promoter in SH-SY5Y cells. By using electrophoretic mobility shift assay (EMSA), it was found that Sp1 specifically interacted with GC box-C sequence CCCGCC (-62/-57) in the core promoter of IL-34. By using chromatin immunoprecipitation (ChIP), it was discovered that Sp1 bound to the core promoter of IL-34 in living cells. In addition, silencing of Sp1 expression by its specific siRNA reduced IL-34 mRNA and protein levels significantly in SH-SY5Y cells. Likewise, IL-34 expression was inhibited in a dose-dependent manner by a Sp1 inhibitor Plicamycin. Furthermore, silencing of Sp1 also downregulated mRNA and protein expression of IL-34 in GES-1 and 293T cell lines, suggesting that IL-34 transcription regulated by Sp1 was not cell-type specific. Taken together, these results indicate that Sp1 controls the basal level of IL-34 transcription.


Asunto(s)
Neuroblastoma , Animales , Humanos , Neuroblastoma/genética , Regiones Promotoras Genéticas , Sitios de Unión , Interleucinas/genética , Interleucinas/metabolismo , ARN Mensajero/genética , Luciferasas/genética , Luciferasas/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Regulación de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo
11.
Int J Neurosci ; 133(6): 660-671, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34347576

RESUMEN

Neurological infections are often devastating in their clinical presentation. Although significant advances have made in neuroimaging techniques and molecular tools for diagnosis, as well as in anti-infective therapy, these diseases always difficult to diagnose and treat. Neuroparasitic infections and virus infections lead to neurological infections. In the nervous system, various cytokines and chemokines act as neuroinflammatory agents, neuromodulators, regulate neurodevelopment, and synaptic transmission. Among the most important cytokines, interleukins (ILs) are a large group of immunomodulatory proteins that elicit a wide variety of responses in cells and tissues. These ILs are involved in pro and anti-inflammatory effects, systemic inflammation, immune system modulation and play crucial roles in fighting cancer, infectious disease, and neurological disorders. Interleukin-34 (IL-34) identified by screening a comprehensive human protein library containing ∼3400 secreted and extracellular domain proteins in a human monocyte viability assay. Recent evidence has disclosed the crucial roles of IL-34 in the proliferation and differentiation of mononuclear phagocyte lineage cells, osteoclastogenesis, and inflammation. Additionally, IL-34 plays an important role in development, homeostasis, and disease. Dysregulation in IL-34 function can lead to various inflammatory and infectious diseases (e.g. Inflammatory bowel disease, liver fibrosis, Systemic Lupus erythematosus, rheumatoid arthritis), neurological disorders (e.g. Alzheimer disease) and neurological infectious disease (e.g. West Nile virus disease). In this review, we explore the biological role of IL-34 in addition to various impairments caused by dysregulation in IL-34 and discuss their potential links that may lead to important therapeutic and/or preventive strategies for these disorders.


Asunto(s)
Enfermedades Transmisibles , Enfermedades del Sistema Nervioso , Humanos , Interleucinas/metabolismo , Citocinas , Inflamación
12.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175932

RESUMEN

Even though the regenerative potential of mesenchymal stem cells (MSCs) has been extensively studied, there is a debate regarding their minimal therapeutic properties. Bone morphogenetic proteins (BMP) are involved in cartilage metabolism, chondrogenesis, and bone healing. In this study, we aimed to analyze the role of genome-edited BMP-2 overexpressing amniotic mesenchymal stem cells (AMMs) in a mouse model of collagen-induced arthritis (CIA). The BMP-2 gene was synthesized and inserted into AMMs using transcription activator-like effector nucleases (TALENs), and BMP-2-overexpressing AMMs (AMM/B) were sorted and characterized using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The co-culture of AMM/B with tumor necrosis factor (TNF)-α-treated synovial fibroblasts significantly decreased the levels of interleukin (IL)-34. The therapeutic properties of AMM/B were evaluated using the CIA mouse model. The injection of AMM/B attenuated CIA progression and inhibited T helper (Th)17 cell activation in CIA mice. In addition, the AMM/B injection increased proteoglycan expression in cartilage and decreased the infiltration of inflammatory cells and factors, including IL-1ß, TNF-α, cyclooxygenase (COX)-2, and Nuclear factor kappa B (NF-kB) in the joint tissues. Therefore, editing the BMP-2 genome in MSCs might be an alternative strategy to enhance their therapeutic potential for treating cartilage degeneration in arthritic joints.


Asunto(s)
Artritis Experimental , Células Madre Mesenquimatosas , Animales , Humanos , Ratones , Artritis Experimental/terapia , Artritis Experimental/tratamiento farmacológico , Cartílago/metabolismo , Modelos Animales de Enfermedad , Factores Inmunológicos/uso terapéutico , Células Madre Mesenquimatosas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
13.
Glia ; 70(4): 728-747, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34961968

RESUMEN

Microglia are increasingly being recognized as druggable targets in neurodegenerative disorders, and good in vitro models are crucial to address cell biological questions. Major challenges are to recapitulate the complex microglial morphology and their in vivo transcriptome. We have therefore exposed primary microglia from adult rhesus macaques to a variety of different culture conditions including exposure to soluble factors as M-CSF, IL-34, and TGF-ß as well as serum replacement approaches, and compared their morphologies and transcriptomes to those of mature, homeostatic in vivo microglia. This enabled us to develop a new, partially serum-free, monoculture protocol, that yields high numbers of ramified cells. We also demonstrate that exposure of adult microglia to M-CSF or IL-34 induces similar transcriptomes, and that exposure to TGF-ß has much less pronounced effects than it does on rodent microglia. However, regardless of culture conditions, the transcriptomes of in vitro and in vivo microglia remained substantially different. Analysis of differentially expressed genes inspired us to perform 3D-spherical coculture experiments of microglia with oligodendrocytes and radial glia. In such spheres, microglia signature genes were strongly induced, even in the absence of neurons and astrocytes. These data reveal a novel role for oligodendrocyte and radial glia-derived cues in the maintenance of microglial identity, providing new anchor points to study microglia in health and disease.


Asunto(s)
Células Ependimogliales , Microglía , Animales , Señales (Psicología) , Perfilación de la Expresión Génica , Macaca mulatta , Oligodendroglía , Transcriptoma
14.
Eur J Immunol ; 51(10): 2501-2512, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34138470

RESUMEN

Intrauterine adhesions (IUA) are characterized by endometrial fibrosis and impose a great challenge for female reproduction. IL-34 is profoundly involved in various fibrotic diseases through regulating the survival, proliferation, and differentiation of monocytes/macrophages. However, it remains unclear how IL-34 regulates monocytes/macrophages in context of IUA. Here, we showed that the expression level of IL-34 and the amount of CX3CR1+ monocytes/macrophages were significantly increased in endometrial tissues of IUA patients. IL-34 promoted the differentiation of monocytes/macrophages, which express CX3CR1 via CSF-1R/P13K/Akt pathway in vitro. Moreover, IL-34-induced CX3CR1+ monocytes/macrophages promoted the differentiation of endometrial stromal cells into myofibroblasts. Of note, IL-34 caused endometrial fibrosis and increased the amount of CX3CR1+ monocytes/macrophages in endometrial tissues in vivo. IL-34 modulated endometrial fibrosis by regulating monocytes/macrophages since the elimination of endometrial monocytes/macrophages significantly suppressed the profibrotic function of IL-34. Finally, blocking of IL-34 in the LPS-IUA model resulted in the improvement of endometrial fibrosis and decreased number of CX3CR1+ monocytes/macrophages. Our studies uncover the novel mechanism of interaction between IL-34-induced CX3CR1+ monocytes/macrophages and endometrial stromal cells in endometrial fibrosis pathogenesis, and highlight IL-34 as a critical target for treating IUA.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Endometrio/patología , Interleucinas/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Adherencias Tisulares/etiología , Adherencias Tisulares/metabolismo , Animales , Biomarcadores , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Endometrio/metabolismo , Femenino , Fibrosis , Expresión Génica , Humanos , Interleucinas/genética , Macrófagos/inmunología , Ratones , Monocitos/inmunología , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Adherencias Tisulares/patología
15.
Lasers Med Sci ; 37(3): 1699-1707, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34546465

RESUMEN

The aim of the study was to explore the effect and mechanism of a low-level laser on hair follicle stem cells in full-thickness skin wound healing in mice. Full-thickness skin defects were generated by a 5-mm punch biopsy tool on the backs of depilated C57/BL6N mice, which were randomly divided thereafter into a low-dose laser treatment group (LLLT-Low), a high-dose laser treatment group (LLLT-High), and a control group (control). From the day of modeling to the day before the skin samples were taken, the wound area and wound edge of the mice in the LLLT-Low and LLLT-High groups were irradiated with a laser comb every 24 h, and the energy density was 1 J/cm2 and 10 J/cm2, respectively. The control group was irradiated with an ordinary fluorescent lamp. At 0, 3, 5, 10, and 14 days after modeling, pictures of each wound were taken, and the percent wound closure was analyzed. At 3, 5, 10, and 14 days after modeling, the samples were observed by hematoxylin and eosin (HE) and immunofluorescence (IF) staining. Whole transcriptome sequencing (RNA-Seq) was performed on the samples on day 10. Gene Ontology (GO) analysis was performed, and the results were validated by Western blot analysis and enzyme-linked immunosorbent assay (ELISA). The analysis of the percent of wound closure showed that healing was accelerated (significantly from 5 to 10 days) in the LLLT-Low group, but there was no clear change in the LLLT-High group. HE staining showed that the LLLT-Low group had an increasing number of hair follicles and a tendency to migrate to the center of the wound. There was no significant increase in the number of hair follicles and no obvious migration in the LLLT-High group. Immunofluorescence staining showed that the total number of CK15 + hair follicle stem cells in the LLLT-Low group was higher than that in the control group and LLLT-High group at all time points. The number and farthest migration distance of CK15 + hair follicle stem cells increased significantly with time, and after 5 days, they were significantly higher than those in the control group and LLLT-High group. RNA-Seq and Western blot analysis showed that the expression of related genes in hair follicle stem cells, including CK15, in the LLLT-Low group was upregulated. GO analysis and ELISA showed that the expression of many cytokines, represented by IL34, in the LLLT-Low group was upregulated. Low-level laser treatment can promote the proliferation, differentiation, and migration of CK15 + hair follicle stem cells by upregulating the cytokine IL34, thereby promoting skin wound healing in mice.


Asunto(s)
Folículo Piloso , Terapia por Luz de Baja Intensidad , Animales , Diferenciación Celular , Femenino , Ratones , Piel/patología , Células Madre , Cicatrización de Heridas/fisiología
16.
Osteoarthritis Cartilage ; 29(2): 257-268, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33301945

RESUMEN

OBJECTIVES: We hypothesize that chondrocytes from the deepest articular cartilage layer are pivotal in maintaining cartilage integrity and that the modification of their prehypertrophic phenotype to a hypertrophic phenotype will drive cartilage degradation in osteoarthritis. DESIGN: Murine immature articular chondrocytes (iMACs) were successively cultured into three different culture media to induce a progressive hypertrophic differentiation. Chondrocyte were phenotypically characterized by whole-genome microarray analysis. The expression of IL-34 and its receptors PTPRZ1 and CSF1R in chondrocytes and in human osteoarthritis tissues was assessed by RT-qPCR, ELISA and immunohistochemistry. The expression of bone remodeling and angiogenesis factors and the cell response to IL-1ß and IL-34 were investigated by RT-qPCR and ELISA. RESULTS: Whole-genome microarray analysis showed that iMACs, prehypertrophic and hypertrophic chondrocytes each displayed a specific phenotype. IL-1ß induced a stronger catabolic effect in prehypertrophic chondrocytes than in iMACs. Hypertrophic differentiation of prehypertrophic chondrocytes increased Bmp-2 (95%CI [0.78; 1.98]), Bmp-4 (95%CI [0.89; 1.59]), Cxcl12 (95%CI [2.19; 5.41]), CCL2 (95%CI [3.59; 11.86]), Mmp 3 (95%CI [10.29; 32.14]) and Vegf mRNA expression (95%CI [0.20; 1.74]). Microarray analysis identified IL-34, PTPRZ1 and CSFR1 as being strongly overexpressed in hypertrophic chondrocytes. IL-34 was released by human osteoarthritis cartilage; its receptors were expressed in human osteoarthritis tissues. IL-34 stimulated CCL2 and MMP13 in osteoblasts and hypertrophic chondrocytes but not in iMACs or prehypertrophic chondrocytes. CONCLUSION: Our results identify prehypertrophic chondrocytes as being potentially pivotal in the control of cartilage and subchondral bone integrity. Their differentiation into hypertrophic chondrocytes initiates a remodeling program in which IL-34 may be involved.


Asunto(s)
Remodelación Ósea/genética , Condrocitos/metabolismo , Interleucinas/genética , Osteoartritis/genética , Anciano , Anciano de 80 o más Años , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Cartílago Articular , Diferenciación Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Condrocitos/patología , Femenino , Humanos , Hipertrofia , Interleucinas/metabolismo , Masculino , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Ratones , Persona de Mediana Edad , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Fenotipo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Invest New Drugs ; 39(4): 1057-1071, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33624233

RESUMEN

Background Tumor-associated macrophages (TAMs) promote tumor growth, metastasis, and therapeutic resistance via colony-stimulating factor-1 (CSF-1), acting through CSF-1 receptor (CSF-1R) signaling. This phase 1 study determined the safety, tolerability, pharmacokinetics-pharmacodynamics, immunogenicity, and efficacy of the anti-CSF-1R antibody LY3022855 in solid tumors. Methods Patients with advanced solid tumors refractory to standard therapy were enrolled and treated in 2 dosing cohorts: weight-based (part A) and non-weight-based (part B). Part A patients were assigned to intravenous (IV) dose-escalation cohorts: 2.5 mg/kg once per week (QW), 0.3 mg/kg QW, 0.6 mg/kg QW, 1.25 mg/kg once every 2 weeks (Q2W) and 1.25 mg/kg QW doses of LY3022855. Non-weight-based doses in part B were 100 mg and 150 mg IV QW. Results Fifty-two patients (mean age 58.6 ± 10.4 years) were treated with ≥1 dose of LY3022855 (range: 4-6). Five dose-limiting toxicities (left ventricular dysfunction, anemia, pancreatitis, rhabdomyolysis, and acute kidney injury) occurred in 4 patients. The non-weight-based 100 mg QW dose was established as the RP2D. The most common treatment-emergent adverse events were increase in liver function variables, fatigue, nausea, vomiting, diarrhea, anorexia, pyrexia, increased lipase, amylase, and lactate dehydrogenase. Clearance decreased with increasing dose and weight-based dosing had minimal effect on pharmacokinetics. Serum CSF-1, and IL-34 levels increased at higher doses and more frequent dosing, whereas TAMs and CD14dimCD16bright levels decreased. Three patients achieved stable disease. No responses were seen. Conclusions LY3022855 was well tolerated and showed dose-dependent pharmacokinetics-pharmacodynamics and limited clinical activity in a heterogenous solid tumor population. ClinicalTrials.gov ID NCT01346358 (Registration Date: May 3, 2011).


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Piridinas/uso terapéutico , Administración Intravenosa , Adolescente , Adulto , Anciano , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Estudios de Cohortes , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Persona de Mediana Edad , Piridinas/efectos adversos , Piridinas/farmacocinética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Adulto Joven
18.
J Am Soc Nephrol ; 30(2): 244-259, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30622154

RESUMEN

BACKGROUND: In people with SLE and in the MRL-Faslpr lupus mouse model, macrophages and autoantibodies are central to lupus nephritis. IL-34 mediates macrophage survival and proliferation, is expressed by tubular epithelial cells (TECs), and binds to the cFMS receptor on macrophages and to a newly identified second receptor, PTPRZ. METHODS: To investigate whether IL-34-dependent intrarenal and systemic mechanisms promote lupus nephritis, we compared lupus nephritis and systemic illness in MRL-Faslpr mice expressing IL-34 and IL-34 knockout (KO) MRL-Faslpr mice. We also assessed expression of IL-34 and the cFMS and PTPRZ receptors in patients with lupus nephritis. RESULTS: Intrarenal IL-34 and its two receptors increase during lupus nephritis in MRL-Faslpr mice. In knockout mice lacking IL-34, nephritis and systemic illness are suppressed. IL-34 fosters intrarenal macrophage accumulation via monocyte proliferation in bone marrow (which increases circulating monocytes that are recruited by chemokines into the kidney) and via intrarenal macrophage proliferation. This accumulation leads to macrophage-mediated TEC apoptosis. We also found suppression of circulating autoantibodies and glomerular antibody deposits in the knockout mice. This is consistent with fewer activated and proliferating intrarenal and splenic B cells in mice lacking IL-34, and with our novel discovery that PTPRZ is expressed by macrophages, B and T cells. These findings appear translatable to human patients with lupus nephritis, whose expression of IL-34, cFMS, and PTPRZ is similar to that seen in the MRL-Faslpr lupus mouse model. Moreover, expression of IL-34 in TECs correlates with disease activity. CONCLUSIONS: IL-34 is a promising novel therapeutic target for patients with lupus nephritis.


Asunto(s)
Muerte Celular/genética , Supervivencia Celular/genética , Interleucinas/genética , Nefritis Lúpica/patología , Terapia Molecular Dirigida/métodos , Monocitos/citología , Animales , Muerte Celular/inmunología , Proliferación Celular/genética , Células Cultivadas , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica , Interleucinas/inmunología , Interleucinas/metabolismo , Túbulos Renales/patología , Túbulos Renales/fisiopatología , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Ratones Noqueados , Monocitos/fisiología , Medición de Riesgo , Especificidad de la Especie
19.
J Cell Physiol ; 234(12): 21810-21816, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31173370

RESUMEN

Interleukin-34 (IL-34) shares a common receptor with macrophage colony-stimulating factor (M-CSF), and can bind to CSF-1R, induces lymphocytes differentiation, proliferation, and regulates the synthesis of inflammatory components. Recent findings reported aberrant expression of IL-34 in several autoimmune disorders, such as lupus, arthritis, systemic sclerosis, inflammatory bowel diseases. The functional analysis further demonstrated that IL-34 may perform significantly in these inflammatory autoimmune disorders. IL-34 might consider as a biomarker for these diseases. I hope this collection of the findings in this review will improve knowledge of the role of IL-34, and targeting IL-34 may give the potential for these autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Interleucinas/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Animales , Biomarcadores/análisis , Humanos , Interleucinas/inmunología , Factor Estimulante de Colonias de Macrófagos/inmunología
20.
Immunol Invest ; 48(6): 597-607, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31012336

RESUMEN

Interleukin-34 (IL-34) is a recently discovered cytokine that promotes tissue macrophage maturation and differentiation. We previously found that 1α,25-Dihydroxyvitamin D3 up-regulated IL-34 expression in SH-SY5Y neural cells. However, whether microRNA regulates IL-34 expression is not completely clear. By using on-line TargetScan and MiRanda software, we found that there was only one conserved microRNA-31 (miR-31) binding site in the 3' untranslated region (3'UTR) of IL-34 mRNA. Intriguingly, using qPCR we demonstrated that miR-31 levels were negatively correlated to IL-34 mRNA levels in different cell lines. By examining the effect of miR-31 on IL-34 3' UTR reporter luciferase activity and on IL-34 mRNA and argonaute RISC catalytic component 2 (AGO2) binding, it was found that miR-31 bound directly to IL-34 3'UTR and regulated the post-transcriptional expression of IL-34 in MGC-803 cells. Moreover, a miR-31 mimic significantly reduced IL-34 expression levels while a miR-31 inhibitor up-regulated IL-34 expression in KYSE-45 and HT-29 cells. Taken together, these results show that miR-31 negatively regulates IL-34 expression by directly binding to the IL-34 3' UTR in vitro.


Asunto(s)
Interleucinas/metabolismo , Macrófagos/inmunología , MicroARNs/genética , 24,25-Dihidroxivitamina D 3/metabolismo , Regiones no Traducidas 3'/genética , Proteínas Argonautas/metabolismo , Diferenciación Celular , Células Hep G2 , Humanos , Interleucinas/genética , Unión Proteica , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA