Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126.479
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 207-233, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38211945

RESUMEN

The immune system and the kidneys are closely related. Immune components mediate acute kidney disease and are crucial to the progression of chronic kidney disease. Beyond its pathogenic functions, the immune system supports immunological homeostasis in healthy kidneys. The kidneys help maintain immune equilibrium by removing metabolic waste products and toxins, thereby limiting local and systemic inflammation. In this review, we describe the close relationship between the immune system and the kidneys. We discuss how the imbalance in the immune response can be deleterious to the kidneys and how immunomodulation can be important in preventing end-stage renal disease. In addition, recent tools such as in silico platforms and kidney organoids can help unveil the relationship between immune cells and kidney homeostasis.


Asunto(s)
Enfermedades Renales , Humanos , Animales , Enfermedades Renales/inmunología , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Riñón/inmunología , Riñón/metabolismo , Homeostasis , Inmunomodulación , Susceptibilidad a Enfermedades
2.
Annu Rev Immunol ; 41: 229-254, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36737597

RESUMEN

Type 2 immunity mediates protective responses to helminths and pathological responses to allergens, but it also has broad roles in the maintenance of tissue integrity, including wound repair. Type 2 cytokines are known to promote fibrosis, an overzealous repair response, but their contribution to healthy wound repair is less well understood. This review discusses the evidence that the canonical type 2 cytokines, IL-4 and IL-13, are integral to the tissue repair process through two main pathways. First, essential for the progression of effective tissue repair, IL-4 and IL-13 suppress the initial inflammatory response to injury. Second, these cytokines regulate how the extracellular matrix is modified, broken down, and rebuilt for effective repair. IL-4 and/or IL-13 amplifies multiple aspects of the tissue repair response, but many of these pathways are highly redundant and can be induced by other signals. Therefore, the exact contribution of IL-4Rα signaling remains difficult to unravel.


Asunto(s)
Interleucina-13 , Interleucina-4 , Animales , Humanos , Citocinas/metabolismo , Fibrosis , Helmintos
3.
Annu Rev Immunol ; 38: 99-121, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32340574

RESUMEN

B cells are traditionally known for their ability to produce antibodies in the context of adaptive immune responses. However, over the last decade B cells have been increasingly recognized as modulators of both adaptive and innate immune responses, as well as players in an important role in the pathogenesis of a variety of human diseases. Here, after briefly summarizing our current understanding of B cell biology, we present a systematic review of the literature from both animal models and human studies that highlight the important role that B lymphocytes play in cardiac and vascular disease. While many aspects of B cell biology in the vasculature and, to an even greater extent, in the heart remain unclear, B cells are emerging as key regulators of cardiovascular adaptation to injury.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Susceptibilidad a Enfermedades , Inmunidad Adaptativa , Animales , Enfermedades Cardiovasculares/diagnóstico , Citocinas/metabolismo , Humanos , Inmunidad Innata , Mediadores de Inflamación/metabolismo
4.
Cell ; 186(2): 382-397.e24, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36669473

RESUMEN

Blood and lymphatic vessels form a versatile transport network and provide inductive signals to regulate tissue-specific functions. Blood vessels in bone regulate osteogenesis and hematopoiesis, but current dogma suggests that bone lacks lymphatic vessels. Here, by combining high-resolution light-sheet imaging and cell-specific mouse genetics, we demonstrate presence of lymphatic vessels in mouse and human bones. We find that lymphatic vessels in bone expand during genotoxic stress. VEGF-C/VEGFR-3 signaling and genotoxic stress-induced IL6 drive lymphangiogenesis in bones. During lymphangiogenesis, secretion of CXCL12 from proliferating lymphatic endothelial cells is critical for hematopoietic and bone regeneration. Moreover, lymphangiocrine CXCL12 triggers expansion of mature Myh11+ CXCR4+ pericytes, which differentiate into bone cells and contribute to bone and hematopoietic regeneration. In aged animals, such expansion of lymphatic vessels and Myh11-positive cells in response to genotoxic stress is impaired. These data suggest lymphangiogenesis as a therapeutic avenue to stimulate hematopoietic and bone regeneration.


Asunto(s)
Regeneración Ósea , Vasos Linfáticos , Anciano , Animales , Humanos , Ratones , Células Endoteliales , Linfangiogénesis
5.
Cell ; 186(10): 2127-2143.e22, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37098344

RESUMEN

Pathogen infection and tissue injury are universal insults that disrupt homeostasis. Innate immunity senses microbial infections and induces cytokines/chemokines to activate resistance mechanisms. Here, we show that, in contrast to most pathogen-induced cytokines, interleukin-24 (IL-24) is predominately induced by barrier epithelial progenitors after tissue injury and is independent of microbiome or adaptive immunity. Moreover, Il24 ablation in mice impedes not only epidermal proliferation and re-epithelialization but also capillary and fibroblast regeneration within the dermal wound bed. Conversely, ectopic IL-24 induction in the homeostatic epidermis triggers global epithelial-mesenchymal tissue repair responses. Mechanistically, Il24 expression depends upon both epithelial IL24-receptor/STAT3 signaling and hypoxia-stabilized HIF1α, which converge following injury to trigger autocrine and paracrine signaling involving IL-24-mediated receptor signaling and metabolic regulation. Thus, parallel to innate immune sensing of pathogens to resolve infections, epithelial stem cells sense injury signals to orchestrate IL-24-mediated tissue repair.


Asunto(s)
Citocinas , Heridas y Lesiones , Animales , Ratones , Inmunidad Adaptativa , Quimiocinas , Epidermis , Inmunidad Innata , Heridas y Lesiones/inmunología
6.
Cell ; 186(11): 2475-2491.e22, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37178688

RESUMEN

Holistic understanding of physio-pathological processes requires noninvasive 3D imaging in deep tissue across multiple spatial and temporal scales to link diverse transient subcellular behaviors with long-term physiogenesis. Despite broad applications of two-photon microscopy (TPM), there remains an inevitable tradeoff among spatiotemporal resolution, imaging volumes, and durations due to the point-scanning scheme, accumulated phototoxicity, and optical aberrations. Here, we harnessed the concept of synthetic aperture radar in TPM to achieve aberration-corrected 3D imaging of subcellular dynamics at a millisecond scale for over 100,000 large volumes in deep tissue, with three orders of magnitude reduction in photobleaching. With its advantages, we identified direct intercellular communications through migrasome generation following traumatic brain injury, visualized the formation process of germinal center in the mouse lymph node, and characterized heterogeneous cellular states in the mouse visual cortex, opening up a horizon for intravital imaging to understand the organizations and functions of biological systems at a holistic level.


Asunto(s)
Imagenología Tridimensional , Animales , Ratones , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos
7.
Cell ; 185(26): 4887-4903.e17, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563662

RESUMEN

Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.


Asunto(s)
Macrófagos , Fagocitosis , Animales , Ratones , Macrófagos/metabolismo , Inflamación/metabolismo , Fagocitos/metabolismo , Proteínas Portadoras/metabolismo , Apoptosis , Proteínas Adaptadoras Transductoras de Señales/metabolismo
8.
Cell ; 184(10): 2715-2732.e23, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852912

RESUMEN

Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/prevención & control , Lesiones Traumáticas del Encéfalo/complicaciones , Neuroprotección , Proteínas tau/metabolismo , Acetilación , Enfermedad de Alzheimer/metabolismo , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Biomarcadores/sangre , Biomarcadores/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Línea Celular , Diflunisal/uso terapéutico , Femenino , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante) , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Salicilatos/uso terapéutico , Sirtuina 1/metabolismo , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Factores de Transcripción p300-CBP/metabolismo , Proteínas tau/sangre
9.
Cell ; 184(12): 3299-3317.e22, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34019794

RESUMEN

Organoids capable of forming tissue-like structures have transformed our ability to model human development and disease. With the notable exception of the human heart, lineage-specific self-organizing organoids have been reported for all major organs. Here, we established self-organizing cardioids from human pluripotent stem cells that intrinsically specify, pattern, and morph into chamber-like structures containing a cavity. Cardioid complexity can be controlled by signaling that instructs the separation of cardiomyocyte and endothelial layers and by directing epicardial spreading, inward migration, and differentiation. We find that cavity morphogenesis is governed by a mesodermal WNT-BMP signaling axis and requires its target HAND1, a transcription factor linked to developmental heart chamber defects. Upon cryoinjury, cardioids initiated a cell-type-dependent accumulation of extracellular matrix, an early hallmark of both regeneration and heart disease. Thus, human cardioids represent a powerful platform to mechanistically dissect self-organization, congenital heart defects and serve as a foundation for future translational research.


Asunto(s)
Corazón/embriología , Organogénesis , Organoides/embriología , Activinas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Calcio/metabolismo , Línea Celular , Linaje de la Célula , Pollos , Células Endoteliales/citología , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Fibroblastos/citología , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Masculino , Mesodermo/embriología , Modelos Biológicos , Miocardio/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Wnt/metabolismo
10.
Cell ; 181(4): 784-799.e19, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32413299

RESUMEN

Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.


Asunto(s)
Acuaporina 4/metabolismo , Edema/metabolismo , Edema/terapia , Animales , Acuaporina 4/fisiología , Astrocitos/metabolismo , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Calmodulina/metabolismo , Sistema Nervioso Central/metabolismo , Edema/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Trifluoperazina/farmacología
11.
Cell ; 183(4): 1070-1085.e12, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031744

RESUMEN

The SARS-CoV-2 pandemic has caused extreme human suffering and economic harm. We generated and characterized a new mouse-adapted SARS-CoV-2 virus that captures multiple aspects of severe COVID-19 disease in standard laboratory mice. This SARS-CoV-2 model exhibits the spectrum of morbidity and mortality of COVID-19 disease as well as aspects of host genetics, age, cellular tropisms, elevated Th1 cytokines, and loss of surfactant expression and pulmonary function linked to pathological features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This model can rapidly access existing mouse resources to elucidate the role of host genetics, underlying molecular mechanisms governing SARS-CoV-2 pathogenesis, and the protective or pathogenic immune responses related to disease severity. The model promises to provide a robust platform for studies of ALI and ARDS to evaluate vaccine and antiviral drug performance, including in the most vulnerable populations (i.e., the aged) using standard laboratory mice.


Asunto(s)
Lesión Pulmonar Aguda/patología , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/patología , Neumonía Viral/patología , Animales , Betacoronavirus/aislamiento & purificación , Betacoronavirus/fisiología , COVID-19 , Línea Celular , Quimiocinas/sangre , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/virología , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/patología , Pulmón/fisiología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pandemias , Neumonía Viral/mortalidad , Neumonía Viral/virología , Síndrome de Dificultad Respiratoria/patología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Tasa de Supervivencia
12.
Cell ; 181(4): 763-773.e12, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32330415

RESUMEN

Paralyzed muscles can be reanimated following spinal cord injury (SCI) using a brain-computer interface (BCI) to enhance motor function alone. Importantly, the sense of touch is a key component of motor function. Here, we demonstrate that a human participant with a clinically complete SCI can use a BCI to simultaneously reanimate both motor function and the sense of touch, leveraging residual touch signaling from his own hand. In the primary motor cortex (M1), residual subperceptual hand touch signals are simultaneously demultiplexed from ongoing efferent motor intention, enabling intracortically controlled closed-loop sensory feedback. Using the closed-loop demultiplexing BCI almost fully restored the ability to detect object touch and significantly improved several sensorimotor functions. Afferent grip-intensity levels are also decoded from M1, enabling grip reanimation regulated by touch signaling. These results demonstrate that subperceptual neural signals can be decoded from the cortex and transformed into conscious perception, significantly augmenting function.


Asunto(s)
Retroalimentación Sensorial/fisiología , Percepción del Tacto/fisiología , Tacto/fisiología , Adulto , Interfaces Cerebro-Computador/psicología , Mano/fisiopatología , Fuerza de la Mano/fisiología , Humanos , Masculino , Corteza Motora/fisiología , Movimiento/fisiología , Traumatismos de la Médula Espinal/fisiopatología
13.
Cell ; 177(2): 299-314.e16, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929899

RESUMEN

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Membranas Mitocondriales/fisiología , Animales , Autofagia/fisiología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Restricción Calórica , Células HEK293 , Humanos , Longevidad/fisiología , Masculino , Ratones , Ratones Noqueados , Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Permeabilidad , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Daño por Reperfusión/metabolismo , Transducción de Señal
14.
Cell ; 178(5): 1205-1221.e17, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442408

RESUMEN

A hallmark feature of inflammation is the orchestrated recruitment of neutrophils from the bloodstream into inflamed tissue. Although selectins and integrins mediate recruitment in many tissues, they have a minimal role in the lungs and liver. Exploiting an unbiased in vivo functional screen, we identified a lung and liver homing peptide that functionally abrogates neutrophil recruitment to these organs. Using biochemical, genetic, and confocal intravital imaging approaches, we identified dipeptidase-1 (DPEP1) as the target and established its role as a physical adhesion receptor for neutrophil sequestration independent of its enzymatic activity. Importantly, genetic ablation or functional peptide blocking of DPEP1 significantly reduced neutrophil recruitment to the lungs and liver and provided improved survival in models of endotoxemia. Our data establish DPEP1 as a major adhesion receptor on the lung and liver endothelium and identify a therapeutic target for neutrophil-driven inflammatory diseases of the lungs.


Asunto(s)
Dipeptidasas/metabolismo , Neutrófilos/fisiología , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Animales , Cilastatina/farmacología , Cilastatina/uso terapéutico , Dipeptidasas/antagonistas & inhibidores , Dipeptidasas/genética , Modelos Animales de Enfermedad , Endotoxemia/mortalidad , Endotoxemia/patología , Endotoxemia/prevención & control , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Lipopolisacáridos/farmacología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Infiltración Neutrófila/efectos de los fármacos , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología , Tasa de Supervivencia
15.
Immunity ; 57(2): 349-363.e9, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38309272

RESUMEN

Microglial reactivity to injury and disease is emerging as a heterogeneous, dynamic, and crucial determinant in neurological disorders. However, the plasticity and fate of disease-associated microglia (DAM) remain largely unknown. We established a lineage tracing system, leveraging the expression dynamics of secreted phosphoprotein 1(Spp1) to label and track DAM-like microglia during brain injury and recovery. Fate mapping of Spp1+ microglia during stroke in juvenile mice revealed an irreversible state of DAM-like microglia that were ultimately eliminated from the injured brain. By contrast, DAM-like microglia in the neonatal stroke models exhibited high plasticity, regaining a homeostatic signature and integrating into the microglial network after recovery. Furthermore, neonatal injury had a lasting impact on microglia, rendering them intrinsically sensitized to subsequent immune challenges. Therefore, our findings highlight the plasticity and innate immune memory of neonatal microglia, shedding light on the fate of DAM-like microglia in various neuropathological conditions.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular , Animales , Ratones , Microglía , Encéfalo/metabolismo , Osteopontina/metabolismo
16.
Cell ; 175(6): 1607-1619.e15, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30500539

RESUMEN

In the healthy adult liver, most hepatocytes proliferate minimally. However, upon physical or chemical injury to the liver, hepatocytes proliferate extensively in vivo under the direction of multiple extracellular cues, including Wnt and pro-inflammatory signals. Currently, liver organoids can be generated readily in vitro from bile-duct epithelial cells, but not hepatocytes. Here, we show that TNFα, an injury-induced inflammatory cytokine, promotes the expansion of hepatocytes in 3D culture and enables serial passaging and long-term culture for more than 6 months. Single-cell RNA sequencing reveals broad expression of hepatocyte markers. Strikingly, in vitro-expanded hepatocytes engrafted, and significantly repopulated, the injured livers of Fah-/- mice. We anticipate that tissue repair signals can be harnessed to promote the expansion of otherwise hard-to-culture cell-types, with broad implications.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Hepatocitos/metabolismo , Esferoides Celulares/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Línea Celular Transformada , Células Hep G2 , Hepatocitos/trasplante , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hígado/lesiones , Hígado/metabolismo , Ratones Noqueados , Esferoides Celulares/trasplante , Factores de Tiempo
17.
Cell ; 173(1): 153-165.e22, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29502968

RESUMEN

CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury.


Asunto(s)
Cicatriz/patología , Traumatismos de la Médula Espinal/patología , Animales , Axones/fisiología , Axones/efectos de la radiación , Modelos Animales de Enfermedad , Potenciales Evocados/efectos de la radiación , Matriz Extracelular/metabolismo , Fibrosis , Luz , Ratones , Ratones Transgénicos , Pericitos/citología , Pericitos/metabolismo , Estimulación Luminosa , Tractos Piramidales/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Recuperación de la Función , Regeneración , Corteza Sensoriomotora/fisiología , Traumatismos de la Médula Espinal/fisiopatología
18.
Cell ; 174(3): 521-535.e13, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033363

RESUMEN

Many human spinal cord injuries are anatomically incomplete but exhibit complete paralysis. It is unknown why spared axons fail to mediate functional recovery in these cases. To investigate this, we undertook a small-molecule screen in mice with staggered bilateral hemisections in which the lumbar spinal cord is deprived of all direct brain-derived innervation, but dormant relay circuits remain. We discovered that a KCC2 agonist restored stepping ability, which could be mimicked by selective expression of KCC2, or hyperpolarizing DREADDs, in the inhibitory interneurons between and around the staggered spinal lesions. Mechanistically, these treatments transformed this injury-induced dysfunctional spinal circuit to a functional state, facilitating the relay of brain-derived commands toward the lumbar spinal cord. Thus, our results identify spinal inhibitory interneurons as a roadblock limiting the integration of descending inputs into relay circuits after injury and suggest KCC2 agonists as promising treatments for promoting functional recovery after spinal cord injury.


Asunto(s)
Traumatismos de la Médula Espinal/tratamiento farmacológico , Simportadores/agonistas , Simportadores/metabolismo , Animales , Axones , Regulación de la Expresión Génica/genética , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/genética , Neuronas/metabolismo , Recuperación de la Función/genética , Recuperación de la Función/fisiología , Médula Espinal , Simportadores/uso terapéutico , Cotransportadores de K Cl
19.
Cell ; 171(3): 628-641.e26, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053969

RESUMEN

Ferroptosis is a form of programmed cell death that is pathogenic to several acute and chronic diseases and executed via oxygenation of polyunsaturated phosphatidylethanolamines (PE) by 15-lipoxygenases (15-LO) that normally use free polyunsaturated fatty acids as substrates. Mechanisms of the altered 15-LO substrate specificity are enigmatic. We sought a common ferroptosis regulator for 15LO. We discovered that PEBP1, a scaffold protein inhibitor of protein kinase cascades, complexes with two 15LO isoforms, 15LO1 and 15LO2, and changes their substrate competence to generate hydroperoxy-PE. Inadequate reduction of hydroperoxy-PE due to insufficiency or dysfunction of a selenoperoxidase, GPX4, leads to ferroptosis. We demonstrated the importance of PEBP1-dependent regulatory mechanisms of ferroptotic death in airway epithelial cells in asthma, kidney epithelial cells in renal failure, and cortical and hippocampal neurons in brain trauma. As master regulators of ferroptotic cell death with profound implications for human disease, PEBP1/15LO complexes represent a new target for drug discovery.


Asunto(s)
Lesión Renal Aguda/patología , Asma/patología , Lesiones Traumáticas del Encéfalo/patología , Muerte Celular , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Lesión Renal Aguda/metabolismo , Animales , Apoptosis , Asma/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Humanos , Isoenzimas/metabolismo , Lipooxigenasa/química , Lipooxigenasa/metabolismo , Ratones , Modelos Moleculares , Oxazolidinonas/farmacología , Oxidación-Reducción , Proteínas de Unión a Fosfatidiletanolamina/química
20.
Annu Rev Cell Dev Biol ; 34: 495-521, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30044649

RESUMEN

After an injury in the adult mammalian central nervous system (CNS), lesioned axons fail to regenerate. This failure to regenerate contrasts with axons' remarkable potential to grow during embryonic development and after an injury in the peripheral nervous system (PNS). Several intracellular mechanisms-including cytoskeletal dynamics, axonal transport and trafficking, signaling and transcription of regenerative programs, and epigenetic modifications-control axon regeneration. In this review, we describe how manipulation of intrinsic mechanisms elicits a regenerative response in different organisms and how strategies are implemented to form the basis of a future regenerative treatment after CNS injury.


Asunto(s)
Axones/metabolismo , Sistema Nervioso Central/crecimiento & desarrollo , Regeneración Nerviosa/genética , Sistema Nervioso Periférico/crecimiento & desarrollo , Animales , Transporte Axonal/genética , Axones/fisiología , Humanos , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA