Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Accid Anal Prev ; 180: 106911, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36470158

RESUMEN

A copula-based model is developed in this study to jointly model the severity of freeway primary crashes and secondary crashes. The copula-based model can concurrently account for the severity levels in the crash and the correlation among primary-secondary crash pairs' severity. The model comprehensively considers a series of explanation variables, including temporal characteristics, crash characteristics, roadway characteristics and real-traffic conditions, and is estimated using traffic crash data from 2016 through 2019 for Los Angeles County, California. The proposed copula model is then contrasted with the traditional binary probit model and the results show a remarkable advantage of the copula model, which is evidenced by better fitting performance. It is found that weather, whether towed away, unsafe speed, collision type, road condition, terrain, road weaving and truck involvement have significant impact on primary crash severity propensity and collision type, road width, road condition, traffic volume and vehicle speed have significant impact on secondary crash severity propensity. In light of the findings, a number of countermeasures are proposed to mitigate freeway crashes, including emergency services, vehicle and roadway engineering, traffic law enforcement and driver education.


Asunto(s)
Accidentes de Tránsito , Servicios Médicos de Urgencia , Humanos , Vehículos a Motor , Tiempo (Meteorología) , Aplicación de la Ley , Modelos Logísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA