RESUMEN
BACKGROUND: Whether there is hypothalamic degeneration in Parkinson's disease (PD) and its association with clinical symptoms and pathophysiological changes remains controversial. OBJECTIVES: We aimed to quantify microstructural changes in hypothalamus using a novel deep learning-based tool in patients with PD and those with probable rapid-eye-movement sleep behavior disorder (pRBD). We further assessed whether these microstructural changes associated with clinical symptoms and free thyroxine (FT4) levels. METHODS: This study included 186 PD, 67 pRBD, and 179 healthy controls. Multi-shell diffusion MRI were scanned and mean kurtosis (MK) in hypothalamic subunits were calculated. Participants were assessed using Unified Parkinson's Disease Rating Scale (UPDRS), RBD Questionnaire-Hong Kong (RBDQ-HK), Hamilton Depression Rating Scale (HAMD), and Activity of Daily Living (ADL) Scale. Additionally, a subgroup of PD (n = 31) underwent assessment of FT4. RESULTS: PD showed significant decreases of MK in anterior-superior (a-sHyp), anterior-inferior (a-iHyp), superior tubular (supTub), and inferior tubular hypothalamus when compared with healthy controls. Similarly, pRBD exhibited decreases of MK in a-iHyp and supTub. In PD group, MK in above four subunits were significantly correlated with UPDRS-I, HAMD, and ADL. Moreover, MK in a-iHyp and a-sHyp were significantly correlated with FT4 level. In pRBD group, correlations were observed between MK in a-iHyp and UPDRS-I. CONCLUSIONS: Our study reveals that microstructural changes in the hypothalamus are already significant at the early neurodegenerative stage. These changes are associated with emotional alterations, daily activity levels, and thyroid hormone levels.
Asunto(s)
Enfermedad de Parkinson , Pindolol/análogos & derivados , Trastorno de la Conducta del Sueño REM , Humanos , Enfermedad de Parkinson/complicaciones , Encuestas y CuestionariosRESUMEN
BACKGROUND: The increasing impacts of heat stress on wheat production due to climate change has entailed the development of heat-resilient crop varieties. To address this, two hundred recombinant inbred lines (RILs) derived from a cross between WH711/WH1021 were evaluated in a randomized block design (RBD) with two replications at CCSHAU, Hisar, during 2018-19 under heat stress and non-stress conditions. Heat stress was induced by altering the date of sowing so that the grain filling stage coincide with heat stress. RESULTS: Heat stress adversely affects RILs performance, as illustrated by alterations in phenotypic traits. Highest coefficients of variations were recorded for TAA, CTD 1, WUE, CTD 2, Cc and A under non-stress and heat stress conditions whereas gs, WUEi and GY under non-stress and SPAD 1, SPAD 2, GY and NDVI 2 under heat-stress conditions recorded moderate estimates of coefficient of variations. CTD 2, TAA, E, WUE and A displayed a significant occurrence of both high heritability and substantial genetic advance under non-stress. Similarly, CTD 2, NDVI 2, A, WUEi, SPAD 2, gs, E, Ci, MDA and WUE exhibited high heritability with high genetic advance under heat-stress conditions. CONCLUSIONS: Complementary and duplicate types of interactions with number of controlling genes were observed for different parameters depending on the traits and environments. RILs 41, 42, 59, 74, 75, 180 and 194 were categorized as heat tolerant RILs. Selection preferably for NDVI 1, RWC, TAA, A, E and WUEi to accumulate heat tolerance favorable alleles in the selected RILs is suggested for development of heat resilient genotypes for sustainable crop improvement. The results showed that traits such as such as NDVI, RWC, TAA, A, E, and WUEi, can be effective for developing heat-resilient wheat genotypes and ensuring sustainable crop improvement.
Asunto(s)
Respuesta al Choque Térmico , Triticum , Triticum/genética , Triticum/fisiología , Respuesta al Choque Térmico/genética , Fenotipo , FitomejoramientoRESUMEN
In this study, we explored the application of diffusion kurtosis imaging (DKI) technology in the brains of children with attention-deficit/hyperactivity disorder (ADHD). Seventy-two children with ADHD and 79 age- and sex-matched healthy controls were included in the study. All children were examined by means of 3D T1-weighted image, DKI, and conventional sequence scanning. The volume and DKI parameters of each brain region were obtained by software postprocessing (GE ADW 4.6 workstation) and compared between the two groups of children to determine the imaging characteristics of children with ADHD. The result showed the total brain volume was lower in children with ADHD than in healthy children (p < .05). The gray and white matter volumes in the frontal lobe, temporal lobe, hippocampus, caudate nucleus, putamen, globus pallidus, and other brain regions were lower in children with ADHD than in healthy children (p < .05). The axial kurtosis (Ka), mean kurtosis (MK), fractional anisotropy (FA), and radial kurtosis(Kr) values in the frontal lobe, temporal lobe, and caudate nucleus of children with ADHD were lower than those of healthy children, while the mean diffusivity(MD) and fractional anisotropy of kurtosis (FAK) values were higher than those of healthy children (p < .05). Additionally, the Ka, MK, FA, and Kr values in the frontal lobe, caudate nucleus, and temporal lobe could be used to distinguish children with ADHD (AUC > .05, p < .05). In conclusion, DKI showed abnormal gray matter and white matter development in some brain regions of children with ADHD.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Sustancia Blanca , Niño , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Corteza CerebralRESUMEN
PURPOSE: To demonstrate an analytic formula giving the time dependence of the diffusional kurtosis for the Kärger model (KM) with an arbitrary number of exchanging compartments and its application in estimating the mean KM water exchange rate. THEORY AND METHODS: The general formula for the kurtosis is derived from a power series solution for the multi-compartment KM. A lower bound on the exchange rate is established from the observation that the kurtosis is always a logarithmically convex function of time. Both the kurtosis time dependence and the lower bound are illustrated with numerical calculations. The lower bound is also applied to previously published data for the time dependence of the kurtosis in both brain and tumors. RESULTS: The kurtosis for the multi-compartment KM is given by a sum in which each term is associated with an eigenvector of the exchange rate matrix. The lower bound is determined from the most negative value for the logarithmic derivative of the kurtosis with respect to time. In the cerebral cortex, the lower bound is found to vary from 15 to 76 s-1 , depending on the experimental details, while for the tumors considered, it varies from 2 to 4 s-1 . CONCLUSION: The time dependence of the kurtosis for the multi-compartment KM has a simple analytic solution that allows a lower bound for the mean KM water exchange rate to be determined directly from experiment. This may be useful in tissues with complex microstructure that is difficult to model explicitly.
Asunto(s)
Neoplasias , Agua , Humanos , Agua/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Neoplasias/metabolismoRESUMEN
PURPOSE: The nonmonotonic dependence of diffusion kurtosis on diffusion time has been observed in biological tissues, yet its relation to membrane integrity and cellular geometry remains to be clarified. Here we establish and explain the characteristic asymmetric shape of the kurtosis peak. We also derive the relation between the peak time t peak $$ {t}_{\mathrm{peak}} $$ , when kurtosis reaches its maximum, and tissue parameters. METHODS: The peak shape and its position t peak $$ {t}_{\mathrm{peak}} $$ qualitatively follow from the adiabatic extension of the Kärger model onto the case of intra-cellular diffusivity time-dependence. This intuition is corroborated by the effective medium theory-based calculation, as well as by Monte Carlo simulations of diffusion and exchange in randomly and densely packed spheres for various values of permeability, cell fractions and sizes, and intrinsic diffusivity. RESULTS: We establish that t peak $$ {t}_{\mathrm{peak}} $$ is proportional to the geometric mean of two characteristic time scales: extra-cellular correlation time (determined by cell size) and intra-cellular residence time (determined by membrane permeability). When exchange is barrier-limited, the peak shape approaches a universal scaling form determined by the ratio t / t peak $$ t/{t}_{\mathrm{peak}} $$ . CONCLUSION: Numerical simulations and theory provide an interpretation of a specific feature of kurtosis time-dependence, offering a potential biomarker for in vivo evaluation of pathology by disentangling the functional (permeability) and structural (cell size) integrity in tissues. This is relevant as the time-dependent diffusion cumulants are sensitive to pathological changes in membrane integrity and cellular structure in diseases, such as ischemic stroke, tumors, and Alzheimer's disease.
RESUMEN
Toll-like receptor 2 (TLR2) belongs to the TLR protein family that plays an important role in the immune and inflammation response system. While TLR2 is predominantly expressed in immune cells, its expression has also been detected in the brain, specifically in microglia and astrocytes. Recent studies indicate that genomic deletion of TLR2 can result in impaired neurobehavioural function. It is currently not clear if the genomic deletion of TLR2 leads to any alterations in the microstructural features of the brain. In the current study, we noninvasively assess microstructural changes in the brain of TLR2-deficient (tlr2-/-) zebrafish using state-of-the art magnetic resonance imaging (MRI) methods at ultrahigh magnetic field strength (17.6 T). A significant increase in cortical thickness and an overall trend towards increased brain volumes were observed in young tlr2-/- zebrafish. An elevated T2 relaxation time and significantly reduced apparent diffusion coefficient (ADC) unveil brain-wide microstructural alterations, potentially indicative of cytotoxic oedema and astrogliosis in the tlr2-/- zebrafish. Multicomponent analysis of the ADC diffusivity signal by the phasor approach shows an increase in the slow ADC component associated with restricted diffusion. Diffusion tensor imaging and diffusion kurtosis imaging analysis revealed diminished diffusivity and enhanced kurtosis in various white matter tracks in tlr2-/- compared with control zebrafish, identifying the microstructural underpinnings associated with compromised white matter integrity and axonal degeneration. Taken together, our findings demonstrate that the genomic deletion of TLR2 results in severe alterations to the microstructural features of the zebrafish brain. This study also highlights the potential of ultrahigh field diffusion MRI techniques in discerning exceptionally fine microstructural details within the small zebrafish brain, offering potential for investigating microstructural changes in zebrafish models of various brain diseases.
Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Receptor Toll-Like 2 , Pez Cebra , Animales , Receptor Toll-Like 2/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo , Eliminación de Gen , GenomaRESUMEN
BACKGROUND: Although improvement of cognitive function after liver transplantation has been demonstrated in several neuropsychological studies, there is limited research on longitudinal changes in the cirrhotic patients' brain structure before and after transplantation. PURPOSE: To investigate longitudinal changes of brain microstructure in cirrhotic patients using diffusion kurtosis imaging (DKI). STUDY TYPE: Prospective. SUBJECTS: A total of 153 cirrhosis patients, comprising 60 hepatic encephalopathy (HE) patients (16 females/44 males) and 93 no-HE patients (35 females/58 males), along with 93 healthy controls (HCs) (53 females/40 males) were enrolled. Subsequently, 58 recipients completed 1-month postoperative follow-up, 29 patients completed 1-, 3-months, and 17 patients completed 1-, 3-, 6-month follow-up. SEQUENCE: Spin-echo single-shot echo-planar sequence using a 3.0 T scanner. ASSESSMENT: Diffusion kurtosis estimator software was used to estimate the DKI parameter maps by a MR imaging physicist (Y.-Y.C. with 12 years of experience). STATISTICAL TESTS: The diffusion metrics (eg, radial kurtosis [RK], mean kurtosis, fractional anisotropy, mean diffusivity) of the patients before transplantation were compared with those of the HCs using voxel-wise analysis of variance (ANOVA), along with t tests for post hoc analysis. Linear mixed-effects models were applied to the longitudinal data. We imposed a cluster level Family Wise Error (FWE) correction rate of PFWE = 0.05 with voxel-wise cutoff of P = 0.001 together with a cluster-size cutoff of N ≥ 56, and generated smoothness estimates from the preprocessed data using the mixed-model autocorrelation function. RESULTS: The RK metrics of the patients decreased significantly in the anterior cingulate cortex (HE/no-HE < HC, ANOVA-F = 21.91). After transplantation, the RK of the pallidum showed a continuous upward trend (time effect T = 11.26); whereas the RK of the right postcentral gyrus showed a continuous downward trend (time effect T = -9.56). In addition, the RK in superior longitudinal fasciculus showed new-onset decrease after transplantation. DATA CONCLUSION: Longitudinal changes in DKI metrics reveal the course of brain microstructural changes before and after transplantation in cirrhotic patients, potentially associated with cognitive alterations after surgery. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 4.
RESUMEN
BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder. Early detection is crucial for treatment and slowing disease progression. HYPOTHESIS: Simultaneous alterations in mean susceptibility (MS) from quantitative susceptibility mapping (QSM) and mean kurtosis (MK) from diffusion kurtosis imaging (DKI) can serve as reliable neuroimaging biomarkers for early-stage PD (ESPD) in the basal ganglia nuclei, including the substantia nigra (SN), putamen (PUT), globus pallidus (GP), and caudate nucleus (CN). STUDY TYPE: Systematic review and meta-analysis. POPULATION: One hundred eleven patients diagnosed with ESPD and 81 healthy controls (HCs) were included from four studies that utilized both QSM and DKI in both subject groups. FIELD STRENGTH/SEQUENCE: Three-dimensional multi-echo gradient echo sequence for QSM and spin echo planar imaging sequence for DKI at 3 Tesla. ASSESSMENT: A systematic review and meta-analysis using PRISMA guidelines searched PubMed, Web of Science, and Scopus. STATISTICAL TESTS: Random-effects model, standardized mean difference (SMD) to compare MS and MK between ESPD patients and HCs, I2 statistic for heterogeneity, Newcastle-Ottawa Scale (NOS) for risk of bias, and Egger's test for publication bias. A P-value <0.05 was considered significant. RESULTS: MS values were significantly higher in SN (SMD 0.72, 95% CI 0.31 to 1.12), PUT (SMD 0.68, 95% CI 0.29 to 1.07), and GP (SMD 0.53, 95% CI 0.19 to 0.87) in ESPD patients compared to HCs. CN did not show a significant difference in MS values (P = 0.15). MK values were significantly higher only in SN (SMD = 0.72, 95% CI 0.16 to 1.27). MK values were not significantly different in PUT (P = 1.00), GP (P = 0.97), and CN (P = 0.59). Studies had high quality (NOS 7-8) and no publication bias (P = 0.967). DATA CONCLUSION: Simultaneous use of MS and MK may be useful as an early neuroimaging biomarker for ESPD detection and its differentiation from HCs, with significant differences observed in the SN. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
RESUMEN
PURPOSE: This prospective study aimed to explore the microstructural alterations of the white matter in overactive bladder syndrome (OAB) using the Tract-based Spatial Statistics (TBSS) method of diffusion kurtosis imaging (DKI). METHODS: A total of 30 patients were enrolled and compared with 30 controls. White matter (WM) status was assessed using tract-based spatial statistics for DKI. The differences in DKI-derived parameters, including kurtosis fractional anisotropy (KFA), fractional anisotropy (FA), mean kurtosis (MK), mean diffusivity (MD), radial kurtosis (RK), axial kurtosis (AK), axial diffusivity (AD), and radial diffusivity (RD), were compared between the two groups using the TBSS method. The correlation between the altered DKI-derived parameters and the (OABSS) scores was analyzed. A receiver operating characteristic curve (ROC) was used to evaluate the diagnostic performance of different white matter parameters. RESULTS: As a result, compared with the HC group, the KFA, and FA values decreased significantly in the OAB group. Compared with the HC group, the MK and MD values increased significantly in the OAB group. The KFA values of the genu of corpus callosum (GCC) were significantly correlated with the OABSS scores (r = - 0.509; p = 0.004). The FA values of anterior corona radiata (ACR) were significantly correlated with OABSS scores (r = - 0.447; p = 0.013). The area under the ROC curve (AUC) for the genu of corpus callosum KFA values was higher than FA for the diagnosis of OAB patients. CONCLUSION: DKI is a promising approach to the investigation of the pathophysiology of OAB and a potential biomarker for clinical diagnosis of OAB.
Asunto(s)
Vejiga Urinaria Hiperactiva , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Estudios Prospectivos , Vejiga Urinaria Hiperactiva/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Imagen de Difusión por Resonancia Magnética/métodos , EncéfaloRESUMEN
OBJECTIVES: To evaluate the combined performance of orbital MRI and intracranial visual pathway diffusion kurtosis imaging (DKI) in diagnosing dysthyroid optic neuropathy (DON). METHODS: We retrospectively enrolled 61 thyroid-associated ophthalmopathy (TAO) patients, including 25 with DON (40 eyes) and 36 without DON (72 eyes). Orbital MRI-based apical muscle index (MI), diameter index (DI) of the optic nerve (ON), area index (AI) of the ON, apparent diffusion coefficient (ADC) and signal intensity ratio (SIR) of the ON, DKI-based kurtosis fractional anisotropy (KFA) and mean kurtosis (MK) of the optic tract (OT), optic radiation (OR), and Brodmann areas (BAs) 17, 18, and 19 were measured and compared between groups. The diagnostic performances of models were evaluated using receiver operating characteristic curve analyses and compared using the DeLong test. RESULTS: TAO patients with DON had significantly higher apical MI, apical AI, and SIR of the ON, but significantly lower ADC of the ON than those without DON (p < 0.05). Meanwhile, the DON group exhibited significantly lower KFA across the OT, OR, BA17, BA18, and BA19 and lower MK at the OT and OR than the non-DON group (p < 0.05). The model integrating orbital MRI and intracranial visual pathway DKI parameters performed the best in diagnosing DON (AUC = 0.926), with optimal diagnostic sensitivity (80%) and specificity (94.4%), followed by orbital MRI combination (AUC = 0.890), and then intracranial visual pathway DKI combination (AUC = 0.832). CONCLUSION: Orbital MRI and intracranial visual pathway DKI can both assist in diagnosing DON. Combining orbital and intracranial imaging parameters could further optimize diagnostic efficiency. CLINICAL RELEVANCE STATEMENT: The novel finding could bring novel insights into the precise diagnosis and treatment of dysthyroid optic neuropathy, accordingly, contributing to the improvement of the patients' prognosis and quality of life in the future. KEY POINTS: ⢠Orbital MRI and intracranial visual pathway diffusion kurtosis imaging can both assist in diagnosing dysthyroid optic neuropathy. ⢠Combining orbital MRI and intracranial visual pathway diffusion kurtosis imaging optimized the diagnostic efficiency of dysthyroid optic neuropathy.
Asunto(s)
Oftalmopatía de Graves , Enfermedades del Nervio Óptico , Vías Visuales , Humanos , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Oftalmopatía de Graves/diagnóstico por imagen , Enfermedades del Nervio Óptico/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen , Adulto , Imagen por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Sensibilidad y Especificidad , Nervio Óptico/diagnóstico por imagen , Anciano , Órbita/diagnóstico por imagenRESUMEN
BACKGROUND AND PURPOSE: Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system (CNS). However, there is increasing evidence of peripheral nerve involvement. This study aims to characterize the pattern of peripheral nerve changes in patients with newly diagnosed MS using quantitative magnetic resonance (MR) neurography. METHODS: In this prospective study, 25 patients first diagnosed with MS according to the revised McDonald criteria (16 female, mean age = 32.8 ± 10.6 years) and 14 healthy controls were examined with high-resolution 3-T MR neurography of the sciatic nerve using diffusion kurtosis imaging (DKI; 20 diffusional directions, b = 0, 700, 1200 s/mm2 ) and magnetization transfer imaging (MTI). In total, 15 quantitative MR biomarkers were analyzed and correlated with clinical symptoms, intrathecal immunoglobulin synthesis, electrophysiology, and lesion load on brain and spine MR imaging. RESULTS: Patients showed decreased fractional anisotropy (mean = 0.51 ± 0.04 vs. 0.56 ± 0.03, p < 0.001), extra-axonal tortuosity (mean = 2.32 ± 0.17 vs. 2.49 ± 0.17, p = 0.008), and radial kurtosis (mean = 1.40 ± 0.23 vs. 1.62 ± 0.23, p = 0.014) and higher radial diffusivity (mean = 1.09 â 10-3 mm2 /s ± 0.16 vs. 0.98 ± 0.11 â 10-3 mm2 /s, p = 0.036) than controls. Groups did not differ in MTI. No significant association was found between MR neurography markers and clinical/laboratory parameters or CNS lesion load. CONCLUSIONS: This study provides further evidence of peripheral nerve involvement in MS already at initial diagnosis. The characteristic pattern of DKI parameters indicates predominant demyelination and suggests a primary coaffection of the peripheral nervous system in MS. This first human study using DKI for peripheral nerves shows its potential and clinical feasibility in providing novel biomarkers.
Asunto(s)
Esclerosis Múltiple , Humanos , Femenino , Adulto Joven , Adulto , Estudios Prospectivos , Esclerosis Múltiple/diagnóstico por imagen , Nervios Periféricos , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Nervio Ciático , Biomarcadores , Espectroscopía de Resonancia MagnéticaRESUMEN
The neurotrophic herpes virus cytomegalovirus is a known cause of neuropathology in utero and in immunocompromised populations. Cytomegalovirus is reactivated by stress and inflammation, possibly explaining the emerging evidence linking it to subtle brain changes in the context of more minor disturbances of immune function. Even mild forms of traumatic brain injury, including sport-related concussion, are major physiological stressors that produce neuroinflammation. In theory, concussion could predispose to the reactivation of cytomegalovirus and amplify the effects of physical injury on brain structure. However, to our knowledge this hypothesis remains untested. This study evaluated the effect of cytomegalovirus serostatus on white and grey matter structure in a prospective study of athletes with concussion and matched contact-sport controls. Athletes who sustained concussion (n = 88) completed MRI at 1, 8, 15 and 45 days post-injury; matched uninjured athletes (n = 73) completed similar visits. Cytomegalovirus serostatus was determined by measuring serum IgG antibodies (n = 30 concussed athletes and n = 21 controls were seropositive). Inverse probability of treatment weighting was used to adjust for confounding factors between athletes with and without cytomegalovirus. White matter microstructure was assessed using diffusion kurtosis imaging metrics in regions previously shown to be sensitive to concussion. T1-weighted images were used to quantify mean cortical thickness and total surface area. Concussion-related symptoms, psychological distress, and serum concentration of C-reactive protein at 1 day post-injury were included as exploratory outcomes. Planned contrasts compared the effects of cytomegalovirus seropositivity in athletes with concussion and controls, separately. There was a significant effect of cytomegalovirus on axial and radial kurtosis in athletes with concussion but not controls. Cytomegalovirus positive athletes with concussion showed greater axial (P = 0.007, d = 0.44) and radial (P = 0.010, d = 0.41) kurtosis than cytomegalovirus negative athletes with concussion. Similarly, there was a significant association of cytomegalovirus with cortical thickness in athletes with concussion but not controls. Cytomegalovirus positive athletes with concussion had reduced mean cortical thickness of the right hemisphere (P = 0.009, d = 0.42) compared with cytomegalovirus negative athletes with concussion and showed a similar trend for the left hemisphere (P = 0.036, d = 0.33). There was no significant effect of cytomegalovirus on kurtosis fractional anisotropy, surface area, symptoms and C-reactive protein. The results raise the possibility that cytomegalovirus infection contributes to structural brain abnormalities in the aftermath of concussion perhaps via an amplification of concussion-associated neuroinflammation. More work is needed to identify the biological pathways underlying this process and to clarify the clinical relevance of this putative viral effect.
Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Humanos , Citomegalovirus , Estudios Prospectivos , Traumatismos en Atletas/complicaciones , Traumatismos en Atletas/diagnóstico por imagen , Proteína C-Reactiva , Enfermedades Neuroinflamatorias , Conmoción Encefálica/diagnóstico , Encéfalo/patología , AtletasRESUMEN
PURPOSE: This study aimed to investigate the diagnostic performance of diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) in identifying aberrations in the corticospinal tract (CST), whilst elucidating the relationship between abnormalities of CST and patients' motor function. METHODS: Altogether 21 patients with WHO grade II or grade IV glioma were enrolled and divided into Group 1 and Group 2, according to the presence or absence of preoperative paralysis. DKI and DTI metrics were generated and projected onto the CST. Histograms of the CST along x, y, and z axes were developed based on DKI and DTI metrics, and compared subsequently to determine regions of aberrations on the fibers. The receiver operating characteristic curve was performed to investigate the diagnostic efficacy of DKI and DTI metrics. RESULTS: In Group 1, a significantly lower fractional anisotropy, radial kurtosis and mean kurtosis, and a higher mean diffusivity were found in the ipsilateral CST as compared to the contralateral CST. Significantly higher relative axial diffusivity, relative radial diffusivity, and relative mean diffusivity (rMD) were found in Group 1, as compared to Group 2. The relative volume of ipsilateral CST abnormalities higher than the maximum value of mean kurtosis combined with rMD exhibited the best diagnostic performance in distinguishing dysfunction of CST with an AUC of 0.93. CONCLUSION: DKI is sensitive in detecting subtle changes of CST distal from the tumor. The combination of DKI and DTI is feasible for evaluating the impairment of the CST.
Asunto(s)
Imagen de Difusión Tensora , Glioma , Humanos , Imagen de Difusión Tensora/métodos , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Imagen de Difusión por Resonancia Magnética , Glioma/diagnóstico por imagen , Glioma/patología , Curva ROCRESUMEN
Biomarkers specific to cortical gray matter (cGM) pathological changes of multiple sclerosis (MS) are desperately needed to better understand the disease progression. The cGM damage occurs in cortical lesion (CL) and normal-appearing cGM (NAcGM) areas. While the association between CL load and cGM damage has been reported, little is known about how different CL types, i.e. intracortical lesion (ICL) and leukocortical lesion (LCL) would be associated with cGM damage. In our study, relapsing-remitting MS patients and healthy controls were divided into 4 groups according to CL load level. NAcGM diffusion kurtosis imaging (DKI)/diffusion tensor imaging (DTI) values and cGM volume (cGMV) were used to characterize the pathological changes in cGM. Univariate general linear model was used for group comparisons and stepwise regression analysis was used to assess the effects of ICL volume and LCL volume on NAcGM damage. We found peak values in DKI/DTI values, cGMV and neuropsychological scores in high CL load group. Kurtosis fractional anisotropy (KFA) was the most sensitive in characterizing NAcGM damage, and LCL volume related more to NAcGM damage. Our findings suggested KFA could become a surrogate biomarker to cGM damage, and LCL might be the main factor in whole brain NAcGM damage.
Asunto(s)
Lesiones Encefálicas , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Sustancia Blanca , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen de Difusión Tensora/métodos , Encéfalo/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Lesiones Encefálicas/patología , Biomarcadores , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patologíaRESUMEN
We evaluated functional connectivity (FC) in patients with adult autism spectrum disorder (ASD) using resting-state functional MRI (rs-fMRI) and diffusion kurtosis imaging (DKI). We acquired rs-fMRI data from 33 individuals with ASD and 33 healthy controls (HC) and DKI data from 18 individuals with ASD and 17 HC. ASD showed attenuated FC between the right frontal pole (FP) and the bilateral temporal fusiform cortex (TFusC) and enhanced FC between the right thalamus and the bilateral inferior division of lateral occipital cortex, and between the cerebellar vermis and the right occipital fusiform gyrus (OFusG) and the right lingual gyrus, compared with HC. ASD demonstrated increased axial kurtosis (AK) and mean kurtosis (MK) in white matter (WM) tracts, including the right anterior corona radiata (ACR), forceps minor (FM), and right superior longitudinal fasciculus (SLF). In ASD, there was also a significant negative correlation between MK and FC between the cerebellar vermis and the right OFusG in the corpus callosum, FM, right SLF and right ACR. Increased DKI metrics might represent neuroinflammation, increased complexity, or disrupted WM tissue integrity that alters long-distance connectivity. Nonetheless, protective or compensating adaptations of inflammation might lead to more abundant glial cells and cytokine activation effectively alleviating the degeneration of neurons, resulting in increased complexity. FC abnormality in ASD observed in rs-fMRI may be attributed to microstructural alterations of the commissural and long-range association tracts in WM as indicated by DKI.
RESUMEN
The increasing volume of online reviews and tweets poses significant challenges for sentiment classification because of the difficulty in obtaining annotated training data. This paper aims to enhance sentiment classification of Twitter data by developing a robust model that improves classification accuracy and computational efficiency. The proposed method named Tree Hierarchical Deep Convolutional Neural Network optimized with Sheep Flock Optimization Algorithm for Sentiment Classification of Twitter Data (SCTD-THDCNN-SFOA) utilizes the Stanford Sentiment Treebank dataset. The process begins with pre-processing steps including Tokenization, Stop words Elimination, Filtering, Hashtag Removal, and Multiword Grouping. The Gray Level Co-occurrence Matrix Window Adaptive Algorithm is employed to extract features, such as emoticon counts, punctuation counts, gazetteer word existence, n-grams, and part of speech tags. These features are selected using Entropy-Kurtosis-based Feature Selection approach. Finally, the Tree Hierarchical Deep Convolutional Neural Network enhanced by the Sheep Flock Optimization Algorithm is used to categorize the Twitter data as positive, negative, and neutral sentiments. The proposed SCTD-THDCNN-SFOA method demonstrates superior performance, achieving higher accuracy and lesser computation time than the existing models, respectively. The SCTD-THDCNN-SFOA framework significantly improves the accuracy and efficiency of sentiment classification for Twitter data.
RESUMEN
OBJECTIVE: Diffusional kurtosis imaging (DKI) extends diffusion tensor imaging (DTI), characterizing non-Gaussian diffusion effects but requires longer acquisition times. To ensure the robustness of DKI parameters, data acquisition ordering should be optimized allowing for scan interruptions or shortening. Three methodologies were used to examine how reduced diffusion MRI scans impact DKI histogram-metrics: 1) the electrostatic repulsion model (OptEEM); 2) spherical codes (OptSC); 3) random (RandomTRUNC). MATERIALS AND METHODS: Pre-acquired diffusion multi-shell data from 14 female healthy volunteers (29±5 years) were used to generate reordered data. For each strategy, subsets containing different amounts of the full dataset were generated. The subsampling effects were assessed on histogram-based DKI metrics from tract-based spatial statistics (TBSS) skeletonized maps. To evaluate each subsampling method on simulated data at different SNRs and the influence of subsampling on in vivo data, we used a 3-way and 2-way repeated measures ANOVA, respectively. RESULTS: Simulations showed that subsampling had different effects depending on DKI parameter, with fractional anisotropy the most stable (up to 5% error) and radial kurtosis the least stable (up to 26% error). RandomTRUNC performed the worst while the others showed comparable results. Furthermore, the impact of subsampling varied across distinct histogram characteristics, the peak value the least affected (OptEEM: up to 5% error; OptSC: up to 7% error) and peak height (OptEEM: up to 8% error; OptSC: up to 11% error) the most affected. CONCLUSION: The impact of truncation depends on specific histogram-based DKI metrics. The use of a strategy for optimizing the acquisition order is advisable to improve DKI robustness to exam interruptions.
Asunto(s)
Algoritmos , Encéfalo , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Voluntarios Sanos , Procesamiento de Imagen Asistido por Computador , Humanos , Femenino , Adulto , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Anisotropía , Simulación por Computador , Relación Señal-Ruido , Reproducibilidad de los Resultados , Interpretación de Imagen Asistida por Computador/métodosRESUMEN
BACKGROUND: To investigate the feasibility of Diffusion Kurtosis Imaging (DKI) in assessing renal interstitial fibrosis induced by hyperuricemia. METHODS: A hyperuricemia rat model was established, and the rats were randomly split into the hyperuricemia (HUA), allopurinol (AP), and AP + empagliflozin (AP + EM) groups (n = 19 per group). Also, the normal rats were selected as controls (CON, n = 19). DKI was performed before treatment (baseline) and on days 1, 3, 5, 7, and 9 days after treatment. The DKI indicators, including mean kurtosis (MK), fractional anisotropy (FA), and mean diffusivity (MD) of the cortex (CO), outer stripe of the outer medulla (OS), and inner stripe of the outer medulla (IS) were acquired. Additionally, hematoxylin and eosin (H&E) staining, Masson trichrome staining, and nuclear factor kappa B (NF-κB) immunostaining were used to reveal renal histopathological changes at baseline, 1, 5, and 9 days after treatment. RESULTS: The HUA, AP, and AP + EM group MKOS and MKIS values gradually increased during this study. The HUA group exhibited the highest MK value in outer medulla. Except for the CON group, all the groups showed a decreasing trend in the FA and MD values of outer medulla. The HUA group exhibited the lowest FA and MD values. The MKOS and MKIS values were positively correlated with Masson's trichrome staining results (r = 0.687, P < 0.001 and r = 0.604, P = 0.001, respectively). The MDOS and FAIS were negatively correlated with Masson's trichrome staining (r = -626, P < 0.0014 and r = -0.468, P = 0.01, respectively). CONCLUSION: DKI may be a non-invasive method for monitoring renal interstitial fibrosis induced by hyperuricemia.
Asunto(s)
Hiperuricemia , Ratas , Animales , Hiperuricemia/diagnóstico por imagen , Riñón/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Imagen de Difusión por Resonancia Magnética/métodos , FibrosisRESUMEN
BACKGROUND: T1 mapping can potentially quantitatively assess the intrinsic properties of tumors. This study was conducted to explore the ability of T1 mapping in distinguishing cervical cancer type, grade, and stage and compare the diagnostic performance of T1 mapping with diffusion kurtosis imaging (DKI). METHODS: One hundred fifty-seven patients with pathologically confirmed cervical cancer were enrolled in this prospectively study. T1 mapping and DKI were performed. The native T1, difference between native and postcontrast T1 (T1diff), mean kurtosis (MK), mean diffusivity (MD), and apparent diffusion coefficient (ADC) were calculated. Cervical squamous cell carcinoma (CSCC) and adenocarcinoma (CAC), low- and high-grade carcinomas, and early- and advanced-stage groups were compared using area under the receiver operating characteristic (AUROC) curves. RESULTS: The native T1 and MK were higher, and the MD and ADC were lower for CSCC than for CAC (all p < 0.05). Compared with low-grade CSCC, high-grade CSCC had decreased T1diff, MD, ADC, and increased MK (p < 0.05). Compared with low-grade CAC, high-grade CAC had decreased T1diff and increased MK (p < 0.05). Native T1 was significantly higher in the advanced-stage group than in the early-stage group (p < 0.05). The AUROC curves of native T1, MK, ADC and MD were 0,772, 0.731, 0.715, and 0.627, respectively, for distinguishing CSCC from CAC. The AUROC values were 0.762 between high- and low-grade CSCC and 0.835 between high- and low-grade CAC, with T1diff and MK showing the best discriminative values, respectively. For distinguishing between advanced-stage and early-stage cervical cancer, only the AUROC of native T1 was statistically significant (AUROC = 0.651, p = 0.002). CONCLUSIONS: Compared with DKI-derived parameters, native T1 exhibits better efficacy for identifying cervical cancer subtype and stage, and T1diff exhibits comparable discriminative value for cervical cancer grade.
Asunto(s)
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/diagnóstico por imagen , Carcinoma de Células Escamosas/diagnóstico por imagen , Imagen de Difusión Tensora , Adenocarcinoma/diagnóstico por imagen , BiomarcadoresRESUMEN
BACKGROUND: Parkinson's disease (PD) has been regarded as a disconnection syndrome with functional and structural disturbances. However, as the anatomic determinants, the structural disconnections in PD have yet to be fully elucidated. PURPOSE: To non-invasively construct structural networks based on microstructural complexity and to further investigate their potential topological abnormalities in PD given the technical superiority of diffusion kurtosis imaging (DKI) to the quantification of microstructure. MATERIAL AND METHODS: The microstructural data of gray matter in both the PD group and the healthy control (HC) group were acquired using DKI. The structural networks were constructed at the group level by a covariation approach, followed by the calculation of topological properties based on graph theory and statistical comparisons between groups. RESULTS: A total of 51 patients with PD and 50 HCs were enrolled. Individuals were matched between groups with respect to demographic characteristics (P >0.05). The constructed structural networks in both the PD and HC groups featured small-world properties. In comparison with the HC group, the PD group exhibited significantly altered global properties, with higher normalized characteristic path lengths, clustering coefficients, local efficiency values, and characteristic path lengths and lower global efï¬ciency values (P <0.05). In terms of nodal centralities, extensive nodal disruptions were observed in patients with PD (P <0.05); these disruptions were mainly distributed in the sensorimotor network, default mode network, frontal-parietal network, visual network, and subcortical network. CONCLUSION: These findings contribute to the technical application of DKI and the elucidation of disconnection syndrome in PD.