Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Oncologist ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250742

RESUMEN

In multiple myeloma (MM), while frequent mutations in driver genes are crucial for disease progression, they traditionally offer limited insights into patient prognosis. This study aims to enhance prognostic understanding in MM by analyzing pathway dysregulations in key cancer driver genes, thereby identifying actionable gene signatures. We conducted a detailed quantification of mutations and pathway dysregulations in 10 frequently mutated cancer driver genes in MM to characterize their comprehensive mutational impacts on the whole transcriptome. This was followed by a systematic survival analysis to identify significant gene signatures with enhanced prognostic value. Our systematic analysis highlighted 2 significant signatures, TP53 and LRP1B, which notably outperformed mere mutation status in prognostic predictions. These gene signatures remained prognostically valuable even when accounting for clinical factors, including cytogenetic abnormalities, the International Staging System (ISS), and its revised version (R-ISS). The LRP1B signature effectively distinguished high-risk patients within low/intermediate-risk categories and correlated with significant changes in the tumor immune microenvironment. Additionally, the LRP1B signature showed a strong association with proteasome inhibitor pathways, notably predicting patient responses to bortezomib and the progression from monoclonal gammopathy of unknown significance to MM. Through a rigorous analysis, this study underscores the potential of specific gene signatures in revolutionizing the prognostic landscape of MM, providing novel clinical insights that could influence future translational oncology research.

2.
Gynecol Oncol ; 187: 1-11, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38696842

RESUMEN

OBJECTIVE: FAT3 and LRP1B are two tumor suppressor genes with high mutation frequency in multiple cancer types, we sought to investigate the prognostic and immunological significance of these two genes in EC. METHODS: Based on a cohort of 502 EC samples, we conducted a comprehensive analysis of its multidimensional data types including genomic, transcriptomic, and clinical information, the potential impact of FAT3 and LRP1B co-mutation on antitumor immune response and prognosis were systematically discussed. RESULTS: We observed that FAT3 and LRP1B co-mutation was not only defined a dataset with prominently increased TMB, decreased tumor aneuploidy, and specially enriched in MSI-H subtype, but also manifested increased expression of immune-related markers, especially exclusive upregulation of PD-L1 levels and higher PD-L1+/CD8A+ proportion. Further analysis focused on lymphocyte infiltration and pathway enrichment explored the immune cell composition of the microenvironment and underlying molecular mechanisms affecting tumor development. Furthermore, EC patients with FAT3 and LRP1B co-mutation possessed significantly prolonged PFS and OS, and the co-mutation status was proved to be an independent prognostic factor. And a nomogram with high predictive performance was constructed by incorporating co-mutation with clinical features. More strikingly, the prognosis of MSI-H patients in EC with co-mutation was significantly improved, and their survival reached a level consistent with the POLE subtype. CONCLUSIONS: In endometrial cancer, co-mutation of FAT3 and LRP1B not only leads to activation of the immune state, but also represents a subgroup with an improved prognosis, particularly in the MSI-H subtype.


Asunto(s)
Neoplasias Endometriales , Mutación , Receptores de LDL , Femenino , Humanos , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Neoplasias Endometriales/genética , Neoplasias Endometriales/inmunología , Neoplasias Endometriales/patología , Linfocitos Infiltrantes de Tumor/inmunología , Pronóstico , Receptores de LDL/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética
3.
Gastric Cancer ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028418

RESUMEN

BACKGROUND: The purpose of the study was to conduct a comprehensive genomic characterization of gene alterations, microsatellite instability (MSI), and tumor mutational burden (TMB) in submucosal-penetrating (Pen) early gastric cancers (EGCs) with varying prognoses. METHODS: Samples from EGC patients undergoing surgery and with 10-year follow-up data available were collected. Tissue genomic alterations were characterized using Trusight Oncology panel (TSO500). Pathway instability (PI) scores for a selection of 218 GC-related pathways were calculated both for the present case series and EGCs from the TCGA cohort. RESULTS: Higher age and tumor location in the upper-middle tract are significantly associated with an increased hazard of relapse or death from any cause (p = 0.006 and p = 0.032). Even if not reaching a statistical significance, Pen A tumors more frequently present higher TMB values, higher frequency of MSI-subtypes and an overall increase in PI scores, along with an enrichment in immune pathways. ARID1A gene was observed to be significantly more frequently mutated in Pen A tumors (p = 0.006), as well as in patients with high TMB (p = 0.027). Tumors harboring LRP1B alterations seem to have a higher hazard of relapse or death from any cause (p = 0.089), being mutated mainly in relapsed patients (p = 0.093). CONCLUSIONS: We found that the most aggressive subtype Pen A is characterized by a higher frequency of ARID1A mutations and a higher genetic instability, while LRP1B alterations seem to be related to a lower disease-free survival. Further investigations are needed to provide a rationale for the use of these markers to stratify prognosis in EGC patients.

4.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38612772

RESUMEN

Oral cancer ranks fourth among malignancies among Taiwanese men and is the eighth most common cancer among men worldwide in terms of general diagnosis. The purpose of the current study was to investigate how low-density lipoprotein receptor-related protein 1B (LDL receptor related protein 1B; LRP1B) gene polymorphisms affect oral squamous cell carcinoma (OSCC) risk and progression in individuals with diabetes mellitus (DM). Three LRP1B single-nucleotide polymorphisms (SNPs), including rs10496915, rs431809, and rs6742944, were evaluated in 311 OSCC cases and 300 controls. Between the case and control groups, we found no evidence of a significant correlation between the risk of OSCC and any of the three specific SNPs. Nevertheless, in evaluating the clinicopathological criteria, individuals with DM who possess a minimum of one minor allele of rs10496915 (AC + CC; p = 0.046) were significantly associated with tumor size compared with those with homozygous major alleles (AA). Similarly, compared to genotypes homologous for the main allele (GG), rs6742944 genotypes (GA + AA; p = 0.010) were more likely to develop lymph node metastases. The tongue and the rs6742944 genotypes (GA + AA) exhibited higher rates of advanced clinical stages (p = 0.024) and lymph node metastases (p = 0.007) when compared to homozygous alleles (GG). LRP1B genetic polymorphisms appear to be prognostic and diagnostic markers for OSCC and DM, as well as contributing to genetic profiling research for personalized medicine.


Asunto(s)
Carcinoma de Células Escamosas , Diabetes Mellitus , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Masculino , Humanos , Neoplasias de la Boca/genética , Metástasis Linfática , Carcinoma de Células Escamosas/genética , Polimorfismo de Nucleótido Simple , Carcinoma de Células Escamosas de Cabeza y Cuello , Receptores de LDL/genética
5.
Alzheimers Dement ; 19(9): 3835-3847, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36951251

RESUMEN

INTRODUCTION: Genetic associations with Alzheimer's disease (AD) age at onset (AAO) could reveal genetic variants with therapeutic applications. We present a large Colombian kindred with autosomal dominant AD (ADAD) as a unique opportunity to discover AAO genetic associations. METHODS: A genetic association study was conducted to examine ADAD AAO in 340 individuals with the PSEN1 E280A mutation via TOPMed array imputation. Replication was assessed in two ADAD cohorts, one sporadic early-onset AD study and four late-onset AD studies. RESULTS: 13 variants had p<1×10-7 or p<1×10-5 with replication including three independent loci with candidate associations with clusterin including near CLU. Other suggestive associations were identified in or near HS3ST1, HSPG2, ACE, LRP1B, TSPAN10, and TSPAN14. DISCUSSION: Variants with suggestive associations with AAO were associated with biological processes including clusterin, heparin sulfate, and amyloid processing. The detection of these effects in the presence of a strong mutation for ADAD reinforces their potentially impactful role.


Asunto(s)
Enfermedad de Alzheimer , Clusterina , Humanos , Clusterina/genética , Colombia , Enfermedad de Alzheimer/diagnóstico , Mutación/genética , Amiloide , Presenilina-1/genética , Edad de Inicio
6.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37511044

RESUMEN

LRP1B remains one of the most altered genes in cancer, although its relevance in cancer biology is still unclear. Recent advances in gene editing techniques, particularly CRISPR/Cas9 systems, offer new opportunities to evaluate the function of large genes, such as LRP1B. Using a dual sgRNA CRISPR/Cas9 gene editing approach, this study aimed to assess the impact of disrupting LRP1B in glioblastoma cell biology. Four sgRNAs were designed for the dual targeting of two LRP1B exons (1 and 85). The U87 glioblastoma (GB) cell line was transfected with CRISPR/Cas9 PX459 vectors. To assess LRP1B-gene-induced alterations and expression, PCR, Sanger DNA sequencing, and qRT-PCR were carried out. Three clones (clones B9, E6, and H7) were further evaluated. All clones presented altered cellular morphology, increased cellular and nuclear size, and changes in ploidy. Two clones (E6 and H7) showed a significant decrease in cell growth, both in vitro and in the in vivo CAM assay. Proteomic analysis of the clones' secretome identified differentially expressed proteins that had not been previously associated with LRP1B alterations. This study demonstrates that the dual sgRNA CRISPR/Cas9 strategy can effectively edit LRP1B in GB cells, providing new insights into the impact of LRP1B deletions in GBM biology.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Glioblastoma , Humanos , Edición Génica/métodos , Glioblastoma/genética , Proteómica , Receptores de LDL/genética , ARN Guía de Sistemas CRISPR-Cas
7.
BMC Med ; 20(1): 256, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35902848

RESUMEN

BACKGROUND: The combination of immune checkpoint inhibitors (ICIs) and chemotherapy has been the standard first-line treatment for advanced non-small cell lung cancer (NSCLC) patients with driver-gene negative. However, efficacy biomarkers for ICIs-based combination therapy are lacking. We aimed to identify potential factors associated with outcomes of ICIs plus chemotherapy at baseline and dynamic changes in peripheral blood. METHODS: We collected plasma samples of 51 advanced NSCLC patients without EGFR/ALK/ROS1 alteration at baseline and/or after two treatment cycles of ICIs plus chemotherapy. A blood-based intratumor heterogeneity (bITH) score was calculated based on the allele frequencies of somatic mutations using a 520-gene panel. bITH-up was defined as a ≥ 10% increase in bITH score from baseline, with a second confirmatory measurement after treatment. RESULTS: At baseline, the number of metastatic organs and lung immune prognostic index (LIPI) were significantly associated with shorter progression-free survival (PFS) of ICIs plus chemotherapy, while bITH and other common molecular biomarkers, including ctDNA level, blood-based tumor mutational burden (bTMB), and PD-L1 expression, had no effect on PFS. LRP1B mutation at baseline was significantly associated with favorable outcomes to ICIs plus chemotherapy. There were 37 patients who had paired samples at baseline and after two cycles of treatment, with the median interval of 53 days. Intriguingly, patients with bITH-up had significant shorter PFS (HR, 4.92; 95% CI, 1.72-14.07; P = 0.001) and a lower durable clinical benefit rate (0 vs 41.38%, P = 0.036) than those with bITH-stable or down. Case studies indicated that bITH was promising to predict disease progression. CONCLUSIONS: The present study is the first to report that increased bITH is associated with unfavorable outcomes of ICIs plus chemotherapy in advanced NSCLC patients.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos Inmunológicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas
8.
J Bioenerg Biomembr ; 54(2): 93-108, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35274224

RESUMEN

Circular RNAs (circRNAs) are crucial for the pathogenesis of human diseases, including osteoarthritis (OA). Here, we set to elucidate the biological action of circ-LRP1B in OA pathogenesis. Human C28/I2 chondrocytes were stimulated by lipopolysaccharide (LPS). Circ-LRP1B, nuclear factor, erythroid 2 like 1 (NRF1) and microRNA (miR)-34a-5p were quantified by quantitative real-time PCR (qRT-PCR) or immunoblotting. Cell viability, proliferation, and apoptosis abilities were gauged by MTT, 5-Ethynyl-2'-Deoxyuridine (EdU) staining, and flow cytometry assays, respectively. Direct relationship between miR-34a-5p and circ-LRP1B or NRF1 was validated by RNA pull-down and dual-luciferase reporter assays. Circ-LRP1B was found to be underexpressed in OA cartilage and LPS-stimulated C28/I2 chondrocytes. Enforced expression of circ-LRP1B promoted cell proliferation, and repressed apoptosis and oxidative stress, as well as impacted OA-specific hallmarks expression of LPS-stimulated C28/I2 cells. NRF1 was identified as a downstream effector of circ-LRP1B function. Moreover, NRF1 was identified as a miR-34a-5p target in LPS-stimulated C28/I2 cells. Circ-LRP1B acted as a competing endogenous RNA (ceRNA) for miR-34a-5p to involve the post-transcriptional regulation of NRF1 expression. Furthermore, the effects of circ-LRP1B overexpression partly depended on the reduction of available miR-34a-5p. These findings demonstrate that circ-LRP1B functions as a ceRNA to regulate the proliferation, apoptosis and oxidative stress of LPS-stimulated human C28/I2 chondrocytes by miR-34a-5p/NRF1 network.


Asunto(s)
Lipopolisacáridos , MicroARNs , ARN Circular , Apoptosis , Proliferación Celular/fisiología , Condrocitos/metabolismo , Condrocitos/patología , Humanos , Lipopolisacáridos/farmacología , MicroARNs/genética , Factor 1 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , ARN Circular/genética , Receptores de LDL/metabolismo
9.
World J Urol ; 40(9): 2267-2273, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35841413

RESUMEN

PURPOSE: Bladder cancer is the most common malignancy of the urinary tract and one of the most prevalent cancers worldwide. It represents a spectrum of diseases, from recurrent non-invasive tumors (NMIBCs) managed chronically, to muscle infiltrating and advanced-stage disease (MIBC) that requires multimodal and invasive treatment. Multiple studies have underlined the complexity of bladder tumors genome, highlighting many specific genetic lesions and genome-wide occurrences of copy-number alterations (CNAs). In this study, we analyzed CNAs of selected genes in our cohorts of cancer stem cells (CSCs) and in The Cancer Genome Atlas (TCGA-BLCA) cohort with the aim to correlate their frequency with patients' prognosis. METHODS: CNAs have been verified on our array-CGH data previously reported on 19 bladder cancer biopsies (10 NMIBCs and 9 MIBCs) and 16 matched isolated CSC cultures. In addition, CNAs data have been consulted on the TCGA database, to search correlations with patients' follow-up. Finally, mRNA expression levels of LRP1B in TGCA cohort were obtained from The Human Protein Atlas. RESULTS: We firstly identified CNAs differentially represented between TGCA data and CSCs derived from NMIBCs and MIBCs, and we correlated the presence of these CNAs with patients' follow-up. LRP1B loss was significantly increased in CSCs and linked to short-term poor prognosis, both at genomic and transcriptomic level, confirming its pivotal role in bladder cancer tumorigenesis. CONCLUSION: Our study allowed us to identify potential "predictive" prognostic CNAs for bladder cancer, implementing knowledge for the ultimate goal of personalized medicine.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias de la Vejiga Urinaria , Variaciones en el Número de Copia de ADN/genética , Humanos , Recurrencia Local de Neoplasia , Células Madre Neoplásicas , Pronóstico , Receptores de LDL/genética , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
10.
Pathobiology ; 88(6): 400-411, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34689147

RESUMEN

BACKGROUND: Pegylated liposomal doxorubicin (PLD) is among the most active therapies for recurrent/progressive ovarian cancer (OC). Low-density lipoprotein receptor-related protein 1B (LRP1B) is one of the 10 most significantly deleted genes in human cancers. It mediates endocytosis of several factors from the cellular environment including liposomes. Although the LRP1B role in cancer has not been fully disclosed, its contribution to resistance to liposomal therapies has been hypothesized. This study aimed to evaluate the impact of LRP1B protein as a possible marker of response to PLD in patients with OC. METHODS: LRP1B expression and response to PLD were analyzed in OC cell lines by qRT-PCR and PrestoBlue viability assay, respectively. LRP1B protein expression was evaluated for the first time, in tumor samples from PLD-treated patients and controls (other chemotherapies) by immunohistochemistry. Association of LRP1B staining score (determined based on intensity and percentage of positively stained cells) with clinicopathological features, response to therapy and survival outcomes was evaluated. RESULTS: OC cells with increased expression of LRP1B were more sensitive to PLD. LRP1B staining score was associated with clinicopathological features, response to therapy, and survival outcomes. Higher LRP1B levels were associated with prolonged progression-free survival. This association was more evident in patients treated with PLD and in responders to PLD. CONCLUSION: Our results support a possible role of LRP1B as a predictor of response to PLD in patients with OC.


Asunto(s)
Doxorrubicina , Neoplasias Ováricas , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Epitelial de Ovario , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapéutico , Humanos , Recurrencia Local de Neoplasia , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Polietilenglicoles/uso terapéutico , Receptores de LDL/uso terapéutico
11.
Int J Cancer ; 145(7): 1991-2001, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30848481

RESUMEN

Sunitinib is one of the most widely used targeted therapeutics for renal cell carcinoma (RCC), but acquired resistance against targeted therapies remains a major clinical challenge. To dissect mechanisms of acquired resistance and unravel reliable predictive biomarkers for sunitinib in RCC, we sequenced the exons of 409 tumor-suppressor genes and oncogenes in paired tumor samples from an RCC patient, obtained at baseline and after development of acquired resistance to sunitinib. From newly arising mutations, we selected, using in silico prediction models, six predicted to be deleterious, located in G6PD, LRP1B, SETD2, TET2, SYNE1, and DCC. Consistently, immunoblotting analysis of lysates derived from sunitinib-desensitized RCC cells and their parental counterparts showed marked differences in the levels and expression pattern of the proteins encoded by these genes. Our further analysis demonstrates essential roles for these proteins in mediating sunitinib cytotoxicity and shows that their loss of function renders tumor cells resistant to sunitinib in vitro and in vivo. Finally, sunitinib resistance induced by continuous exposure or by inhibition of the six proteins was overcome by treatment with cabozantinib or a low-dose combination of lenvatinib and everolimus. Collectively, our results unravel novel markers of acquired resistance to sunitinib and clinically relevant approaches for overcoming this resistance in RCC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Resistencia a Antineoplásicos , Neoplasias Renales/genética , Mutación , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Exones , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/metabolismo , Ratones , Trasplante de Neoplasias , Análisis de Secuencia de ADN , Sunitinib
12.
Exp Mol Pathol ; 111: 104301, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31442444

RESUMEN

Prostate cancer is a high burden on society worldwide due to its high morbidity and mortality. Growing evidence has implicated microRNAs (miRNAs or miRs) in the occurrence and progression of prostate cancer. The present study was conducted with main emphasis put on the possible effect of hypoxia-induced miR-301b-3p on prostate cancer by targeting low-density lipoprotein receptor-related protein 1B (LRP1B). Firstly, the differentially expressed genes were identified by conducting microarray-based gene expression profiling of prostate cancer. Next, the expression of miR-301b-3p in prostate cancer cells was examined in cells treated with 1% oxygen or dimethyloxalylglycine (DMOG), and the cell line with the highest miR-301b-3p expression was selected for subsequent experiments. Subsequently, the target relationship between miR-301b-3p and LRP1B was identified. The effect of miR-301b-3p and LRP1B on cell proliferation, migration and invasion as well as tumorigenicity of transfected cells was examined using the gain- and loss-of-function approaches. Hypoxia induced miR-301b-3p was highly expressed while LRP1B was poorly expressed in prostate cancer. Moreover, miR-301b-3p could down-regulate LRP1B by interacting with LRP1B, which acted to promote the proliferation, migration and invasion abilities of prostate cancer cells in addition to tumor growth in vivo. In addition, up-regulation of LRP1B can reverse the promoting effect of miR-301b-3p on the aforementioned factors. Collectively, up-regulation of miR-301b-3p induced by hypoxia could potentially accelerate proliferation, migration and invasion of prostate cancer cells via the inhibitory effect on LRP1B expression, highlighting that miR-301b-3p may be instrumental for the therapeutic targeting of prostate cancer.


Asunto(s)
Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Hipoxia/fisiopatología , MicroARNs/genética , Neoplasias de la Próstata/patología , Receptores de LDL/metabolismo , Apoptosis , Perfilación de la Expresión Génica , Humanos , Masculino , Invasividad Neoplásica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores de LDL/genética
13.
Exp Cell Res ; 357(1): 1-8, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28408316

RESUMEN

Aberrant activation of beta-catenin/TCF signaling is one of the hallmarks of colon cancer. It is of great interest to study the mechanism for the regulation of beta-catenin/TCF signaling. In this study, it was found that LRP1B was down-regulated in colon cancer tissues and inhibited the growth, migration and metastasis of colon cancer cells. The molecular mechanism study revealed that LRP1B interacted with DVL2, inhibited the interaction between DVL2 and Axin, and negatively regulated beta-catenin/TCF signaling. Taken together, our study demonstrated the suppressive roles of LRP1B in the progression of colon cancer, implicating that restoring the function of LRP1B would be a promising strategy for the treatment of colon cancer.


Asunto(s)
Movimiento Celular/fisiología , Proliferación Celular/genética , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Receptores de LDL/metabolismo , Línea Celular Tumoral , Colon/metabolismo , Neoplasias del Colon/patología , Regulación hacia Abajo , Humanos , Transducción de Señal/fisiología , Factores de Transcripción TCF/metabolismo , beta Catenina/metabolismo
14.
Cancer Res Treat ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39327909

RESUMEN

Purpose: Neuroendocrine carcinomas (NECs) of the stomach are extremely rare, but fatal. However, our understanding of the genetic alterations in gastric NECs is limited. We aimed to evaluate genomic and clinicopathological characteristics of gastric NECs and mixed adenoneuroendocrine carcinomas (MANECs). Materials and Methods: Fourteen gastric NECs, 3 gastric MANECs, and 1381 gastric adenocarcinomas were retrieved from the departmental next-generation sequencing database between 2017 and 2019. Clinicopathological parameters and next-generation sequencing test results were retrospectively collected and reviewed. Results: Gastric NECs and MANECs frequently harbored alterations of TP53, RB1, SMARCA4, RICTOR, APC, TOP1, SLX4, EGFR, BRCA2, and TERT. In contrast, gastric adenocarcinomas exhibited alterations of TP53, CDH1, LRP1B, ARID1A, ERBB2, GNAS, CCNE1, NOTCH, and MYC. Mutations of AKT3, RB1, and SLX4; amplification of BRCA2 and RICTOR; and deletion of ADAMTS18, DDX11, KLRC3, KRAS, MAX, NFKBIA, NUDT7, and RB1 were significantly more frequent in gastric NECs and MANECs than in gastric adenocarcinomas. The presence of LRP1B mutation was significantly associated with longer overall survival (OS), whereas RB1 mutation and advanced TNM stage were associated with shorter OS. Conclusion: We identified frequently mutated genes and potential predictors of survival in patients with gastric NECs and MANECs.

15.
Sci China Life Sci ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276256

RESUMEN

In non-small cell lung cancers, the non-squamous and squamous subtypes (nsqNSCLC and sqNSCLC) exhibit disparities in pathophysiology, tumor immunology, and potential genomic correlates affecting responses to immune checkpoint inhibitor (ICI)-based treatments. In our in-house training cohort (n=85), the presence of the LRP1B deleterious mutation (LRP1B-del) was associated with longer and shorter progression-free survival (PFS) on ICIs alone in nsqNSCLCs and sqNSCLCs, respectively (Pinteraction=0.008). These results were validated using a larger public ICI cohort (n=208, Pinteraction<0.001). Multiplex immunofluorescence staining revealed an association between LRP1B-del and increased and decreased numbers of tumor-infiltrating CD8+ T cells in nsqNSCLCs (P=0.040) and sqNSCLCs (P=0.014), respectively. In the POPLAR/OAK cohort, nsqNSCLCs with LRP1B-del demonstrated improved PFS benefits from atezolizumab over docetaxel (hazard ratio (HR) =0.70, P=0.046), whereas this benefit was negligible in those without LRP1B-del (HR=1.05, P=0.64). Conversely, sqNSCLCs without LRP1B-del benefited more from atezolizumab (HR=0.60, P=0.002) than those with LRP1B-del (HR=1.30, P=0.31). Consistent results were observed in the in-house CHOICE-01 cohort, in which nsqNSCLCs with LRP1B-del and sqNSCLCs without LRP1B-del benefited more from toripalimab plus chemotherapy than from chemotherapy alone (Pinteraction=0.008). This multi-cohort study delineates the antithetical impacts of LRP1B-del in nsqNSCLCs and sqNSCLCs on predicting the benefits from ICI alone or with chemotherapy over chemotherapy alone. Our findings highlight the distinct clinical utility of LRP1B-del in guiding treatment choices for nsqNSCLCs and sqNSCLCs, emphasizing the necessity for a detailed analysis based on pathological subtypes when investigating biomarkers for cancer therapeutics.

16.
Genome Med ; 16(1): 70, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769532

RESUMEN

BACKGROUND: Rare oncogenic driver events, particularly affecting the expression or splicing of driver genes, are suspected to substantially contribute to the large heterogeneity of hematologic malignancies. However, their identification remains challenging. METHODS: To address this issue, we generated the largest dataset to date of matched whole genome sequencing and total RNA sequencing of hematologic malignancies from 3760 patients spanning 24 disease entities. Taking advantage of our dataset size, we focused on discovering rare regulatory aberrations. Therefore, we called expression and splicing outliers using an extension of the workflow DROP (Detection of RNA Outliers Pipeline) and AbSplice, a variant effect predictor that identifies genetic variants causing aberrant splicing. We next trained a machine learning model integrating these results to prioritize new candidate disease-specific driver genes. RESULTS: We found a median of seven expression outlier genes, two splicing outlier genes, and two rare splice-affecting variants per sample. Each category showed significant enrichment for already well-characterized driver genes, with odds ratios exceeding three among genes called in more than five samples. On held-out data, our integrative modeling significantly outperformed modeling based solely on genomic data and revealed promising novel candidate driver genes. Remarkably, we found a truncated form of the low density lipoprotein receptor LRP1B transcript to be aberrantly overexpressed in about half of hairy cell leukemia variant (HCL-V) samples and, to a lesser extent, in closely related B-cell neoplasms. This observation, which was confirmed in an independent cohort, suggests LRP1B as a novel marker for a HCL-V subclass and a yet unreported functional role of LRP1B within these rare entities. CONCLUSIONS: Altogether, our census of expression and splicing outliers for 24 hematologic malignancy entities and the companion computational workflow constitute unique resources to deepen our understanding of rare oncogenic events in hematologic cancers.


Asunto(s)
Neoplasias Hematológicas , Transcriptoma , Humanos , Neoplasias Hematológicas/genética , Empalme del ARN , Regulación Neoplásica de la Expresión Génica , Oncogenes , Perfilación de la Expresión Génica , Receptores de LDL/genética
17.
Am J Cancer Res ; 13(7): 2886-2905, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560001

RESUMEN

Lung adenocarcinoma (LUAD) is the most common type of lung cancer. LRP1B was initially identified as a cancer suppressor in several cancers. However, the potential biological phenotypes and molecular mechanisms of LRP1B in LUAD have not been fully investigated. In our study, we showed that the expression of LRP1B in LUAD tissues was lower than that in normal tissues. Knockdown of LRP1B markedly enhanced malignancy of LUAD cells. Genomic analysis indicated that the population expressing low-levels of LRP1B had higher genomic instability, which accounted for a larger proportion of aneuploidy and inflammation subtyping. Enrichment analysis of bulk and cell-line transcriptomic data both showed that the low expression of LRP1B could induce the activation of IL-6-JAK-STAT3, chemokine, cytokine, and other inflammation signaling pathways. Moreover, our findings revealed that knockdown LRP1B enhanced the secretion of IL-6 and IL-8, as confirmed by ELISA assays. Further validation using PCR and WB confirmed that downregulation of LRP1B mRNA significantly upregulated the activity of the IL-6-JAK-STAT3 pathway. Collectively, this study highlights LRP1B as a tumor suppressor gene and reveals that LRP1B knockdown promotes malignant progression in LUAD by inducing inflammation through the IL-6-JAK-STAT3 pathway.

18.
Hum Pathol ; 141: 158-168, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742945

RESUMEN

Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a member of the LDL receptor family and has often been discussed as a tumor suppressor gene, as its down-regulation is correlated with a poor prognosis in multiple carcinoma entities. Due to the high metastasis rate into the fatty peritoneal cavity and current research findings showing a dysregulation of lipid metabolism in tubo-ovarian high-grade serous carcinoma (HGSC), we questioned the prognostic impact of the LRP1B protein expression. We examined a well-characterized large cohort of 571 patients with primary HGSC and analyzed the LRP1B protein expression via immunohistochemical staining (both in tumor and stroma cells separately), performed precise bioimage analysis with QuPath, and calculated the prognostic impact using SPSS. Our results demonstrate that LRP1B functions as a significant prognostic marker for overall survival (OS) and progression-free survival (PFS) in HGSC on the protein level. High cytoplasmic expression of LRP1B in tumor, stroma, and combined tumor and stroma cells has a significantly positive association with a mean prolongation of the OS by 42 months (P = .005), 29 months (P = .005), and 25 months (P = .001), respectively. Additionally, the mean PFS was 18 months longer in tumor (P = .002), 19 months in stroma (P = .004), and 19 months in both cell types combined (P = .01). Our results remained significant in multivariate analysis. We envision LRP1B as a potential prognostic tool that could help us understand the functional role of lipid metabolism in advanced HGSC, especially regarding liposomal medications.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias de las Trompas Uterinas , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/patología , Pronóstico , Cistadenocarcinoma Seroso/patología , Supervivencia sin Progresión , Neoplasias de las Trompas Uterinas/patología , Receptores de LDL/uso terapéutico
19.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38136305

RESUMEN

BACKGROUND: Recent studies have shown that low-density lipoprotein receptor-related protein 1b (LRP1B), as a potential tumor suppressor, is implicated in the response to immunotherapy. The frequency of LRP1B mutation gene is high in many cancers, but its role in gastric cancer (GC) has not been determined. METHODS: The prognostic value of LRP1B mutation in a cohort containing 100 patients having received radical gastrectomy for stage II-III GC was explored. By analyzing the data of LRP1B mRNA, the risk score of differentially expressed genes (DEGs) between LRP1B mutation-type and wild-type was constructed based on the TCGA-STAD cohort. The infiltration of tumor immune cells was evaluated by the CYBERSORT algorithm and verified by immunohistochemistry. RESULTS: LRP1B gene mutation was an independent risk factor for disease-free survival (DFS) in GC patients (HR = 2.57, 95% CI: 1.28-5.14, p = 0.008). The Kaplan-Meier curve demonstrated a shorter survival time in high-risk patients stratified according to risk score (p < 0.0001). CYBERSORT analysis showed that the DEGs were mainly concentrated in CD4+ T cells and macrophages. TIMER analysis suggested that LRP1B expression was associated with the infiltration of CD4+ T cells and macrophages. Immunohistochemistry demonstrated that LRP1B was expressed in the tumor cells (TCs) and immune cells in 16/89 and 26/89 of the cohort, respectively. LRP1B-positive TCs were associated with higher levels of CD4+ T cells, CD8+ T cells, and CD86/CD163 (p < 0.05). Multivariate analysis showed that LRP1B-positive TCs represented an independent protective factor of DFS in GC patients (HR = 0.43, 95% CI: 0.10-0.93, p = 0.042). CONCLUSIONS: LRP1B has a high prognostic value in GC. LRP1B may stimulate tumor immune cell infiltration to provide GC patients with survival benefits.

20.
Genes Dis ; 10(5): 2082-2096, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37492741

RESUMEN

Accumulating evidence supports the association of somatic mutations with tumor occurrence and development. We aimed to identify somatic mutations with important implications in hepatocellular carcinoma (HCC) and explore their possible mechanisms. The gene mutation profiles of HCC patients were assessed, and the tumor mutation burden was calculated. Gene mutations closely associated with tumor mutation burden and patient overall survival were identified. In vivo and in vitro experiments were performed to verify the effects of putative genes on proliferation, invasion, drug resistance, and other malignant biological behaviors of tumor cells. Fourteen genes with a high mutation frequency were identified. The mutation status of 12 of these genes was closely related to the mutation burden. Among these 12 genes, LRP1B mutation was closely associated with patient prognosis. Nine genes were associated with immune cell infiltration. The results of in vivo and in vitro experiments showed that the knockdown of LRP1B promotes tumor cell proliferation and migration and enhances the resistance of tumor cells to liposomal doxorubicin. LRP1B could directly bind to NCSTN and affect its protein expression level, thereby regulating the PI3K/AKT pathway. Our mutational analysis revealed complex and orchestrated liposomal alterations linked to doxorubicin resistance that may also render cancers less susceptible to immunotherapy and also provides new treatment alternatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA