Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Intervalo de año de publicación
1.
Arch Gynecol Obstet ; 309(3): 871-886, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37676318

RESUMEN

Vaginal canal (VC) is exposed to the external environment affected by habitual factors like hygiene and sexual behaviour as well as physiological factors like puberty, menstrual cycle, pregnancy, child birth and menopause. Healthy VC harbours beneficial microflora supported by vaginal epithelium and cervical fluid. Connatural antimicrobial peptide (AMPs) of female reproductive tract (FRT) conjunctly with these beneficial microbes provide protection from a large number of infectious diseases. Such infections may either be caused by native microbes of the VC or transitory microbes like bacteria or virus which are not a part of VC microflora. This review highlight's the role of hormones, enzymes, innate immunological factors, epithelial cells and vaginal mucus that support beneficial microbes over infectious ones thus, helping to maintain homeostasis in VC and further protect the FRT. We also discuss the prospective use of vaginal probiotics and AMPs against pathogens which can serve as a potential cure for vaginal infections.


Asunto(s)
Enfermedades Transmisibles , Vagina , Femenino , Humanos , Embarazo , Células Epiteliales , Genitales Femeninos , Ciclo Menstrual , Vagina/microbiología
2.
Molecules ; 29(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38398505

RESUMEN

Fermentation by lactic acid bacteria (LAB) is a promising approach to meet the increasing demand for meat or dairy plant-based analogues with realistic flavours. However, a detailed understanding of the impact of the substrate, fermentation conditions, and bacterial strains on the volatile organic compounds (VOCs) produced during fermentation is lacking. As a first step, the current study used a defined medium (DM) supplemented with the amino acids L-leucine (Leu), L-isoleucine (Ile), L-phenylalanine (Phe), L-threonine (Thr), L-methionine (Met), or L-glutamic acid (Glu) separately or combined to determine their impact on the VOCs produced by Levilactobacillus brevis WLP672 (LB672). VOCs were measured using headspace solid-phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS). VOCs associated with the specific amino acids added included: benzaldehyde, phenylethyl alcohol, and benzyl alcohol with added Phe; methanethiol, methional, and dimethyl disulphide with added Met; 3-methyl butanol with added Leu; and 2-methyl butanol with added Ile. This research demonstrated that fermentation by LB672 of a DM supplemented with different amino acids separately or combined resulted in the formation of a range of dairy- and meat-related VOCs and provides information on how plant-based fermentations could be manipulated to generate desirable flavours.


Asunto(s)
Butanoles , Levilactobacillus brevis , Pentanoles , Compuestos Orgánicos Volátiles , Aminoácidos , Fermentación , Compuestos Orgánicos Volátiles/análisis , Ácido Glutámico , Leucina , Isoleucina , Fenilalanina , Microextracción en Fase Sólida/métodos
3.
Prep Biochem Biotechnol ; 54(1): 49-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37114667

RESUMEN

Lactic acid bacteria (LAB) are widely exploited in fermented foods and are gaining attention for novel uses due to their safety as biopreservatives. In this study, several organic acid-producing LAB strains were isolated from fermented vegetables for their potential application in fermentation. We identified nine novel strains belonging to four genera and five species, Lactobacillus plantarum PC1-1, YCI-2 (8), YC1-1-4B, YC1-4 (4), and YC2-9, Lactobacillus buchneri PC-C1, Pediococcus pentosaceus PC2-1 (F2), Weissella hellenica PC1A, and Enterococcus sp. YC2-6. Based on the results of organic acids, acidification, growth rate, antibiotic activity and antimicrobial inhibition, PC1-1, YC1-1-4B, PC2-1(F2), and PC-C1 showed exceptional biopreservative potential. Additionally, PC-C1, YC1-1-4B, and PC2-1(F2) recorded higher (p < 0.05) growth by utilizing lower concentrations of glucose (20 g/L) and soy peptone (10 g/L) as carbon and nitrogen sources in optimized culture conditions (pH 6, temperature 32 °C, and agitation speed 180 rpm) at 24hr and acidification until 72hr in batch fermentation, which suggests their application as starter cultures in industrial fermentation.


Asunto(s)
Lactobacillales , Lactobacillus plantarum , Verduras , Fermentación , China , Microbiología de Alimentos
4.
Prep Biochem Biotechnol ; 54(4): 514-525, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37694843

RESUMEN

Lactic acid bacteria (LAB) can produce γ-aminobutyric acid (GABA) with antioxidant properties and sedative effects when it binds to the GABA receptor in the human brain. LAB can also produce bacteriocin-like inhibitory substances (BLIS) with antimicrobial capabilities during carbohydrate fermentation. GABA and BLIS are natural compounds with potential health benefits and food preservation properties. Lactobacillus brevis C23 was co-cultured with three different LABs as inducers, which produced the highest GABA content and BLIS activity. They were cultured in various plant-based media to obtain an edible and better-tasting final product over commercially available media like MRS broth. A coconut-based medium with additives was optimized using response surface methodology (RSM) to increase GABA and BLIS production. The optimized medium for maximum GABA production (3.22 ± 0.01 mg/mL) and BLIS activity (84.40 ± 0.44%) was a 5.5% coconut medium containing 0.23% glucose, 1.44% Tween 20, 0.48% L-glutamic acid, and 0.02% pyridoxine. Due to the presence of GABA, the cell-free supernatant (CFS) as a postbiotic showed higher antioxidant activity than other food preservatives like nisin and potassium sorbate. Finally, microbiological tests on food samples showed that the postbiotic was more effective than other preservatives at combating the growth of LAB, molds and coliform bacteria, making it a possible food preservative.


Asunto(s)
Bacteriocinas , Levilactobacillus brevis , Humanos , Bacteriocinas/farmacología , Bacteriocinas/metabolismo , Técnicas de Cocultivo , Conservación de Alimentos , Conservantes de Alimentos , Ácido gamma-Aminobutírico
5.
Artículo en Inglés | MEDLINE | ID: mdl-39382119

RESUMEN

The present study was carried out to isolate, identify, and characterize bacterial probiotic strain from the gut of Ctenopharyngodon idella (Grass carp) and then to study its effect on growth, digestive enzymes and immunity of Labeo rohita fingerlings. A total of 6 gram-positive bacteria belonging to the genus Lactobacillus spp. (3), Bacillus spp. (2) and Staphylococcus spp. (1), were identified biochemically. Based on the biochemical results, the isolate GCLP4 was selected for molecular confirmation and BLAST analysis showed maximum homology with Lactobacillus plantarum (100% ident). Fish were fed for 60 days with diet containing 0 (T0), 105 (T1), 107 (T2), 109 (T3) cfu/g diet of L. plantarum GCLP4 and 105 (T4) of commercial probiotics. Results shows that supplementation of GCLP4 had significantly (p < 0.05) improve weight gain (%), specific growth rate (SGR) and feed conversion ratio (FCR) of L. rohita with better values in T3 group. The immunological parameters (white blood cell, red blood cell, haemoglobin, total protein, albumin and globulin were significantly higher (p < 0.05) with 107 and 109 Lactobacillus GCLP4 cfu/g diet. The digestive enzyme activities (protease, amylase and lipase) were significantly (p < 0.05) higher, particularly, with 109 Lactobacillus GCLP4 cfu/g of diet. All the groups supplemented with GCLP4 including the commercial probiotics have lower (p < 0.05) activities of serum transaminase enzymes along with lower (p < 0.005) level of glucose as compared to the control group. The results of the study collectively suggest that dietary L. plantarum GCLP4 at 109 cfu/g is an effective probiotic obtained from grass carp having potency to promote growth, digestive enzymes and immune-biochemical indices of L. rohita fingerlings in present culture condition.

6.
Molecules ; 28(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37049998

RESUMEN

Health, environmental and ethical concerns have resulted in a dramatic increase in demand for plant-based dairy analogues. While the volatile organic compounds (VOCs) responsible for the characteristic flavours of dairy-based products have been extensively studied, little is known about how to reproduce such flavours using only plant-based substrates. As a first step in their development, this review provides an overview of the VOCs associated with fermented (bacteria and/or fungi/yeast) vegetable and fruit substrates. Following PRISMA guidelines and using two English databases (Web of Science and Scopus), thirty-five suitable research papers were identified. The number of fermentation-derived VOCs detected ranged from 32 to 118 (across 30 papers), while 5 papers detected fewer (10 to 25). Bacteria, including lactic acid bacteria (LAB), fungi, and yeast were the micro-organisms used, with LAB being the most commonly reported. Ten studies used a single species, 21 studies used a single type (bacteria, fungi or yeast) of micro-organisms and four studies used mixed fermentation. The nature of the fermentation-derived VOCs detected (alcohols, aldehydes, esters, ketones, acids, terpenes and norisoprenoids, phenols, furans, sulphur compounds, alkenes, alkanes, and benzene derivatives) was dependent on the composition of the vegetable/fruit matrix, the micro-organisms involved, and the fermentation conditions.


Asunto(s)
Lactobacillales , Compuestos Orgánicos Volátiles , Verduras , Frutas/química , Saccharomyces cerevisiae , Terpenos/análisis , Alcoholes/análisis , Bacterias , Fermentación , Compuestos Orgánicos Volátiles/análisis
7.
Molecules ; 28(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894628

RESUMEN

In this study, lactic acid bacteria (LAB) strains were isolated from traditional fermented pickles, and among the identified strains, Leuconostoc citreum HE29 with a strong slimy colony profile was further selected to determine the physicochemical and techno-functional properties of its exopolysaccharide (EPS). Glucose was the only sugar monomer in the core unit of EPS HE29 detected by HPLC analysis, and glucan HE29 revealed 7.3 kDa of molecular weight. Structural characterization of glucan HE29 by 1H and 13C NMR spectroscopy analysis demonstrated that EPS HE29 was a dextran-type EPS containing 5.3% levels of (1 → 3)-linked α-D-glucose units. This structural configuration was also supported by FT-IR analysis, which also demonstrated the functional groups within the dextran HE29 structure. In terms of thermal properties detected by TGA and DSC analysis, dextran HE29 demonstrated a degradation temperature of around 280 °C, showing its strong thermal features. A semi-crystalline nature was observed for dextran HE29 detected by XRD analysis. Finally, AFM and SEM analysis revealed tangled network-like properties and web-like branched structures for dextran HE29, respectively. These findings suggest the importance of plant-based fermented products as LAB sources in obtaining novel EPS structures with potential techno-functional roles.


Asunto(s)
Alimentos Fermentados , Lactobacillales , Dextranos/química , Espectroscopía Infrarroja por Transformada de Fourier , Glucanos , Glucosa , Polisacáridos Bacterianos/química
8.
J Dairy Res ; : 1-7, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35388774

RESUMEN

We investigated the use of near-infrared spectroscopy (NIR) for measuring water-holding capacity (WHC) in fermented milk. Increased WHC ensures improved texture and decreased syneresis in fermented dairy products and also improves cheese yield. NIR combined with partial least-squares-discriminant analysis (PLS-DA) was found to be a promising rapid and non-invasive method with no pretreatment of the samples for prediction of WHC in fermented milk samples. Analysis of the chemical bonds in the region 10 700-4500 cm-1 (935-2200 nm) of the electromagnetic spectrum was able to distinguish between samples with high vs. low WHC. This technique was successfully used to screen different strains of lactic acid bacteria for their ability to provide fermented milk with increased WHC, which is of great importance for use in various dairy products.

9.
Arch Microbiol ; 203(2): 465-480, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33001222

RESUMEN

Nisin is a small peptide produced by Lactococcus lactis ssp lactis that is currently industrially produced. This preservative is often used for growth prevention of pathogenic bacteria contaminating the food products. However, the use of nisin as a food preservative is limited by its low production during fermentation. This low production is mainly attributed to the multitude of parameters influencing the fermentation progress such as bacterial cells activity, growth medium composition (namely carbon and nitrogen sources), pH, ionic strength, temperature, and aeration. This review article focuses on the main parameters that affect nisin production by Lactococcus lactis bacteria. Moreover, nisin applications as a food preservative and the main strategies generally used are also discussed.


Asunto(s)
Conservantes de Alimentos , Nisina/biosíntesis , Medios de Cultivo/química , Fermentación , Conservantes de Alimentos/química , Microbiología Industrial , Lactococcus lactis/química , Lactococcus lactis/metabolismo
10.
Arch Microbiol ; 203(6): 3171-3182, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33825934

RESUMEN

The aim of this study was to investigate the lactic acid bacteria (LAB) and yeast community from home-made sauerkraut collected from Southwest China through culture-dependent and culture-independent technology. Forty-eight samples of home-made sauerkraut were collected from households at three different locations in Southwest China. The pH, total acidity and salt contents among these fermented vegetables were 3.69 ± 0.42, 0.86 ± 0.43 g/100 ml, and 3.86 ± 2.55 g/100 ml, respectively. The number of lactic acid bacteria (LAB) and yeasts were 7.25 ± 1.05 log10 colony-forming units (CFU)/ml and 3.74 ± 1.01 log CFU/ml, respectively. A total of 182 LAB and 81 yeast isolates were identified. The dominant isolates were Lactobacillus plantarum, L. brevis, Pediococcus ethanolidurans, Pichia membranifaciens, P. fermentans and Kazachstania bulderi. Denaturing gradient gel electrophoresis (DGGE) showed that L. plantarum, uncultured Lactobacillus sp, P. ethanolidurans, and K. exigua were the predominant microflora. Our studies demonstrated that the DGGE technique combined with a culture-dependent method is very effective for studying the LAB and yeast community in Chinese traditional fermentation vegetables. The results will give us an understanding of LAB and yeast community of Chinese sauerkraut and improve the knowledge of LAB and yeast community of Chinese sauerkraut.


Asunto(s)
Alimentos Fermentados , Microbiología de Alimentos , Lactobacillales , Levaduras , China , Fermentación , Alimentos Fermentados/microbiología , Lactobacillales/clasificación , Lactobacillales/genética , Pediococcus/genética , Pichia/genética , Saccharomycetales/genética , Verduras/microbiología , Levaduras/clasificación , Levaduras/genética
11.
Biotechnol Lett ; 43(8): 1637-1648, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33999363

RESUMEN

OBJECTIVES: This study aimed to screen, characterize, and annotate the genome along with the comparison of GABA synthesis genes presented in lactic acid bacteria (LAB). RESULTS: Thirty-five LAB isolates from fermented foods were screened for GABA production using thin-layer chromatography (TLC). Fifteen isolates produced GABA ranging from 0.07 to 22.94 g/L. Based on their GTG5 profiles, phenotypic, and genotypic characteristics, isolates LSI1-1, LSI1-5, LSI2-1, LSI2-2, LSI2-3, LSI2-5, and LSM3-1-4 were identified as Lactobacillus plantarum subsp. plantarum; isolate LSM1-4 was Lactobacillus argentoratensis; isolates CAB1-2, CAB1-5, CAB1-7, and LSI1-4 were Lactobacillus pentosus; and CAB1-1, LSM3-1-1 and LSM3-2-3 were Lactobacillus fermentum. Strains LSI2-1 and CAB1-7 from pickled vegetables were selected for genome analysis. The gadA gene (1410 bp, 470aa) was encountered in GABA production of both strains and no other glutamate decarboxylase (GAD) genes were found in the genomes when compared with other LAB strains. The presence of gadA is evidence for GABA production. Strains LSI2-1 and CAB1-7 produced 22.94 g/L and 11.59 g/L of GABA in GYP broth supplemented with 3% (w/v) MSG at 30 °C for 72 h, respectively. CONCLUSIONS: Our report highlights the characterization of LAB and GABA production of L. plantarum LSI2-1 strain with its GABA synthesis gene. GABA production of strains LSI2-1 and CAB1-7 in GYP broth with 3% (w/v) MSG and comparative GAD genes.


Asunto(s)
Alimentos Fermentados/microbiología , Lactobacillales , Ácido gamma-Aminobutírico/metabolismo , Proteínas Bacterianas/genética , Genoma Bacteriano/genética , Genómica , Glutamato Descarboxilasa/genética , Lactobacillales/genética , Lactobacillales/metabolismo , Tailandia
12.
World J Microbiol Biotechnol ; 37(10): 172, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34518944

RESUMEN

The focus of the present study was to characterize antimicrobial peptide produced by potential probiotic cultures of Enterococcus durans DB-1aa (MCC4243), Lactiplantibacillus plantarum Cu2-PM7 (MCC4246) and Limosilactobacillus fermentum Cu3-PM8 (MCC4233) against Staphylococus aureus MTCC 96 and Escherichia coli MTCC118. The growth kinetic assay revealed 24 h of incubation to be optimum for bacteriocin production. The partially purified compound of all the three selected cultures after ion-exchange chromatography was found to be thermoresistant and stable under a wide range of pH. The compound was sensitive to proteinase-K, but resistant to trypsin, α-amylase and lipase. Comparatively, bacteriocins from L. fermentum Cu3-PM8 and L. plantarum Cu2-PM7 showed higher stability under studied parameter, hence was taken up for further investigation. The apparent molecular weight of bacteriocin from L. fermentum MCC4233 and L. plantarum MCC4246 was found to be 3.5 kDa. Further, plantaricin gene from MCC4246 was characterized in silico. The translated partial amino acid sequence of the plnA gene in MCC4246 displayed 48 amino acids showing 100 % similarity with plantaricin A of Lactobacillus plantarum (WP_0036419). The sequence revealed 7 ß sheets, 6 α sheets, 6 predicted coils and 9 predicted turns. The predicted properties of the peptide included an isoelectric point of 10.82 and a hydrophobicity of 48.6 %. The molecular approach of using Geneious Prime software and protein prediction data base for characterization of bacteriocin is novel and predicts "KSSAYSLQMGATAIKQVKKLFKKWGW" to be a peptide responsible for antimicrobial activity. The study provides information about a broad spectrum bacteriocin in native probiotic culture and paves a way towards its application in functional foods as a biopreservative agent.


Asunto(s)
Antibacterianos/farmacología , Enterococcus/química , Proteínas Citotóxicas Formadoras de Poros/farmacología , Probióticos/farmacología , Staphylococcus aureus/efectos de los fármacos , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/metabolismo , Simulación por Computador , Enterococcus/genética , Enterococcus/metabolismo , Peso Molecular , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Probióticos/química , Probióticos/metabolismo , Staphylococcus aureus/crecimiento & desarrollo
13.
J Sci Food Agric ; 100(3): 926-935, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31523827

RESUMEN

BACKGROUND: The effects were studied of different inoculation strategies for selected starters -yeasts and lactic acid bacteria (LAB) - used for the fermentation process of two Greek olive cultivars, Conservolea and Kalamàta. The LAB strains applied were Leuconostoc mesenteroides K T5-1 and L. plantarum A 135-5; the selected yeast strains were S. cerevisiae KI 30-16 and Debaryomyces hansenii A 15-44 for Kalamàta and Conservolea olives, respectively. RESULTS: Table olive fermentation processes were monitored by performing microbiological analyses, and by monitoring changes in pH, titratable acidity and salinity, sugar consumption, and the evolution of volatile compounds. Structural modifications occurring in phenolic compounds of brine were investigated during the fermentation using liquid chromatography / diode array detection / electrospray ion trap tandem mass spectrometry (LC/DAD/ESI-MSn ) and quantified by high-performance liquid chromatography (HPLC) using a diode array detector. Phenolic compounds in processed Kalamàta olive brines consisted of phenolic acids, verbascoside, caffeoyl-6-secologanoside, comselogoside, and the dialdehydic form of decarboxymethylelenolic acid linked to hydroxytyrosol, whereas oleoside and oleoside 11-methyl ester were identified only in Conservolea olive brines. CONCLUSION: Volatile profile and sensory evaluation revealed that the 'MIX' (co-inoculum of yeast and LAB strain) inoculation strategy led to the most aromatic and acceptable Kalamàta olives. For the Conservolea table olives, the 'YL' treatment gave the most aromatic and the overall most acceptable product. © 2019 Society of Chemical Industry.


Asunto(s)
Debaryomyces/metabolismo , Microbiología de Alimentos/métodos , Lactobacillales/metabolismo , Olea/química , Olea/microbiología , Fenol/metabolismo , Saccharomyces cerevisiae/metabolismo , Fermentación , Frutas/química , Frutas/microbiología , Humanos , Fenol/análisis , Sales (Química)/análisis , Sales (Química)/metabolismo , Gusto
14.
J Sci Food Agric ; 100(6): 2722-2731, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32003003

RESUMEN

BACKGROUND: The aim of this study is to investigate the application of two lactic acid bacteria and dry condensed molasses fermentation solubles (CMS) in the making and preservation of corn silage. Forage corn materials are divided into eight treatment groups as follows: (i) control, (ii) B2 (Lactobacillus plantarum B2, 1 × 109 cfu kg-1 ), (iii) LAS (Lactobacillus buchneri 40788, 3 × 108 cfu kg-1 ), (iv) B2 + LAS, (v) CMS (35 g kg-1 , fresh weight), (vi) B2 + CMS, (vii) LAS + CMS and (viii) B2 + LAS + CMS. The silage composition and aerobic stability are determined after ensiling for 90 days. Furthermore, the digestibility of the silage product and gas production are evaluated using a trotro digestion procedure. RESULTS: The assay results indicate that the CMS supplementation and B2 inoculation significantly increased lactic acid concentration (P < 0.01). However, they also reduced the content of acetic acid and silage pH at the initial fermentation stage. The CMS supplemented with B2 (B2 + CMS) showed an improvement in the quality of silage, but a significant decrease in aerobic stability (P < 0.01). The B2 + LAS + CMS treatment yielded an increase in acetic acid production during the late fermentation period and is able to extend the aerobic stability of corn silage. Furthermore, this study shows that CMS supplementation alone can significantly improve the digestibility of the in vitro dry matter (P < 0.01) and the microbial protein synthesis efficiency (P = 0.01). In addition, the CMS supplementation is beneficial for enhancing the aerobic stability of corn silage. CONCLUSIONS: These results suggest that the combination of CMS supplementation and a suitable inoculation lactic acid bacterial strain can be highly promising for enhancing the higher quality and stability of corn silage. © 2020 Society of Chemical Industry.


Asunto(s)
Lactobacillus plantarum/fisiología , Lactobacillus/fisiología , Ensilaje/análisis , Ensilaje/microbiología , Fermentación , Melaza , Zea mays/química , Zea mays/microbiología
15.
Biotechnol Bioeng ; 116(4): 769-780, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30450609

RESUMEN

The formation of pH gradients in a 700 L batch fermentation of Streptococcus thermophilus was studied using multi-position pH measurements and computational fluid dynamics (CFD) modeling. To this end, a dynamic, kinetic model of S. thermophilus and a pH correlation were integrated into a validated one-phase CFD model, and a dynamic CFD simulation was performed. First, the fluid dynamics of the CFD model were validated with NaOH tracer pulse mixing experiments. Mixing experiments and simulations were performed whereas multiple pH sensors, which were placed vertically at different locations in the bioreactor, captured the response. A mixing time of about 46 s to reach 95% homogeneity was measured and predicted at an impeller speed of 242 rpm. The CFD simulation of the S. thermophilus fermentation captured the experimentally observed pH gradients between a pH of 5.9 and 6.3, which occurred during the exponential growth phase. A pH higher than 7 was predicted in the vicinity of the base solution inlet. Biomass growth, lactic acid production, and substrate consumption matched the experimental observations. Moreover, the biokinetic results obtained from the CFD simulation were similar to a single-compartment simulation, for which a homogeneous distribution of the pH was assumed. This indicates no influence of pH gradients on growth in the studied bioreactor. This study verified that the pH gradients during a fermentation in the pilot-scale bioreactor could be accurately predicted using a coupled simulation of a biokinetic and a CFD model. To support the understanding and optimization of industrial-scale processes, future biokinetic CFD studies need to assess multiple types of environmental gradients, like pH, substrate, and dissolved oxygen, especially at industrial scale.


Asunto(s)
Hidrodinámica , Fuerza Protón-Motriz , Streptococcus thermophilus/metabolismo , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Simulación por Computador , Diseño de Equipo , Fermentación , Concentración de Iones de Hidrógeno , Modelos Biológicos
16.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357436

RESUMEN

The plant phyllosphere is colonized by a complex ecosystem of microorganisms. Leaves of raw eaten vegetables and herbs are habitats for bacteria important not only to the host plant, but also to human health when ingested via meals. The aim of the current study was to determine the presence of putative probiotic bacteria in the phyllosphere of raw eaten produce. Quantification of bifidobacteria showed that leaves of Lepidium sativum L., Cichorium endivia L., and Thymus vulgaris L. harbor between 103 and 106 DNA copies per gram fresh weight. Total cultivable bacteria in the phyllosphere of those three plant species ranged from 105 to 108 CFU per gram fresh weight. Specific enrichment of probiotic lactic acid bacteria from C. endivia, T. vulgaris, Trigonella foenum-graecum L., Coriandrum sativum L., and Petroselinum crispum L. led to the isolation of 155 bacterial strains, which were identified as Pediococcus pentosaceus, Enterococcus faecium, and Bacillus species, based on their intact protein pattern. A comprehensive community analysis of the L. sativum leaves by PhyloChip hybridization revealed the presence of genera Bifidobacterium, Lactobacillus, and Streptococcus. Our results demonstrate that the phyllosphere of raw eaten produce has to be considered as a substantial source of probiotic bacteria and point to the development of vegetables and herbs with added probiotic value.


Asunto(s)
Bacterias , Microbiología de Alimentos , Plantas Comestibles/microbiología , Probióticos , Técnicas de Tipificación Bacteriana , Bifidobacterium , Biodiversidad , Microbiología Ambiental , Humanos , Lactobacillales , Microbiota , Filogenia , Plantas Medicinales , Verduras/microbiología
17.
Int J Mol Sci ; 20(7)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987119

RESUMEN

The qualitative and quantitative composition of volatile compounds in fermented distillery mash determines the quality of the obtained distillate of agricultural origin (i.e., raw spirit) and the effectiveness of further purification steps. Propan-2-ol (syn. isopropyl alcohol), due to its low boiling point, is difficult to remove by rectification. Therefore, its synthesis needs to be limited during fermentation by Saccharomyces cerevisiae yeast, while at the same time controlling the levels of acetaldehyde and acetic acid, which are likewise known to determine the quality of raw spirit. Lactic acid bacteria (LAB) are a common but undesirable contaminant in distillery mashes. They are responsible for the production of undesirable compounds, which can affect synthesis of propan-2-ol. Some bacteria strains are able to synthesize isopropyl alcohol. This study therefore set out to investigate whether LAB with S. cerevisiae yeast are responsible for conversion of acetone to propan-2-ol, as well as the effects of the amount of LAB inoculum and fermentation parameters (pH and temperature) on the content of isopropyl alcohol, acetaldehyde, lactic acid and acetic acid in fermented mashes. The results of NMR and comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC × GC-TOF MS) analysis confirmed the ability of the yeast and LAB strains to metabolize acetone via its reduction to isopropyl alcohol. Efficient fermentation of distillery mashes was observed in all tested mashes with an initial LAB count of 3.34-6.34 log cfu/mL, which had no significant effect on the ethanol content. However, changes were observed in the contents of by-products. Lowering the initial pH of the mashes to 4.5, without and with LAB (3.34-4.34 log cfu/mL), resulted in a decrease in propan-2-ol and a concomitant increase in acetaldehyde content, while a higher pH (5.0 and 5.5) increased the content of propan-2-ol and decreased acetaldehyde content. Higher temperature (35 °C) promoted propan-2-ol synthesis and also resulted in increased acetic acid content in the fermented mashes compared to the controls. Moreover, the acetic acid content rose with increases in the initial pH and the initial LAB count.


Asunto(s)
2-Propanol/metabolismo , Acetaldehído/metabolismo , Destilación , Fermentación , Lactobacillales/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Acético/metabolismo , Acetona/metabolismo , Isótopos de Carbono/química , Ácido Láctico/metabolismo , Espectroscopía de Protones por Resonancia Magnética
18.
J Food Sci Technol ; 56(1): 122-131, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30728553

RESUMEN

The behaviour of two combined starter cultures and their influence on the microbiological and physicochemical characteristics of dry-cured ham have been evaluated. Three lots of dry-cured hams were tested during processing (0, 9, 48, 74, 112, 142, 166 and 211 days). Lot 1 had no added starter culture. Lot 2 contained a starter culture of Penicillium chrysogenum, Penicillium digitatum, Penicillium nalgiovense, Debaryomyces hansenii, Lactobacillus plantarum, Lactobacillus acidophilus, Pediococcus pentosaceus and Micrococcus varians was and lot 3 had L. plantarum, L. acidophilus, P. pentosaceus and M. varians. The use of a selected starter culture based on a combination of lactic acid bacteria (LAB) and fungal strains with a demonstrated proteolytic activity such as P. chrysogenum and D. hansenii (lot 2) did not affect the main characteristics of dry-cured ham processing, even enhancing some desirable aspects, like its non-protein nitrogen contents. LAB strains were not significantly affected by combining them with fungal starter, and better counts were found with respect to control. A higher thiobarbituric acid reactive substances content was described in lot inoculated only with LAB (lot 3). Potentially pathogenic microorganisms were not detected in any of the lots studied. The starter culture used in lot 2 showed a potential interest for use in dry-cured ham production.

19.
Appl Microbiol Biotechnol ; 102(5): 2465-2475, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29335876

RESUMEN

The hydrogen (H2) production efficiency in dark fermentation systems is strongly dependent on the occurrence of metabolic pathways derived from the selection of microbial species that either consume molecular H2 or outcompete hydrogenogenic bacteria for the organic substrate. In this study, the effect of organic loading rate (OLR) on the H2 production performance, the metabolic pathways, and the microbial community composition in a continuous system was evaluated. Two bacterial genera, Clostridium and Streptococcus, were dominant in the microbial community depending on the OLR applied. At low OLR (14.7-44.1 gLactose/L-d), Clostridium sp. was dominant and directed the system towards the acetate-butyrate fermentation pathway, with a maximum H2 yield of 2.14 molH2/molHexose obtained at 29.4 gLactose/L-d. Under such conditions, the volumetric hydrogen production rate (VHPR) was between 3.2 and 11.6 LH2/L-d. In contrast, relatively high OLR (58.8 and 88.2 gLactose/L-d) favored the dominance of Streptococcus sp. as co-dominant microorganism leading to lactate production. Under these conditions, the formate production was also stimulated serving as a strategy to dispose the surplus of reduced molecules (e.g., NADH2+), which theoretically consumed up to 5.72 LH2/L-d. In such scenario, the VHPR was enhanced (13.7-14.5 LH2/L-d) but the H2 yield dropped to a minimum of 0.74 molH2/molHexose at OLR = 58.8 gLactose/L-d. Overall, this research brings clear evidence of the intrinsic occurrence of metabolic pathways detrimental for biohydrogen production, i.e., lactic acid fermentation and formate production, suggesting the use of low OLR as a strategy to control them.


Asunto(s)
Reactores Biológicos/microbiología , Clostridium/metabolismo , Hidrógeno/metabolismo , Streptococcus/metabolismo , Acetatos/metabolismo , Biocombustibles/análisis , Butiratos/metabolismo , Fermentación , Ácido Láctico/metabolismo
20.
Oral Health Prev Dent ; 16(5): 445-455, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30460358

RESUMEN

PURPOSE: Consumption of refined foods and beverages high in sugar make the teeth susceptible to the formation of biofilm and may lead to dental caries. The aim of the present study was to determine the ability of selected probiotics to inhibit growth and biofilm formation by the cariogenic bacterium Streptococcus mutans in vitro. MATERIALS AND METHODS: Strains of latic acid bacteria (LAB) (n = 120) from the Bioresources Collection and Research Center (BCRC), saliva of healthy adults and infant stool were screened. The antimicrobial activity of LAB in vitro was evaluated by agar spot culture and co-culture of the S. mutans strains. Antagonistic substances in the spent culture suspensions (SCS) of LAB were precipitated by extraction with ammonium sulphate and chloroform to characterise the protein and lipophilic fractions. RESULTS: Results of co-culturing show that the SCS of the three LAB strains (Lactobacillus pentosus 13-1, 13-4 and L. crispatus BCRC 14618) subjected to heat treatment showed statistically significantly higher antimicrobial activity. Substances produced by L. pentosus 13-4 which have the potential to exhibit antimicrobial properties might be lipophilic proteins. Additionally, microtiter plate biofilm assays indicated that in vitro biofilm formation by S. mutans is strongly modulated by L. pentosus 13-4 and L. crispatus BCRC 14618. CONCLUSION: It can be inferred that the mechanism of reducing biofilm formation by these two LAB strains is associated with sucrose-dependent cell-cell adhesion and the gtfC level of glucosyltransferases in the biofilm. Therefore, it is suggested that L. pentosus 13-4 and L. crispatus BCRC 14618 may contribute to preventing dental caries, as they showed an inhibitory effect on the growth and biofilm formation of the cariogenic bacterium S. mutans in vitro.


Asunto(s)
Biopelículas , Caries Dental/microbiología , Lactobacillus crispatus/aislamiento & purificación , Lactobacillus pentosus/aislamiento & purificación , Probióticos , Streptococcus mutans , Técnicas de Cocultivo , Heces/microbiología , Glucosiltransferasas/metabolismo , Calor , Humanos , Técnicas In Vitro , Saliva/microbiología , Streptococcus mutans/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA