Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Sensors (Basel) ; 24(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38544145

RESUMEN

Composite materials, valued in aerospace for their stiffness, strength and lightness, require impact monitoring for structural health, especially against low-velocity impacts. The MUSIC algorithm, known for efficient directional scanning and easy sensor deployment, is gaining prominence in this area. However, in practical engineering applications, the broadband characteristics of impact response signals and the time delay errors in array elements' signal reception lead to inconsistencies between the steering vector and the actual signal subspace, affecting the precision of the MUSIC impact localization method. Furthermore, the anisotropy of composite materials results in time delay differences between array elements in different directions. If the MUSIC algorithm uses a fixed velocity value, this also introduces time delay errors, further reducing the accuracy of localization. Addressing these challenges, this paper proposes an innovative MUSIC algorithm for impact imaging using a guided Lamb wave array, with an emphasis on time delay management. This approach focuses on the extraction of high-energy, single-frequency components from impact response signals, ensuring accurate time delay measurement across array elements and enhancing noise resistance. It also calculates the average velocity of single-frequency components in varying directions for an initial impact angle estimation. This estimated angle then guides the selection of a specific single-frequency velocity, culminating in precise impact position localization. The experimental evaluation, employing equidistantly spaced array elements to capture impact response signals, assessed the effectiveness of the proposed method in accurately determining array time delays. Furthermore, impact localization tests on reinforced composite structures were conducted, with the results indicating high precision in pinpointing impact locations.

2.
Sensors (Basel) ; 24(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38793959

RESUMEN

Thin copper plate is widely used in architecture, transportation, heavy equipment, and integrated circuit substrates due to its unique properties. However, it is challenging to identify surface defects in copper strips arising from various manufacturing stages without direct contact. A laser ultrasonic inspection system was developed based on the Lamb wave (LW) produced by a laser pulse. An all-fiber laser heterodyne interferometer is applied for measuring the ultrasonic signal in combination with an automatic scanning system, which makes the system flexible and compact. A 3-D model simulation of an H62 brass specimen was carried out to determine the LW spatial-temporal wavefield by using the COMSOL Multiphysics software. The characteristics of the ultrasonic wavefield were extracted through continuous wavelet transform analysis. This demonstrates that the A0 mode could be used in defect detection due to its slow speed and vibrational direction. Furthermore, an ultrasonic wave at the center frequency of 370 kHz with maximum energy is suitable for defect detection. In the experiment, the size and location of the defect are determined by the time difference of the transmitted wave and reflected wave, respectively. The relative error of the defect position is 0.14% by averaging six different receiving spots. The width of the defect is linear to the time difference of the transmitted wave. The goodness of fit can reach 0.989, and it is in good agreement with the simulated one. The experimental error is less than 0.395 mm for a 5 mm width of defect. Therefore, this validates that the technique can be potentially utilized in the remote defect detection of thin copper plates.

3.
Sensors (Basel) ; 24(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38544053

RESUMEN

The carbon-fiber-reinforced polymer (CFRP) bending structure is widely used in aviation. The emergence and spread of delamination damage will decrease the safety of in-service bending structures. Lamb waves can effectively identify delamination damage as a high-damage-sensitivity detection tool. For this present study, the signal difference coefficient (SDC) was introduced to quantify delamination damage and evaluate the sensitivity of A0-mode and S0-mode Lamb waves to delamination damage. The simulation results show that compared with the S0-mode Lamb wave, the A0-mode Lamb wave exhibits higher delamination damage sensitivity. The delamination damage can be quantified based on the strong correlation between the SDC and the delamination damage size. The control effect of the linear array PZT phase time-delay method on the Lamb wave mode was investigated by simulation. The phase time-delay method realizes the generation of a single-mode Lamb wave, which can separately excite the A0-mode and S0-mode Lamb wave to identify delamination damage of different sizes. The A0-mode Lamb wave was excited by the developed one-dimensional miniaturized linear comb transducer (LCT), which was used to conduct the detection experiment on the CFRP bending plate with delamination damage sizes of Φ6.0 mm, Φ10.0 mm, and Φ15.0 mm. The experimental results verify the correctness of the simulation. According to the Hermite interpolation results of the finite-element simulation data, the relationship between the delamination damage size and the SDC was fitted by the Gaussian function and Rational function, which can accurately quantify the delamination damage. The absolute error of the delamination damage quantification with Gaussian and Rational fitting expression does not exceed 0.8 mm and 0.7 mm, and the percentage error is not more than 8% and 7%. The detection and signal processing methods employed in the present research are easy to operate and implement, and accurate delamination damage quantification results have been obtained.

4.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36679513

RESUMEN

Guided waves have been extensively studied in the past few years, and more recently nonlinear guided waves have attracted significant research interest for their potential for early damage detection and material state characterization. Combined harmonic generation due to wave mixing can offer some advantages over second harmonic generation. However, studies focused on Lamb wave mixing are still very limited, and have mainly focused on collinear wave mixing and used plane wave assumption. In this paper, numerical simulations and experiments are conducted to understand the interaction of mixing non-collinear Lamb wave pulses with non-planar wavefronts. The results demonstrate that the generated secondary wave is cumulative under internal resonance conditions and the sum-frequency component of the combined harmonics is useful for characterizing material nonlinearities.


Asunto(s)
Dinámicas no Lineales , Simulación por Computador
5.
Sensors (Basel) ; 23(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631653

RESUMEN

Due to its multi-mode and dispersion characteristics, Lamb waves cause interference to signal processing, which profoundly limits their application in nondestructive testing. To resolve this issue, firstly, based on the traditional EMAT, a horizontal polarization periodic permanent magnet electromagnetic acoustic transducer (HP-PPM-EMAT) was proposed. A 2-D finite element model was then developed to compare magnetic flux density, Lorentz force, and signal strength between the traditional EMAT and the HP-PPM-EMAT. The simulation results show that the HP-PPM-EMAT enhances the A0 mode Lamb wave (A0 wave) and suppresses the S0 mode Lamb wave (S0 wave). Finally, the influence of structural parameters of the HP-PPM-EMAT on the total displacement amplitude ratio of A0 and S0 was investigated using orthogonal test theory, and the width of magnet units was improved based on the orthogonal test. The results show that the total displacement amplitude ratio of A0 to S0 of the improved HP-PPM-EMAT can be improved by a factor of 7.74 compared with that of the traditional Lamb wave EMAT, which can produce higher-purity A0 mode Lamb waves.

6.
Sensors (Basel) ; 23(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37896704

RESUMEN

The impact acoustic emission (AE) of plate structures is a transient stress wave generated by local materials under impact force that contains the state information of the impacted area. If the impact causes damage, the AE from material damage will be superimposed on the impact AE. Therefore, this paper details the direct extraction of damage-induced AEs from impact AEs for the health monitoring of plate structures. The damage-induced AE was analysed based on various aspects, including the cut-off range and propagation speed characteristics of the Lamb wave mode, the correlation between the force direction and the Lamb wave mode, and the impact damage process. According to these features, the damage-induced AE wave packets were extracted and verified via impact tests on epoxy glass fibreboards. The results demonstrated the feasibility of the proposed method for determining whether an impact causes damage via the direct extraction of the damage-induced AE from the impact AE.

7.
Sensors (Basel) ; 23(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37631596

RESUMEN

The ultrasonic guided lamb wave approach is an effective non-destructive testing (NDT) method used for detecting localized mechanical damage, corrosion, and welding defects in metallic pipelines. The signal processing of guided waves is often challenging due to the complexity of the operational conditions and environment in the pipelines. Machine learning approaches in recent years, including convolutional neural networks (CNN) and long short-term memory (LSTM), have exhibited their advantages to overcome these challenges for the signal processing and data classification of complex systems, thus showing great potential for damage detection in critical oil/gas pipeline structures. In this study, a CNN-LSTM hybrid model was utilized for decoding ultrasonic guided waves for damage detection in metallic pipelines, and twenty-nine features were extracted as input to classify different types of defects in metallic pipes. The prediction capacity of the CNN-LSTM model was assessed by comparing it to those of CNN and LSTM. The results demonstrated that the CNN-LSTM hybrid model exhibited much higher accuracy, reaching 94.8%, as compared to CNN and LSTM. Interestingly, the results also revealed that predetermined features, including the time, frequency, and time-frequency domains, could significantly improve the robustness of deep learning approaches, even though deep learning approaches are often believed to include automated feature extraction, without hand-crafted steps as in shallow learning. Furthermore, the CNN-LSTM model displayed higher performance when the noise level was relatively low (e.g., SNR = 9 or higher), as compared to the other two models, but its prediction dropped gradually with the increase of the noise.

8.
Sensors (Basel) ; 23(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37514579

RESUMEN

New designs based on S0 Lamb modes in AlN thin layer resonating structures coupled with the implementation of structural elements in SiO2, are theoretically analyzed by the Finite Element Method (FEM). This study compares the typical characteristics of different interdigital transducer (IDTs) configurations, involving either a continuous SiO2 cap layer, or structured SiO2 elements, showing their performance in the usual terms of electromechanical coupling coefficient (K2), phase velocity, and temperature coefficient of frequency (TCF), by varying structural parameters and boundary conditions. This paper shows how to reach temperature-compensated, high-performance resonator structures based on ribbon-structured SiO2 capping. The addition of a thin diamond layer can also improve the velocity and electromechanical coupling coefficient, while keeping zero TCF and increasing the solidity of the membranes. Beyond the increase in performance allowed by such resonator configurations, their inherent structure shows additional benefits in terms of passivation, which makes them particularly relevant for sensing applications in stern environments.

9.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36991893

RESUMEN

Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser ultrasonic Lamb wave detection method (LU-LDM), signals can be detected over long distances without physical contact. Additionally, this technology offers excellent flexibility in designing the measurement point distribution. The characteristics of LU-LDM are first analyzed in this review, specifically in terms of laser ultrasound and hardware configuration. Next, the methods are categorized based on three criteria: the quantity of collected wavefield data, the spectral domain, and the distribution of measurement points. The advantages and disadvantages of multiple methods are compared, and the suitable conditions for each method are summarized. Thirdly, we summarize four combined methods that balance detection efficiency and accuracy. Finally, several future development trends are suggested, and the current gaps and shortcomings in LU-LDM are highlighted. This review builds a comprehensive framework for LU-LDM for the first time, which is expected to serve as a technical reference for applying this technology in large, thin-walled structures.

10.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36850581

RESUMEN

Acoustic emission (AE) testing and Lamb wave inspection techniques have been widely used in non-destructive testing and structural health monitoring. For thin plates, the AEs arising from structural defect development (e.g., fatigue crack propagation) propagate as Lamb waves, and Lamb wave modes can be used to provide important information about the growth and localisation of defects. However, few sensors can be used to achieve the in situ wavenumber-frequency modal decomposition of AEs. This study explores the ability of a new multi-element piezoelectric sensor array to decompose AEs excited by pencil lead breaks (PLBs) on a thin isotropic plate. In this study, AEs were generated by out-of-plane (transverse) and in-plane (longitudinal) PLBs applied at the edge of the plate, and waveforms were recorded by both the new sensor array and a commercial AE sensor. Finite element analysis (FEA) simulations of PLBs were also conducted and the results were compared with the experimental results. To identify the wave modes present, the longitudinal and transverse PLB test results recorded by the new sensor array at five different plate locations were compared with FEA simulations using the same arrangement. Two-dimensional fast Fourier Transforms were then applied to the AE wavefields. It was found that the AE modal composition was dependent on the orientation of the PLB direction. The results suggest that this new sensor array can be used to identify the AE wave modes excited by PLBs in both in-plane and out-of-plane directions.

11.
Entropy (Basel) ; 25(3)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36981308

RESUMEN

The constant-Q Gabor atom is developed for spectral power, information, and uncertainty quantification from time-frequency representations. Stable multiresolution spectral entropy algorithms are constructed with continuous wavelet and Stockwell transforms. The recommended processing and scaling method will depend on the signature of interest, the desired information, and the acceptable levels of uncertainty of signal and noise features. Selected Lamb wave signatures and information spectra from the 2022 Tonga eruption are presented as representative case studies. Resilient transformations from physical to information metrics are provided for sensor-agnostic signal processing, pattern recognition, and machine learning applications.

12.
Sensors (Basel) ; 22(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35957469

RESUMEN

The development of MEMS acoustic resonators meets the increasing demand for in situ detection with a higher performance and smaller size. In this paper, a lithium niobate film-based S1 mode Lamb wave resonator (HF-LWR) for high-sensitivity gravimetric biosensing is proposed. The fabricated resonators, based on a 400-nm X-cut lithium niobate film, showed a resonance frequency over 8 GHz. Moreover, a PMMA layer was used as the mass-sensing layer, to study the performance of the biosensors based on HF-LWRs. Through optimizing the thickness of the lithium niobate film and the electrode configuration, the mass sensitivity of the biosensor could reach up to 74,000 Hz/(ng/cm2), and the maximum value of figure of merit (FOM) was 5.52 × 107, which shows great potential for pushing the performance boundaries of gravimetric-sensitive acoustic biosensors.


Asunto(s)
Acústica , Técnicas Biosensibles , Electrodos , Diseño de Equipo , Vibración
13.
Sensors (Basel) ; 22(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35808308

RESUMEN

Quantitatively and accurately monitoring the damage to composites is critical for estimating the remaining life of structures and determining whether maintenance is essential. This paper proposed an active sensing method for damage localization and quantification in composite plates. The probabilistic imaging algorithm and the statistical method were introduced to reduce the impact of composite anisotropy on the accuracy of damage detection. The matching pursuit decomposition (MPD) algorithm was utilized to extract the precise TOF for damage detection. The damage localization was realized by comprehensively evaluating the damage probability evaluation results of all sensing paths in the monitoring area. Meanwhile, the scattering source was recognized on the elliptical trajectory obtained through the TOF of each sensing path to estimate the damage size. Damage size was characterized by the Gaussian kernel probability density distribution of scattering sources. The algorithm was validated by through-thickness hole damages of various locations and sizes in composite plates. The experimental results demonstrated that the localization and quantification absolute error are within 11 mm and 2.2 mm, respectively, with a sensor spacing of 100 mm. The algorithm proposed in this paper can accurately locate and quantify damage in composite plate-like structures.


Asunto(s)
Algoritmos , Diagnóstico por Imagen , Animales , Ovinos
14.
Sensors (Basel) ; 22(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36015928

RESUMEN

The present paper assessed the use of variable kinematic two-dimensional elements in the dynamic analysis of Lamb waves propagation in an isotropic plate with piezo-patches. The multi-field finite element model used in this work was based on the Carrera Unified Formulation which offers a versatile application enabling the model to apply the desired order theory. The used variable kinematic model allowed for the kinematic model to vary in space, thereby providing the possibility to implement a classical plate model in collaboration with a refined kinematic model in selected areas where higher order kinematics are needed. The propagation of the symmetric (S0) and the antisymmetric (A0) fundamental lamb waves in an isotropic strip was considered in both mechanical and piezo-elastic plate models. The convergence of the models was discussed for different kinematics approaches, under different mesh refinement, and under different time steps. The results were compared to the exact solution proposed in the literature in order to assess and further determine the effects of the different parameters used when dynamically modeling a Lamb wave propagating in such material. It was shown that the higher order kinematic models delivered a higher accuracy of the propagating wave evaluated using the corresponding Time Of Flight (TOF). Upon using the appropriate mesh refinement of 2000 elements and sufficient time steps of 4000 steps, the error between the TOF obtained analytically and numerically using a high order kinematics was found to be less than 1% for both types of fundamental Lamb waves S0 and A0. Node-dependent kinematics models were also exploited in wave propagation to decrease the computational cost and to study their effect on the accuracy of the obtained results. The obtained results show, in both the mechanical and the piezo-electric models, that a reduction in the computational cost of up to 50% can be easily attained using such models while maintaining an error inferior to 1%.

15.
Sensors (Basel) ; 22(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080886

RESUMEN

This paper presents the design and simulation of a mass sensitive Lamb wave microsensor with CMOS technology provided by SilTerra. In this work, the effects of the metalization ratio variation on the transmission gain, total harmonic distortion (THD), and two different resonant modes (around 66 MHz and 86 MHz) are shown. It has been found that the metalization ratio can be adjusted in order to obtain a compromise between transmission gain and sensitivity, depending on the design criteria. By adding a Si3N4 layer on top of the device, a five-fold improvement in transmission gain is reached. It was also shown that the transmission of the input differential IDT configuration is 20% more efficient than a single terminal. With this combination, the mass sensitivity is about 114 [cm2/gr].


Asunto(s)
Acústica , Simulación por Computador , Electrodos
16.
Sensors (Basel) ; 22(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36081104

RESUMEN

Lamb Wave (LW)-based structural health monitoring method is promising, but its main obstacle is damage assessment in varying environments. LW simulation based on piezoelectric transducers (referred to as PZTs) is an efficient and low-cost method. This paper proposes a multiphysics simulation method of LW propagation with the PZTs under temperature effect. The effect of temperature on LW propagation is considered from two aspects. On the one hand, temperature affects the material parameters of the structure, the adhesive layers and the PZTs. On the other hand, it is considered that the thermal stress caused by the inconsistency of thermal expansion coefficients among the structure, the adhesive layers, and the PZTs affect the piezoelectric constant of the PZTs. Based on the COMSOL Multiphysics, the mechanic-electric-thermal directly coupling simulation model under temperature effect is established. The simulation model consists of two steps. In the first step, the thermal-mechanic coupling is carried out to calculate the thermal stress, and the thermal stress effect is introduced into the piezoelectric constant model. In the second step, mechanic-electric coupling is carried out to simulate LW propagation, which considers the piezoelectric effect of the PZTs for the LW excitation and reception. The simulation results at -20 °C to 60 °C are obtained and compared to the experiment. The results show that the A0 and S0 mode of simulation signals match well with the experimental measurements. Additionally, the effect of temperature on LW propagation is consistent between simulation and experiment; that is, the amplitude increases, and the phase velocity decreases with the increment of temperature.


Asunto(s)
Electricidad , Transductores , Simulación por Computador , Temperatura
17.
Sensors (Basel) ; 23(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36616783

RESUMEN

Ultrasonic guided waves offer a convenient and practical approach to structural health monitoring and non-destructive evaluation. A key property of guided waves is the fully defined relationship between central frequency and propagation characteristics (phase velocity, group velocity and wavenumber)-which is described using dispersion curves. For many guided wave-based strategies, accurate dispersion curve information is invaluable, such as group velocity for localisation. From experimental observations of dispersion curves, a system identification procedure can be used to determine the governing material properties. As well as returning an estimated value, it is useful to determine the distribution of these properties based on measured data. A method of simulating samples from these distributions is to use the iterative Markov-Chain Monte Carlo (MCMC) procedure, which allows for freedom in the shape of the posterior. In this work, a scanning-laser Doppler vibrometer is used to record the propagation of Lamb waves in a unidirectional-glass-fibre composite plate, and dispersion curve data for various propagation angles are extracted. Using these measured dispersion curve data, the MCMC sampling procedure is performed to provide a Bayesian approach to determining the dispersion curve information for an arbitrary plate. The distribution of the material properties at each angle is discussed, including the inferred confidence in the predicted parameters. The percentage errors of the estimated values for the parameters were 10-15 points larger when using the most likely estimates, as opposed to calculating from the posterior distributions, highlighting the advantages of using a probabilistic approach.


Asunto(s)
Ondas Ultrasónicas , Teorema de Bayes
18.
Sensors (Basel) ; 22(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36366110

RESUMEN

The RAPID (reconstruction algorithm for probabilistic inspection of defect) method based on Lamb wave detection is an effective method to give the position information of a defect in composite plate. In this paper, an improved RAPID imaging method based on machine learning (ML) is proposed to precisely visualize the location and features of defects in composite plate. First, the specific feature information of the defect, such as type, size and direction, can be identified by analyzing the detection signals through multiple machine learning models. Then, according to the obtained defect features, the scaling parameter ß of the RAPID method which controls the size of the elliptical area is revised, and weights are set to the important detection paths which are related to defect features to realize precise defect imaging. The simulation results show that the proposed method can intuitively characterize the location and related feature information of the defect, and effectively improve the accuracy of defect imaging.

19.
Sensors (Basel) ; 22(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36081176

RESUMEN

Inspecting the sealing integrity of lead tabs is an important means of ensuring the reliability and safety of pouch-type lithium-ion (Li-ion) batteries with a thin multi-layered aluminum (Al) laminated film. This paper presents a new air-coupled ultrasonic non-destructive testing (NDT) inspection method based on leaky Lamb wave transmission; and reception for evaluating the sealing integrity between the lead tab and the Al pouch film. The proposed method uses the critical incidence angle between the air and the layer with the fastest Lamb wave velocity to maximize the signal-to-noise ratio in the through-transmission mode. To determine the critical incidence angle, phantom experiments with two test pieces (i.e., an Al tab and an Al tab sealed with an Al pouch film) are conducted. In addition, 2D scans are performed at various incidence angles for an inhouse pouch-type Li-ion battery with a 1-mm-wide foreign material inserted as a defect. At the critical incidence angle (i.e., 22°), the proposed air-coupled ultrasonic NDT method in through-transmission mode successfully identifies the shape and location of the defect through c-scan image reconstruction. These preliminary results indicate that the proposed air-coupled ultrasonic NDT method with leaky Lamb waves can be used to inspect the sealing integrity of Li-ion pouch batteries in dry test conditions.

20.
Sensors (Basel) ; 22(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684671

RESUMEN

Functionally graded materials (FGM) have received extensive attention in recent years due to their excellent mechanical properties. In this research, the theoretical process of calculating the propagation characteristics of Lamb waves in FGM sandwich plates is deduced by combining the FGM volume fraction curve and Legendre polynomial series expansion method. In this proposed method, the FGM plate does not have to be sliced into multiple layers. Numerical results are given in detail, and the Lamb wave dispersion curves are extracted. For comparison, the Lamb wave dispersion curve of the sliced layer model for the FGM sandwich plate is obtained by the global matrix method. Meanwhile, the FGM sandwich plate was subjected to finite element simulation, also based on the layered-plate model. The acoustic characteristics detection experiment was performed by simulation through a defocusing measurement. Thus, the Lamb wave dispersion curves were obtained by V(f, z) analysis. Finally, the influence of the change in the gradient function on the Lamb wave dispersion curves will be discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA