Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 327(2): C487-C504, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39010835

RESUMEN

Hypoxia is a critical factor contributing to a poor prognosis and challenging glioma therapy. Previous studies have indicated that hypoxia drives M2 polarization of macrophages and promotes cancer progression in various solid tumors. However, the more complex and diverse mechanisms underlying this process remain to be elucidated. Here, we aimed to examine the functions of hypoxia in gliomas and preliminarily investigate the underlying mechanisms of M2 macrophage polarization caused by hypoxia. We found that hypoxia significantly enhances the malignant phenotypes of U87 and U251 cells by regulating glycolysis. In addition, hypoxia mediated accumulation of the glycolysis product [lactic acid (LA)], which is subsequently absorbed by macrophages to induce its M2 polarization, and this process is reverted by both the glycolysis inhibitor and silenced monocarboxylate transporter (MCT-1) in macrophages, indicating that M2 macrophage polarization is associated with the promotion of glycolysis by hypoxia. Interestingly, we also found that hypoxia mediated LA accumulation in glioma cells upon uptake by macrophages upregulates H3K18La expression and promotes tumor necrosis factor superfamily member 9 (TNFSF9) expression in a histone-lactylation-dependent manner based on the results of chromatin immunoprecipitation sequencing (ChIP seq) enrichment analysis. Subsequent in vitro and in vivo experiments further indicated that TNFSF9 facilitated glioma progression. Mechanistically, hypoxia-mediated LA accumulation in glioma cells is taken up by macrophages and then induces its M2 macrophage polarization by regulating TNFSF9 expression via MCT-1/H3K18La signaling, thus facilitating the malignant progression of gliomas.NEW & NOTEWORTHY Our study revealed that hypoxia induces the production of LA accumulation through glycolysis in glioma cells, which is subsequently absorbed by macrophages and leads to its M2 polarization via the MCT-1/H3K18La/TNFSF9 axis, ultimately significantly promoting the malignant progression of glioma cells. These findings are novel and noteworthy as they provide insights into the connection between energy metabolism and epigenetics in gliomas.


Asunto(s)
Glioma , Histonas , Macrófagos , Glioma/patología , Glioma/metabolismo , Glioma/genética , Humanos , Animales , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Histonas/metabolismo , Línea Celular Tumoral , Glucólisis , Progresión de la Enfermedad , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Ratones Desnudos , Hipoxia de la Célula , Ácido Láctico/metabolismo , Regulación Neoplásica de la Expresión Génica , Activación de Macrófagos
2.
J Cell Mol Med ; 28(7): e18225, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38506082

RESUMEN

Circular RNAs (circRNAs) function as tumour promoters or suppressors in bladder cancer (BLCA) by regulating genes involved in macrophage recruitment and polarization. However, the underlying mechanisms are largely unknown. The aim of this study was to determine the biological role of circLOC729852 in BLCA. CircLOC729852 was upregulated in BLCA tissues and correlated with increased proliferation, migration and epithelial mesenchymal transition (EMT) of BCLA cells. MiR-769-5p was identified as a target for circLOC729852, which can upregulate IL-10 expression by directly binding to and suppressing miR-769-5p. Furthermore, our results indicated that the circLOC729852/miR-769-5p/IL-10 axis modulates autophagy signalling in BLCA cells and promotes the recruitment and M2 polarization of TAMs by activating the JAK2/STAT3 signalling pathway. In addition, circLOC729852 also promoted the growth of BLCA xenografts and M2 macrophage infiltration in vivo. Thus, circLOC729852 functions as an oncogene in BLCA by inducing secretion of IL-10 by the M2 TAMs, which then facilitates tumour cell growth and migration. Taken together, circLOC729852 is a potential diagnostic biomarker and therapeutic target for BLCA.


Asunto(s)
MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias de la Vejiga Urinaria/patología , Proliferación Celular/genética , Macrófagos/metabolismo
3.
J Neurophysiol ; 131(4): 598-606, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38380844

RESUMEN

The transplantation of neonatal microglia suppresses neuroinflammation caused by traumatic brain injury (TBI). This research aimed to explore the optimal time point of neonatal microglia transplantation for the best effect on the improvement of long-term cognitive function and inflammatory response in mouse models. qPCR and immunoblotting showed that the level of Iba1 gradually increased to the highest on day 7 and then gradually declined in TBI mice. Furthermore, it was observed that the level of CD86 and TNF-α increased to the highest after 7 days and subsequently was maintained until day 21, whereas the level of CD206 and IL-10 increased to the highest after 24 h and subsequently decreased until day 21 by qPCR and enzyme-linked immunosorbent assay. Afterward, it was shown that the neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and improved cognitive impairments in TBI mice. Mechanism exploration showed that the neonatal microglia could significantly decrease the level of cleaved caspase-3, M1/M2 polarization, and inflammatory cytokine (TNF-α) while increasing the level of anti-inflammatory factor IL-10 in TBI mice after transplantation within 1 h. Here, our findings demonstrated that neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and cognitive impairments caused by TBI.NEW & NOTEWORTHY The study demonstrated that neonatal microglia transplantation within 1 h significantly inhibited the pathogenesis of traumatic brain injury (TBI) in mouse models through inhibition of M1 polarization and promotion of M2 polarization.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Microglía , Ratones , Animales , Interleucina-10/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL
4.
Mol Cancer ; 23(1): 49, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459596

RESUMEN

Circular RNAs (circRNAs) play important roles in gastric cancer progression but the regulatory role of circRNAs in controlling macrophage function remains elusive. Exosomes serve as cargo for circRNAs and play a crucial role as mediators in facilitating communication between cancer cells and the tumor microenvironment. In this study, we found that circATP8A1, a previously unreported circular RNA, is highly expressed in both gastric cancer tissues and exosomes derived from plasma. Increased circATP8A1 was associated with advanced TNM stage and worse prognosis in patients with gastric cancer. We showed that  the circATP8A1 knockdown significantly inhibited gastric cancer proliferation and invasion in vitro and in vivo. Functionally, exosome circATP8A1 induced the M2 polarization of macrophages through the STAT6 pathway instead of the STAT3 pathway. Mechanistically, circATP8A1 was shown to activate the STAT6 pathway through competitive binding to miR-1-3p, as confirmed by Fluorescence In Situ Hybridization (FISH), RNA immunoprecipitation, RNA pulldown, and Luciferase reporter assays. The reversal of circATP8A1-induced STAT6 pathway activation and macrophage polarization was observed upon blocking miR-1-3p. Macrophages treated with exosomes from gastric cancer cells overexpressing circATP8A1 were able to promote gastric cancer migration, while knockdown of circATP8A1 reversed these effects in vivo. In summary, exosome-derived circATP8A1 from gastric cancer cells induce macrophages M2 polarization via the circATP8A1/miR-1-3p/STAT6 axis, and tumor progression. Our results highlight circATP8A1 as a potential prognostic biomarker and therapeutic target in gastric cancer.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular , Exosomas/genética , Hibridación Fluorescente in Situ , Macrófagos , MicroARNs/genética , ARN Circular/genética , Factor de Transcripción STAT6/genética , Neoplasias Gástricas/genética , Microambiente Tumoral
5.
Biochem Biophys Res Commun ; 696: 149455, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38176247

RESUMEN

Macrophages switch among different activation phenotypes according to distinct environmental stimuli, varying from pro-inflammatory (M1) to alternative (also named resolutive; M2) activation forms. M1-and M2-activated macrophages represent the two extremes of the activation spectrum involving multiple species, which vary in terms of function and the cytokines secreted. The consensus is that molecular characterization of the distinct macrophage population and the signals driving their activation will help in explaining disease etiology and formulating therapies. For instance, myeloid cells residing in the tumor microenvironment are key players in tumor progression and usually display an M2-like phenotype, which help tumor cells to evade local inflammatory processes. Therefore, these specific cells have been proposed as targets for tumor therapies by changing their activation profile. Furthermore, M2 polarized macrophages are phagocytic cells promoting tissue repair and wound healing and are therefore potential targets to treat different diseases. We have already shown that clotrimazole (CTZ) decreases tumor cell viability and thus tumor growth. The mechanism by which CTZ exerts its effects remains to be determined, but this drug is an inhibitor of the PI3K/AKT/mTOR pathway. In this study, we show that CTZ downregulated M2-activation markers in macrophages polarized to the M2 profile. This effect occurred without interfering with the expression of M1-polarized markers or pro-inflammatory cytokines and signaling. Moreover, CTZ suppressed NFkB pathway intermediates and disrupted PI3K/AKT/mTOR signaling. We concluded that CTZ reverses macrophage M2 polarization by disrupting the PI3K/AKT/mTOR pathway, which results in the suppression of NFkB induction of M2 polarization. In addition, we find that CTZ represents a promising therapeutic tool as an antitumor agent.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Clotrimazol/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , FN-kappa B/metabolismo , Activación de Macrófagos
6.
J Med Virol ; 96(7): e29819, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39030992

RESUMEN

Pregnant women represent a high-risk population for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. The presence of SARS-CoV-2 has been reported in placenta from infected pregnant women, but whether the virus influences placenta immune response remains unclear. We investigated the properties of maternal-fetal interface macrophages (MFMs) in a cohort of unvaccinated women who contracted coronavirus disease 2019 (COVID-19) during their pregnancy. We reported an infiltration of CD163+ macrophages in placenta from COVID-19 women 19 whereas lymphoid compartment was not affected. Isolated MFMs exhibited nonpolarized activated signature (NOS2, IDO1, IFNG, TNF, TGFB) mainly in women infected during the second trimester of pregnancy. COVID-19 during pregnancy primed MFM to produce type I and III interferon response to SARS-CoV-2 (Wuhan and δ strains), that were unable to elicit this in MFMs from healthy pregnant women. COVID-19 also primed SARS-CoV-2 internalization by MFM in an angiotensin-converting enzyme 2-dependent manner. Activation and recall responses of MFMs were influenced by fetal sex. Collectively, these findings support a role for MFMs in the local immune response to SARS-CoV-2 infection, provide a basis for protective placental immunity in COVID-19, and highlight the interest of vaccination in pregnant women.


Asunto(s)
COVID-19 , Macrófagos , Placenta , Complicaciones Infecciosas del Embarazo , SARS-CoV-2 , Humanos , Femenino , Embarazo , COVID-19/inmunología , COVID-19/virología , Placenta/inmunología , Placenta/virología , Macrófagos/inmunología , Macrófagos/virología , Complicaciones Infecciosas del Embarazo/virología , Complicaciones Infecciosas del Embarazo/inmunología , SARS-CoV-2/inmunología , Adulto , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Internalización del Virus
7.
Cell Commun Signal ; 22(1): 190, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521953

RESUMEN

BACKGROUND: Solid tumors promote tumor malignancy through interaction with the tumor microenvironment, resulting in difficulties in tumor treatment. Therefore, it is necessary to understand the communication between cells in the tumor and the surrounding microenvironment. Our previous study revealed the cancer malignancy mechanism of Bcl-w overexpressed in solid tumors, but no study was conducted on its relationship with immune cells in the tumor microenvironment. In this study, we sought to discover key factors in exosomes secreted from tumors overexpressing Bcl-w and analyze the interaction with the surrounding tumor microenvironment to identify the causes of tumor malignancy. METHODS: To analyze factors affecting the tumor microenvironment, a miRNA array was performed using exosomes derived from cancer cells overexpressing Bcl-w. The discovered miRNA, miR-6794-5p, was overexpressed and the tumorigenicity mechanism was confirmed using qRT-PCR, Western blot, invasion, wound healing, and sphere formation ability analysis. In addition, luciferase activity and Ago2-RNA immunoprecipitation assays were used to study the mechanism between miR-6794-5p and its target gene SOCS1. To confirm the interaction between macrophages and tumor-derived miR-6794-5p, co-culture was performed using conditioned media. Additionally, immunohistochemical (IHC) staining and flow cytometry were performed to analyze macrophages in the tumor tissues of experimental animals. RESULTS: MiR-6794-5p, which is highly expressed in exosomes secreted from Bcl-w-overexpressing cells, was selected, and it was shown that the overexpression of miR-6794-5p increased migratory ability, invasiveness, and stemness maintenance by suppressing the expression of the tumor suppressor SOCS1. Additionally, tumor-derived miR-6794-5p was delivered to THP-1-derived macrophages and induced M2 polarization by activating the JAK1/STAT3 pathway. Moreover, IL-10 secreted from M2 macrophages increased tumorigenicity by creating an immunosuppressive environment. The in vitro results were reconfirmed by confirming an increase in M2 macrophages and a decrease in M1 macrophages and CD8+ T cells when overexpressing miR-6794-5p in an animal model. CONCLUSIONS: In this study, we identified changes in the tumor microenvironment caused by miR-6794-5p. Our study indicates that tumor-derived miR-6794-5p promotes tumor aggressiveness by inducing an immunosuppressive environment through interaction with macrophage.


Asunto(s)
Exosomas , MicroARNs , Neoplasias , Animales , Neoplasias/genética , Bioensayo , Transporte Biológico , Linfocitos T CD8-positivos , MicroARNs/genética , Microambiente Tumoral
8.
Mol Biol Rep ; 51(1): 235, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38282090

RESUMEN

Gliomas, the most common malignant brain tumor, present a grim prognosis despite available treatments such as surgical resection, temozolomide (TMZ) therapy, and radiation therapy. This is due to their aggressive growth, high level of immunosuppression, and the blood-brain barrier (BBB), which obstruct the effective exchange of therapeutic drugs. Gliomas can significantly affect differentiation and function of immune cells by releasing extracellular vesicles (EVs), resulting in a systemic immunosuppressive state and a highly immunosuppressive microenvironment. In the tumor immune microenvironment (TIME), the primary immune cells are regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs). In particular, glioma-associated TAMs are chiefly composed of monocyte-derived macrophages and brain-resident microglia. These cells partially exhibit characteristics of a pro-tumorigenic, anti-inflammatory M2-type. Glioma-derived EVs can hijack TAMs to differentiate into tumor-supporting phenotypes or directly affect the maturation of peripheral blood monocytes (PBMCs) and promote the activation of MDSCs. In addition, EVs impair the ability of dendritic cells (DCs) to process antigens, subsequently hindering the activation of lymphocytes. EVs also impact the proliferation, differentiation, and activation of lymphocytes. This is primarily evident in the overall reduction of CD4 + helper T cells and CD8 + T cells, coupled with a relative increase in Tregs, which possess immunosuppressive characteristics. This study investigates thoroughly how tumor-derived EVs impair the function of immune cells and enhance immunosuppression in gliomas, shedding light on their potential implications for immunotherapy strategies in glioma treatment.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Glioma , Humanos , Glioma/genética , Terapia de Inmunosupresión , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Macrófagos , Microambiente Tumoral/genética
9.
J Biochem Mol Toxicol ; 38(9): e23816, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39185902

RESUMEN

Reperfusion strategies, the standard therapy for acute myocardial infarction (AMI), may result in ischemia/reperfusion (I/R) damage. Suppressor of cytokine signaling1 (SOCS1) exerts a cardioprotective function in myocardial I/R damage. Here, we investigated epigenetic modulators that deregulate SOCS1 in cardiomyocytes under hypoxia/reoxygenation (H/R) conditions. Human AC16 cardiomyocytes were exposed to H/R conditions to generate a cell model of myocardial I/R damage. Expression of mRNA and protein was detected by quantitative PCR and western blot analysis, respectively. Cell migratory and invasive abilities were evaluated by transwell assay. Cell apoptosis and M2 macrophage polarization were assessed by flow cytometry. TNF-α, IL-1ß, and IL-6 levels were examined by ELISA. The interaction of KLF4 with SOCS1 was verified by chromatin immunoprecipitation and luciferase assays. SOCS1 and transcription factor KLF4 protein levels were underexpressed by 75% and 57%, respectively, in H/R-exposed AC16 cardiomyocytes versus control cells. Under H/R conditions, forced SOCS1 expression (2.7 times) induced cell migration (2.2 times) and invasion (1.9 times) and hindered cell apoptosis (by 45%) of AC16 cardiomyocytes as well as enhanced M2 macrophage polarization (4.6 times). Mechanistically, KLF4 upregulation promoted SOCS1 transcription (2.6 times) and expression (2.6 times) by binding to the SOCS1 promoter. Decrease of SOCS1 (by 51%) reversed the effects of KLF4 upregulation on cardiomyocyte migration, invasion and apoptosis, and M2 macrophage polarization under H/R conditions. Additionally, SOCS1 and KLF4 were underexpressed by 56% and 63%, respectively, in AMI serum. Our study indicates that KLF4-induced upregulation of SOCS1 can attenuate H/R-triggered apoptosis of AC16 cardiomyocytes and enhance M2 macrophage polarization.


Asunto(s)
Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Macrófagos , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Proteína 1 Supresora de la Señalización de Citocinas , Regulación hacia Arriba , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Macrófagos/metabolismo , Línea Celular , Apoptosis
10.
J Biochem Mol Toxicol ; 38(4): e23686, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38549433

RESUMEN

Part of human long noncoding RNAs (lncRNAs) has been elucidated to play an essential role in the carcinogenesis and progression of hepatocellular carcinoma (HCC), a type of malignant tumor with poor outcomes. Tumor-derived exosomes harboring lncRNAs have also been implicated as crucial mediators to orchestrate biological functions among neighbor tumor cells. The recruitment of tumor-associated macrophages (TAMs) exerting M2-like phenotype usually indicates the poor prognosis. Yet, the precise involvement of tumor-derived lncRNAs in cross-talk with environmental macrophages has not been fully identified. In this study, we reported the aberrantly overexpressed HCC upregulated EZH2-associated lncRNA (HEIH) in tumor tissues and cell lines was positively correlated with poor prognosis, as well as enriched exosomal HEIH levels in blood plasma and cell supernatants. Besides, HCC cell-derived exosomes transported HEIH into macrophages for triggering macrophage M2 polarization, thereby in turn promoting the proliferation, migration, and invasion of HCC cells. Mechanistically, HEIH acted as a miRNA sponge for miR-98-5p to up-regulate STAT3, which was then further verified in the tumor xenograft models. Collectively, our study provides the evidence for recognizing tumor-derived exosomal lncRNA HEIH as a novel regulatory function through targeting miR-98-5p/STAT3 axis in environmental macrophages, which may shed light on the complicated tumor microenvironment among tumor and immune cells for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Macrófagos/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
11.
Bioorg Chem ; 150: 107493, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38870703

RESUMEN

2. This research investigates the impact of the EGCG-CSH/n-HA/CMC composite material on bone defect repair, emphasizing its influence on macrophage polarization and osteogenic differentiation of BMSCs. Comprehensive evaluations of the composite's physical and chemical characteristics were performed. BMSC response to the material was tested in vitro for proliferation, migration, and osteogenic potential. An SD rat model was employed for in vivo assessments of bone repair efficacy. Both transcriptional and proteomic analyses were utilized to delineate the mechanisms influencing macrophage behavior and stem cell differentiation. The material maintained excellent structural integrity and significantly promoted BMSC functions critical to bone healing. In vivo results confirmed accelerated bone repair, and molecular analysis highlighted the role of macrophage M2 polarization, particularly through changes in the SIRPA gene and protein expression. EGCG-CSH/n-HA/CMC plays a significant role in enhancing bone repair, with implications for macrophage and BMSC function. Our findings suggest that targeting SIRPA may offer new therapeutic opportunities for bone regeneration.


Asunto(s)
Catequina , Diferenciación Celular , Macrófagos , Osteogénesis , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/citología , Animales , Catequina/farmacología , Catequina/análogos & derivados , Catequina/química , Ratas , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología
12.
Biochem Genet ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536567

RESUMEN

Papillary thyroid carcinoma (PTC), comprising 85% of all thyroid cancers, is an epithelial malignancy. The potential for malignant transformation in normal cells by thyroid cancer cells via exosomal Annexin A1 (ANXA1) delivery is investigated in this study. Our aim is to determine the impact of PTC cells on macrophage polarization through exosomal ANXA1 secretion and its implications for tumor progression. Exosomes in PTC cells were examined using transmission electron microscopy, exosome labeling, and nanoparticle tracking analysis. Real-time quantitative polymerase chain reaction was employed to quantify gene expression levels. Protein levels were determined through Western blot analysis. The interplay between genes was assessed using luciferase reporter and RNA pull-down assays. Functional experiments were conducted to investigate PTC cell proliferation and apoptosis. Our findings reveal that ANXA1 promotes PTC cell proliferation and inhibits apoptosis. Exosomes derived from PTC cells were found to promote macrophage M2 polarization. ANXA1 stimulates M2 polarization through the activation of the PI3K/AKT pathway. MicroRNA-374a-5p (miR-374a-5p) and microRNA-374b-5p (miR-374b-5p) were identified as inhibitors of ANXA1 expression and PI3K/AKT pathway activity, thereby inhibiting macrophage M2 polarization. Furthermore, miR-374a-5p and miR-374b-5p were observed to suppress PTC cell proliferation through their regulatory action on ANXA1. Our study suggests that miR-374a/b-5p inhibits PTC cell growth by blocking the macrophage M2 polarization induced by exosomal ANXA1.

13.
J Integr Neurosci ; 23(10): 185, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39473153

RESUMEN

BACKGROUND: Luteolin is a natural flavonoid and its neuroprotective and anti-inflammatory effects have been confirmed to mitigate neurodegeneration. Despite these findings, the underlying mechanisms responsible for these effects remain unclear. Toll-like receptor 4 (TLR4) is widely distributed in microglia and plays a pivotal role in neuroinflammation and neurodegeneration. Here studies are outlined that aimed at determining the mechanisms responsible for the anti-inflammatory and neuroprotective actions of luteolin using a rodent model of Parkinson's disease (PD) and specifically focusing on the role of TLR4 in this process. METHODS: The mouse model of PD used in this experiment was established through a single injection of lipopolysaccharide (LPS). Mice were then subsequently randomly allocated to either the luteolin or vehicle-treated group, then motor performance and dopaminergic neuronal injury were evaluated. BV2 microglial cells were treated with luteolin or vehicle saline prior to LPS challenge. MRNA expression of microglial specific marker ionized calcium-binding adapter molecule 1 (IBA-1) and M1/M2 polarization markers, as well as the abundance of indicated pro-inflammatory cytokines in the mesencephalic tissue and BV2 were quantified by real time-polymerase chain reaction (RT-PCR) and Enzyme-linked Immunosorbent Assay (ELISA), respectively. Cell viability and apoptosis of neuron-like PC12 cell line co-cultured with BV2 were detected. TLR4 RNA transcript and protein abundance in mesencephalic tissue and BV2 cells were detected. Nuclear factor kappa-gene binding (NF-κB) p65 subunit phosphorylation both in vitro and in vivo was evaluated by immunoblotting. RESULTS: Luteolin treatment induced functional improvements and alleviated dopaminergic neuronal loss in the PD model. Luteolin inhibited apoptosis and promoted cell survival in PC12 cells. Luteolin treatment shifted microglial M1/M2 polarization towards an anti-inflammatory M2 phenotype both in vitro and in vivo. Finally, it was found that luteolin treatment significantly downregulated both TLR4 mRNA and protein expression as well as restraining NF-κB p65 subunit phosphorylation. CONCLUSIONS: Luteolin restrained dopaminergic degeneration in vitro and in vivo by blocking TLR4-mediated neuroinflammation.


Asunto(s)
Neuronas Dopaminérgicas , Luteolina , Microglía , Fármacos Neuroprotectores , Receptor Toll-Like 4 , Animales , Luteolina/farmacología , Luteolina/administración & dosificación , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Ratas , Células PC12 , Lipopolisacáridos/farmacología , Degeneración Nerviosa/tratamiento farmacológico , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Antiinflamatorios/farmacología
14.
J Integr Neurosci ; 23(2): 26, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38419440

RESUMEN

BACKGROUND: Microglia-mediated neuroinflammation is a hallmark of neurodegeneration. Metabotropic glutamate receptor 8 (GRM8) has been reported to promote neuronal survival in neurodegenerative diseases, yet the effect of GRM8 on neuroinflammation is still unclear. Calcium overload-induced endoplasmic reticulum (ER)-mitochondrial miscommunication has been reported to trigger neuroinflammation in the brain. The aim of this study was to investigate putative anti-inflammatory effects of GRM8 in microglia, specifically focusing on its role in calcium overload-induced ER stress and mitochondrial dysfunction. METHODS: BV2 microglial cells were pretreated with GRM8 agonist prior to lipopolysaccharide administration. Pro-inflammatory cytokine levels and the microglial polarization state in BV2 cells were then quantified. Cellular apoptosis and the viability of neuron-like PC12 cells co-cultured with BV2 cells were examined using flow cytometry and a Cell Counting Kit-8, respectively. The concentration of cAMP, inositol-1,4,5-triphosphate receptor (IP3R)-dependent calcium release, ER Ca2+ concentration, mitochondrial function as reflected by reactive oxygen species levels, ATP production, mitochondrial membrane potential, expression of ER stress-sensing protein, and phosphorylation of the nuclear factor kappa B (NF-κB) p65 subunit were also quantified in BV2 cells. RESULTS: GRM8 activation inhibited pro-inflammatory cytokine release and shifted microglia polarization towards an anti-inflammatory-like phenotype in BV2 cells, as well as promoting neuron-like PC12 cell survival when co-cultured with BV2 cells. Mechanistically, microglial GRM8 activation significantly inhibited cAMP production, thereby desensitizing the IP3R located within the ER. This process markedly limited IP3R-dependent calcium release, thus restoring mitochondrial function while inhibiting ER stress and subsequently deactivating NF-κB signaling. CONCLUSIONS: Our results indicate that GRM8 activation can protect against microglia-mediated neuroinflammation by attenuating ER stress and mitochondrial dysfunction, and that IP3R-mediated calcium signaling may play a vital role in this process. GRM8 may thus be a potential target for limiting neuroinflammation.


Asunto(s)
Microglía , Enfermedades Mitocondriales , Receptores de Glutamato Metabotrópico , Ratas , Animales , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias , Calcio/metabolismo , Citocinas/metabolismo , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Estrés del Retículo Endoplásmico , Enfermedades Mitocondriales/metabolismo
15.
Phytother Res ; 38(4): 1745-1760, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37740455

RESUMEN

Diabetic cardiomyopathy (DCM) is a cardiac complication resulting from long-term uncontrolled diabetes, characterized by myocardial fibrosis and abnormal cardiac function. This study aimed at investigating the potential of ginsenoside RG1 (RG1)-induced mesenchymal stem cells (MSCs) in alleviating DCM. A DCM mouse model was constructed, and the effects of RG1-induced MSCs on myocardial function and fibrosis in diabetic mice were evaluated. RG1-induced MSCs were cocultured with high glucose-treated fibroblasts for subsequent functional and mechanism assays. It was discovered that RG1-induced MSCs secrete exosomes that induce macrophage M2 polarization. Mechanistically, exosomes derived from RG1-induced MSCs transferred circNOTCH1 into macrophages, activating the NOTCH signaling pathway. A competing endogenous RNA (ceRNA) regulatory axis consisting of circNOTCH1, miR-495-3p, and NOTCH1 was found to contribute to DCM alleviation.. This study unveiled that exosomal circNOTCH1 secreted by RG1-induced MSCs can alleviate DCM by activating the NOTCH signaling pathway to induce macrophage M2 polarization. This finding may contribute to the development of new therapeutic approaches for DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ginsenósidos , Células Madre Mesenquimatosas , MicroARNs , Ratones , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Macrófagos/metabolismo , MicroARNs/genética
16.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928412

RESUMEN

Renal cell carcinoma (RCC) is one of the most common malignant tumors of the kidney, presenting significant challenges for clinical diagnosis and treatment. Macrophages play crucial roles in RCC, promoting tumor progression and warranting further investigation. Previous studies have identified LHFPL2 as a transmembrane protein associated with reproduction, but its relationship with tumors or macrophages has not been discussed. This study utilized transcriptomic sequencing data from 609 KIRC patients in the TCGA database and single-cell sequencing data from 34,326 renal carcinoma cells for subsequent analysis. We comprehensively evaluated the expression of LHFPL2 and its relationship with clinical features, tumor prognosis, immune infiltration, and mutations. Additionally, we further assessed the correlation between LHFPL2 and macrophage M2 polarization using single-cell data and explored its potential as a cancer therapeutic target through molecular docking. The results demonstrated that LHFPL2 is upregulated in RCC and associated with poor survival rates. In clinical staging, the proportion of malignant and high-metastasis patients was higher in the high-LHFPL2 group than in the low-LHFPL2 group. Furthermore, we found that LHFPL2 influences RCC immune infiltration, with its expression positively correlated with various immune checkpoint and M2-related gene expressions, positively associated with M2 macrophage infiltration, and negatively correlated with activated NK cells. Moreover, LHFPL2 showed specific expression in macrophages, with the high-expression subgroup exhibiting higher M2 polarization, hypoxia, immune evasion, and angiogenesis scores, promoting tumor progression. Finally, we predicted several potential drugs targeting LHFPL2, such as conivaptan and nilotinib. Our analysis elaborately delineates the immune characteristics of LHFPL2 in the tumor microenvironment and its positive correlation with macrophage M2 polarization, providing new insights into tumor immunotherapy. We also propose potential FDA-approved drugs targeting this gene, which should be tested for their binding effects with LHFPL2 in future studies.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Neoplasias Renales , Macrófagos , Femenino , Humanos , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/inmunología , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Simulación del Acoplamiento Molecular , Pronóstico , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
17.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542481

RESUMEN

Considerable advances have been made in lung cancer therapies, but there is still an unmet clinical need to improve survival for lung cancer patients. Immunotherapies have improved survival, although only 20-30% of patients respond to these treatments. Interestingly, cancers with mutations in Kelch-like ECH-associated protein 1 (KEAP1), the negative regulator of the nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, are resistant to immune checkpoint inhibition and correlate with decreased lymphoid cell infiltration. NRF2 is known for promoting an anti-inflammatory phenotype when activated in immune cells, but the study of NRF2 activation in cancer cells has not been adequately assessed. The objective of this study was to determine how lung cancer cells with constitutive NRF2 activity interact with the immune microenvironment to promote cancer progression. To assess, we generated CRISPR-edited mouse lung cancer cell lines by knocking out the KEAP1 or NFE2L2 genes and utilized a publicly available single-cell dataset through the Gene Expression Omnibus to investigate tumor/immune cell interactions. We show here that KEAP1-mutant cancers promote immunosuppression of the tumor microenvironment. Our data suggest KEAP1 deletion is sufficient to alter the secretion of cytokines, increase expression of immune checkpoint markers on cancer cells, and alter recruitment and differential polarization of immunosuppressive macrophages that ultimately lead to T-cell suppression.


Asunto(s)
Neoplasias Pulmonares , Animales , Humanos , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Pulmón/patología , Neoplasias Pulmonares/patología , Factor 2 Relacionado con NF-E2/metabolismo , Fenotipo , Microambiente Tumoral/genética
18.
Pharm Biol ; 62(1): 162-169, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38327157

RESUMEN

CONTEXT: Jian Gan powder (JGP) is a Chinese medicine compound comprised ginseng, Radix Paeoniae Alba, Radix Astragali, Salvia miltiorrhiza, Yujin, Rhizoma Cyperi, Fructus aurantii, Sophora flavescens, Yinchen, Bupleurum and licorice. OBJECTIVE: This study explored the inhibitory effects, polarization and potential mechanisms associated with JGP in macrophages. MATERIALS AND METHODS: RAW264.7 cells were randomly divided into six groups for 24 h: control, lipopolysaccharide (LPS), overexpression, 1% JGP, 2% JGP, 4% JGP, 8% JGP and 16% JGP. The effects of JGP on RAW264.7 cell proliferation were assessed using colony formation assays and cell counting kit-8 (CCK-8) assays. The Transwell assay was used to evaluate its impact on RAW264.7 cell migration. Moreover, we analysed the interleukin-6 (IL-6)/signal transducer and activator of the transcription 3 (IL-6/STAT3) signaling pathway using quantitative real-time PCR and Western blotting. Furthermore, we examined the M1/M2 polarization levels. RESULTS: Unlike LPS stimulation, JGP serum treatment markedly suppressed macrophage proliferation and migration capacity, while STAT3 overexpression enhanced RAW264.7 cell proliferation and migration. JGP inhibited the proliferation and migration of RAW264.7 cells by attenuating the IL-6/STAT3 signaling pathway. Furthermore, it inhibited macrophage M1 polarization, promoting M2 polarization. DISCUSSION AND CONCLUSIONS: JGP effectively suppressed the cellular function of RAW264.7 cells by down-regulating the IL-6/STAT3 signaling pathway and modulating macrophage M1/M2 polarization. These findings provide valuable theoretical and experimental basis for considering the potential clinical application of JGP in the treatment of immune-mediated liver injury in clinical practice.


Asunto(s)
Interleucina-6 , Lipopolisacáridos , Polvos/metabolismo , Polvos/farmacología , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Proliferación Celular
19.
J Cell Mol Med ; 27(24): 4133-4144, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37864310

RESUMEN

Cisplatin (CDDP) chemoresistance is one of the predominant factors in oral squamous cell carcinoma (OSCC) treatment failure. Uncovering the mechanisms underlying CDDP resistance is of great importance in OSCC therapy. Circular RNAs (circRNAs) are a newly discovered class of noncoding RNAs, which are reported to participate in the progression of various diseases, including cancer. However, the function of circRNAs in CDDP resistance in OSCC remains unclear. Quantitative reverse transcription PCR was used to search for different circRNAs between OSCC cell lines and CDDP-resistant cell lines. The results showed that circ-ILF2 expression was higher in CDDP-resistant OSCC cell lines. The stability of circ-ILF2 was also confirmed using RNase R and actinomycin D assays. Functional experiments, including cytotoxicity, apoptosis and growth rate assays, showed that upregulation of circ-ILF2 contributes to CDDP resistance. Luciferase reporter-gene, RNA pull-down and quantitative real-time PCR (RT-qPCR) assays showed that circ-ILF2 functions as a microRNA sponge for miR-1252. Luciferase reporter assays, RNA pull-down, RT-qPCR and Western blotting showed that miR-1252 directly targeted and regulated the expression of KLF8. Circ-ILF2 plays an important role in CDDP resistance in OSCC. Circ-ILF2 exerts its function through the miR-1252/KLF8 pathway. In addition, tumour-associated macrophages (TAM) play important roles in cancer progressions, our results showed that circ-ILF2 in OSCC cells induced the M2 polarization of macrophages which provided new thoughts on immunotherapy. Our results suggest that circ-ILF2 may represent a potential therapeutic target in CDDP-resistant OSCC.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , ARN Circular , Carcinoma de Células Escamosas de Cabeza y Cuello , ARN Circular/genética , ARN Circular/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Macrófagos/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/fisiopatología , Polaridad Celular/genética , Humanos
20.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L270-L276, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37401390

RESUMEN

Pro-proliferative, M2-like polarization of macrophages is a critical step in the development of fibrosis and remodeling in chronic lung diseases such as pulmonary fibrosis and pulmonary hypertension. Macrophages in healthy and diseased lungs express gremlin 1 (Grem1), a secreted glycoprotein that acts in both paracrine and autocrine manners to modulate cellular function. Increased Grem1 expression plays a central role in pulmonary fibrosis and remodeling, however, the role of Grem1 in M2-like polarization of macrophages has not previously been explored. The results reported here show that recombinant Grem1 potentiated M2-like polarization of mouse macrophages and bone marrow-derived macrophages (BMDMs) in response to the Th2 cytokines IL4 and IL13. Genetic depletion of Grem1 in BMDMs inhibited M2 polarization while exogenous gremlin 1 could partially rescue this effect. Taken together, these findings reveal that gremlin 1 is required for M2-like polarization of macrophages.NEW & NOTEWORTHY We show here that gremlin 1 potentiated M2 polarization of mouse bone marrow-derived macrophages (BMDMs) in response to the Th2 cytokines IL4 and IL13. Genetic depletion of Grem1 in BMDMs inhibited M2 polarization while exogenous gremlin 1 partially rescued this effect. Taken together, these findings reveal a previously unknown requirement for gremlin 1 in M2 polarization of macrophages and suggest a novel cellular mechanism promoting fibrosis and remodeling in lung diseases.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Interleucina-4/genética , Interleucina-4/farmacología , Interleucina-4/metabolismo , Interleucina-13/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA