Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; : 1-31, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915217

RESUMEN

Microscopic plastic (microplastic) pollutants threaten the earth's biodiversity and ecosystems. As a result of the progressive fragmentation of oversized plastic containers and products or manufacturing in small sizes, microplastics (particles of a diameter of 5 mm with no lower limit) are used in medicines, personal care products, and industry. The incidence of microplastics is found everywhere in the air, marine waters, land, and even food that humans and animals consume. One of the greatest concerns is the permanent damage that is created by plastic waste to our fragile ecosystem. The impossibility of the complete removal of all microplastic contamination from the oceans is one of the principal tasks of our governing body, research scientists, and individuals. Implementing the necessary measures to reduce the levels of plastic consumption is the only way to protect our environment. Cutting off the plastic flow is the key remedy to reducing waste and pollution, and such an approach could show immense significance. This review offers a comprehensive exploration of the various aspects of microplastics, encompassing their composition, types, properties, origins, health risks, and environmental impacts. Furthermore, it delves into strategies for comprehending the dynamics of microplastics within oceanic ecosystems, with a focus on averting their integration into every tier of the food chain.

2.
Waste Manag Res ; 42(4): 344-351, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37277997

RESUMEN

Marine litter is a growing environmental problem for which fisheries-sourced waste remains poorly understood. In Peru, there is an ongoing challenge of waste management from the small-scale fisheries fleet given the lack of facilities to receive the variety of debris produced by fishers, which includes hazardous wastes such as batteries. In this study, onboard solid waste production was monitored daily by land-based observers upon landing at the port of Salaverry, Peru, from March to September 2017. The analysed small-scale gillnet and longline fishing fleets produced annually an estimated 11,260 kg of solid waste. Of particular concern is the production of single use plastics (3427 kg) and batteries (861 kg) due to their potential long-lasting impacts on the environment and challenges related to their proper disposal. A management plan for solid waste has been developed for Salaverry; therefore, a subsequent assessment was conducted in 2021-2022 of the behaviours and perceptions of fishers regarding the implementation of this plan. Most fishers (96%) reported disposing of their waste on land, except organic waste which is disposed of at sea. While fishers in Salaverry have become more conscious of the issues surrounding at-sea waste disposal and have an interest in better segregating and managing their waste, there remains a need for improved waste management and recycling protocols and procedures at the port to make this possible.


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Explotaciones Pesqueras , Perú , Residuos Peligrosos , Plásticos , Residuos
3.
Environ Sci Technol ; 57(46): 18162-18171, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37319331

RESUMEN

Disposal of industrial and hazardous waste in the ocean was a pervasive global practice in the 20th century. Uncertainty in the quantity, location, and contents of dumped materials underscores ongoing risks to marine ecosystems and human health. This study presents an analysis of a wide-area side-scan sonar survey conducted with autonomous underwater vehicles (AUVs) at a dump site in the San Pedro Basin, California. Previous camera surveys located 60 barrels and other debris. Sediment analysis in the region showed varying concentrations of the insecticidal chemical dichlorodiphenyltrichloroethane (DDT), of which an estimated 350-700 t were discarded in the San Pedro Basin between 1947 and 1961. A lack of primary historical documents specifying DDT acid waste disposal methods has contributed to the ambiguity surrounding whether dumping occurred via bulk discharge or containerized units. Barrels and debris observed during previous surveys were used for ground truth classification algorithms based on size and acoustic intensity characteristics. Image and signal processing techniques identified over 74,000 debris targets within the survey region. Statistical, spectral, and machine learning methods characterize seabed variability and classify bottom-type. These analytical techniques combined with AUV capabilities provide a framework for efficient mapping and characterization of uncharted deep-water disposal sites.


Asunto(s)
Ecosistema , Eliminación de Residuos , Humanos , DDT , Algoritmos , Océanos y Mares
4.
Environ Sci Technol ; 57(28): 10373-10381, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37347705

RESUMEN

Hurricane Katrina (category 5 with maximum wind of 280 km/h when the eye is in the central Gulf of Mexico) made landfall near New Orleans on August 29, 2005, causing millions of cubic meters of disaster debris, severe flooding, and US$125 billion in damage. Yet, despite numerous reports on its environmental and economic impacts, little is known about how much debris has entered the marine environment. Here, using satellite images (MODIS, MERIS, and Landsat), airborne photographs, and imaging spectroscopy, we show the distribution, possible types, and amount of Katrina-induced debris in the northern Gulf of Mexico. Satellite images collected between August 30 and September 19 show elongated image features around the Mississippi River Delta in a region bounded by 92.5°W-87.5°W and 27.8°N-30.25°N. Image spectroscopy and color appearance of these image features indicate that they are likely dominated by driftwood (including construction lumber) and dead plants (e.g., uprooted marsh) and possibly mixed with plastics and other materials. The image sequence shows that if aggregated together to completely cover the water surface, the maximal debris area reached 21.7 km2 on August 31 to the east of the delta, which drifted to the west following the ocean currents. When measured by area in satellite images, this perhaps represents a historical record of all previously reported floating debris due to natural disasters such as hurricanes, floodings, and tsunamis.


Asunto(s)
Tormentas Ciclónicas , Desastres , Golfo de México , Inundaciones , Mississippi
5.
Anal Bioanal Chem ; 415(15): 2873-2890, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37036484

RESUMEN

There is growing concern from scientists, policy makers, and the public about the contamination of natural and indoor environments with plastics, particularly micro/nanoplastics. Typically, characterizing microplastics in environmental samples requires extensive sample processing to isolate particles, followed by spectroscopic methodologies to identify particle polymer composition. Spectroscopic techniques are limited in their ability to provide polymer mass or advanced chemical composition (e.g., chemical additive content), which are important for toxicological assessments. To achieve mass fraction quantification and chemical characterization of plastics in environmental samples, many researchers have turned to thermoanalytical spectrometric approaches, particularly pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Sample preparation for Py-GC/MS may be approached similarly to techniques needed for spectroscopic approaches (e.g., isolate particles on a filter), employ pressurized solvent extraction, or use ultrafiltration techniques to concentrate nanoplastics. Great strides have been made in using calibration curves to quantify plastics in complex matrices. However, the approaches to the pyrolysis thermal program, as well as calibrant and sample preparation, are inconsistent, requiring refinement and harmonization. This review provides a critical synthesis of previous Py-GC/MS work and highlights opportunities for novel and improved Py-GC/MS analysis of plastics in the future.

6.
Environ Monit Assess ; 195(2): 255, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592237

RESUMEN

The occurrence and characterization of marine debris on beaches bring opportunities to track back the anthropogenic activities around shorelines as well as aid in waste management and control. In this study, the three largest beaches in Thanh Hoa (Vietnam) were examined for plastic waste, including macroplastics (≥ 5 mm) on sandy beaches and microplastics (MPs) (< 5 mm) in surface water. Among 3803 items collected on the beaches, plastic waste accounted for more than 98%. The majority of the plastic wastes found on these beaches were derived from fishing boats and food preservation foam packaging. The FT-IR data indicated that the macroplastics comprised 77% polystyrene, 17% polypropylene, and 6% high-density polyethylene, while MPs discovered in surface water included other forms of plastics such as polyethylene- acrylate, styrene/butadiene rubber gasket, ethylene/propylene copolymer, and zein purified. FT-IR data demonstrated that MPs might also be originated from automobile tire wear, the air, and skincare products, besides being degraded from macroplastics. The highest abundance of MPs was 44.1 items/m3 at Hai Tien beach, while the lowest was 15.5 items/m3 at Sam Son beach. The results showed that fragment form was the most frequent MP shape, accounting for 61.4 ± 14.3% of total MPs. MPs with a diameter smaller than 500 µm accounted for 70.2 ± 7.6% of all MPs. According to our research, MPs were transformed, transported, and accumulated due to anthropogenic activities and environmental processes. This study provided a comprehensive knowledge of plastic waste, essential in devising long-term development strategies in these locations.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Vietnam , Espectroscopía Infrarroja por Transformada de Fourier , Residuos/análisis , Monitoreo del Ambiente , Microplásticos , Polietileno/análisis , Playas , Contaminantes Químicos del Agua/análisis
7.
Environ Monit Assess ; 195(12): 1475, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966584

RESUMEN

The Neptune's cup sponge is an iconic species found in marine soft sediment habitats in the Indo-West Pacific, with a history of overharvesting and extreme population declines. Access to SCUBA diving surveys has allowed for its rediscovery at Singapore, its type locality; however, with fewer than ten living individuals documented in the twenty-first century, the species is believed to be in need of conservation. Here, we share the results from surveys across the Gulf of Thailand, allowing for a documentation of 29 additional individuals, with information on their ecology and distribution. Of the 29 individuals, extensive damage or mortality caused by marine debris is recorded for six individuals, and one further individual is believed to be lost due to an unknown cause. Documented threats from the Gulf of Thailand differ from those in Singapore; however, low population sizes and poor connectivity remain a significant concern for the survival of the species.


Asunto(s)
Gastrópodos , Poríferos , Humanos , Animales , Tailandia , Neptuno , Monitoreo del Ambiente , Ecología
8.
Waste Manag Res ; 41(3): 676-686, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36129026

RESUMEN

Most ocean plastic pollution results from leakage from waste management activities on land, mainly in coastline communities. In this research, the digitalization of waste management will be evaluated to improve the prevention of leakage. The digitalization means introducing mobile apps into the waste bank that can improve waste management efficiency while providing reliable data. The data on waste management were gained from Griya Luhu App which has been used in 13 villages around Gianyar, while the waste generation was calculated from 97 samples. Then, the villages were categorized by their potential risk of waste leakage based on their distances from the shore. First, the growth of digital waste banks based on the number of units, the number of customers and the amount of waste-managed was analyzed. Second, the composition of waste collected was evaluated. Last, inorganic waste generation (IWG) from digital waste banks was reduced. The results showed that digital waste banks and the customers had grown rapidly in 1 year. The number of waste bank units grew from 0 to 80 with an increase to a total of 5500 customers during the same period with a maximum of 20 tons of waste managed per month. In general, digital waste banks have shown promising performance in preventing waste leakage into the ocean with a 54.04% reduction of IWG. Compared to this reduction percentage, Tulikup as a high-risk village has a considerably low reduction (30.30%) and should be prioritized. Furthermore, the ability to manage a village with a high population/number of customers should be improved.


Asunto(s)
Plásticos , Administración de Residuos , Contaminación Ambiental , Océanos y Mares , Residuos , Monitoreo del Ambiente/métodos
9.
Glob Chang Biol ; 28(9): 2991-3006, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35048454

RESUMEN

Hundreds of studies have surveyed plastic debris in surface ocean gyre and convergence zones, however, comprehensive microplastics (MPs, ≤5 mm) assessments beneath these surface accumulation areas are lacking. Using in situ high-volume filtration, Manta net and MultiNet sampling, combined with micro-Fourier-transform-infrared imaging, we discovered a high abundance (up to 244.3 pieces per cubic meter [n m-3 ]) of small microplastics (SMPs, characteristically <100 µm) from the surface to near-sea floor waters of the remote South Atlantic Subtropical Gyre. Large horizontal and vertical variations in the abundances of SMP were observed, displaying inverse vertical trends in some cases. SMP abundances in pump samples were more than two orders of magnitude higher than large microplastics (LMPs, >300 µm) concurrently collected in MultiNet samples. Higher-density polymers (e.g., alkyd resins and polyamide) comprised >65% of the total pump sample count, highlighting a discrepancy between polymer compositions from previous ocean surface-based surveys, typically dominated by buoyant polymers such as polyethylene and polypropylene. Contrary to previous reports stating LMP preferentially accumulated at density gradients, SMP with presumably slower sinking rates are much less influenced by density gradients, thus resulting in a more even vertical distribution in the water column, and potentially longer residence times. Overall, our findings suggest that SMP is a critical and largely underexplored constituent of the oceanic plastic inventory. Additionally, our data support that weak current systems contribute to the formation of SMP hotspots at depth, implying a higher encounter rate for subsurface particle feeders. Our study unveils the prevalence of plastics in the entire water column, highlighting the urgency for more quantification of the deep-ocean MP, particularly the smaller size fraction, to better understand ecosystem exposure and to predict MP fate and impacts.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Océano Atlántico , Ecosistema , Monitoreo del Ambiente , Océanos y Mares , Plásticos , Contaminantes Químicos del Agua/análisis
10.
Environ Sci Technol ; 56(5): 2950-2958, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129968

RESUMEN

Pathogens and polymers can separately cause disease; however, environmental and medical researchers are increasingly investigating the capacity of polymers to transfer pathogenic bacteria, and cause disease, to hosts in new environments. We integrated causal frameworks from ecology and epidemiology into one interdisciplinary framework with four stages (colonization, survival, transfer, disease). We then systematically and critically reviewed 111 environmental and medical papers. We show 58% of studies investigated the colonization-stage alone but used this as evidence to classify a substratum as a vector. Only 11% of studies identified potential pathogens, with only 3% of studies confirming the presence of virulence-genes. Further, 8% of studies investigated µm-sized polymers with most (58%) examining less pervasive cm-sized polymers. No study showed bacteria can preferentially colonize, survive, transfer, and cause more disease on polymers compared to other environmental media. One laboratory experiment demonstrated plausibility for polymers to be colonized by a potential pathogen (Escherichia coli), survive, transfer, and cause disease in coral (Astrangia poculata). Our analysis shows a need for linked structured surveys with environmentally relevant experiments to understand patterns and processes across the vectoral stages, so that the risks and impacts of pathogens on polymers can be assessed with more certainty.


Asunto(s)
Antozoos , Infecciones Bacterianas , Animales , Bacterias , Plásticos , Polímeros
11.
Environ Sci Technol ; 56(19): 13810-13819, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36103552

RESUMEN

Sunlight chemically transforms marine plastics into a suite of products, with formulation─the specific mixture of polymers and additives─driving rates and products. However, the effect of light-driven transformations on subsequent microbial lability is poorly understood. Here, we examined the interplay between photochemical and biological degradation of fabrics made from cellulose diacetate (CDA), a biobased polymer used commonly in consumer products. We also examined the influence of ∼1% titanium dioxide (TiO2), a common pigment and photocatalyst. We sequentially exposed CDA to simulated sunlight and native marine microbes to understand how photodegradation influences metabolic rates and pathways. Nuclear magnetic resonance spectroscopy revealed that sunlight initiated chain scission reactions, reducing CDA's average molecular weight. Natural abundance carbon isotope measurements demonstrated that chain scission ultimately yields CO2, a newly identified abiotic loss term of CDA in the environment. Measurements of fabric mass loss and enzymatic activities in seawater implied that photodegradation enhanced biodegradation by performing steps typically facilitated by cellulase. TiO2 accelerated CDA photodegradation, expediting biodegradation. Collectively, these findings (i) underline the importance of formulation in plastic's environmental fate and (ii) suggest that overlooking synergy between photochemical and biological degradation may lead to overestimates of marine plastic persistence.


Asunto(s)
Celulasas , Luz Solar , Dióxido de Carbono , Isótopos de Carbono , Celulosa/análogos & derivados , Océanos y Mares , Plásticos/química , Polímeros , Titanio/química
12.
Environ Manage ; 70(1): 64-78, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35359239

RESUMEN

While knowledge of the ecological impacts of marine debris is continually advancing, methods to evaluate the comparative scale of these impacts are less well developed. In the case of costly environmental restoration in marine and coastal environments, quantifying and comparing the ecological impacts of diverse forms of ecosystem injuries can facilitate a more efficient selection of restoration projects. This article proposes evaluating marine debris removal projects in an ecological service equivalency analysis framework that can be used to compare marine debris removal to other types of environmental restoration. Drawing on existing spatial and temporal data with respect to marine debris impacts on habitats and resources, we demonstrate how resource managers and organizations involved in marine debris removal can quantify the ecological service benefits of a removal project and use it to comparatively select between projects based on present value ecological benefits. This valuation can be useful in natural resource damage assessment restoration selection, and for directing limited funds to marine debris removal projects which produce the greatest gains in ecological services. This ecological scaling framework is applied to a seagrass injury case study to demonstrate its application for scaling marine debris removal as compensatory restoration.


Asunto(s)
Ecosistema , Restauración y Remediación Ambiental , Conservación de los Recursos Naturales , Recursos Naturales
13.
Environ Sci Technol ; 55(18): 12383-12392, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34494430

RESUMEN

Sunlight exposure is a control of long-term plastic fate in the environment that converts plastic into oxygenated products spanning the polymer, dissolved, and gas phases. However, our understanding of how plastic formulation influences the amount and composition of these photoproducts remains incomplete. Here, we characterized the initial formulations and resulting dissolved photoproducts of four single-use consumer polyethylene (PE) bags from major retailers and one pure PE film. Consumer PE bags contained 15-36% inorganic additives, primarily calcium carbonate (13-34%) and titanium dioxide (TiO2; 1-2%). Sunlight exposure consistently increased production of dissolved organic carbon (DOC) relative to leaching in the dark (3- to 80-fold). All consumer PE bags produced more DOC during sunlight exposure than the pure PE (1.2- to 2.0-fold). The DOC leached after sunlight exposure increasingly reflected the 13C and 14C isotopic composition of the plastic. Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry revealed that sunlight exposure substantially increased the number of DOC formulas detected (1.1- to 50-fold). TiO2-containing bags photochemically degraded into the most compositionally similar DOC, with 68-94% of photoproduced formulas in common with at least one other TiO2-containing bag. Conversely, only 28% of photoproduced formulas from the pure PE were detected in photoproduced DOC from the consumer PE. Overall, these findings suggest that plastic formulation, especially TiO2, plays a determining role in the amount and composition of DOC generated by sunlight. Consequently, studies on pure, unweathered polymers may not accurately represent the fates and impacts of the plastics entering the ocean.


Asunto(s)
Carbono , Plásticos , Océanos y Mares , Polietileno , Luz Solar
14.
Ecol Appl ; 30(2): e02044, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31758826

RESUMEN

As a consequence of the global ubiquity of plastic pollution, scientists, decision-makers, and the public often ask whether macroplastics (>5 mm) and microplastics (<5 mm) have a realized ecological threat. In 2016, we conducted a systematic review of the literature and made a call for further research testing hypotheses about ecological effects. In the subsequent years, the amount of relevant research has risen tremendously. Here, we reassess the literature to determine the current weight of evidence about the effects of plastic pollution across all levels of biological organization. Our data spans marine, freshwater, and terrestrial environments. We extracted data from 139 lab and field studies testing 577 independent effects across a variety of taxa and with various types, sizes, and shapes of plastic. Overall, 59% of the tested effects were detected. Of these, 58% were due to microplastics and 42% were due to macroplastics. Of the effects that were not detected, 94% were from microplastics and 6% were from macroplastics. We found evidence that whether or not an effect is detected, as well as the severity and direction of the effect, is driven by dose, particle shape, polymer type, and particle size. Based on our analyses, there is no doubt that macroplastics are causing ecological effects, however, the effects of microplastics are much more complex. We also assessed the environmental relevancy of experimental studies by comparing the doses used in each exposure to the concentrations and sizes of microplastics found in the environment. We determined that only 17% of the concentrations used in experimental studies have been found in nature, and that 80% of particle sizes used in experiments fall below the size range of the majority of environmental sampling. Based on our systematic review and meta-analysis, we make a call for future work that recognizes the complexity of microplastics and designs tests to better understand how different types, sizes, shapes, doses, and exposure durations affect wildlife. We also call for more ecologically and environmentally relevant studies, particularly in freshwater and terrestrial environments.


Asunto(s)
Plásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente , Contaminación Ambiental , Agua Dulce , Microplásticos
15.
Dis Aquat Organ ; 142: 23-31, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33150872

RESUMEN

Ingestion of abnormal materials by cetaceans has been reported worldwide, but few studies have investigated the causes of foreign material ingestion. We retrospectively analysed necropsies performed between 2012 and 2019 on 88 cetaceans stranded along the coast of Catalonia, Spain, and evaluated the association of abnormal ingested materials with 2 risk factors, namely disease of the central nervous system (CNS) and maternal separation. Abnormal materials were found in the digestive tract in 19 of 88 (21.6%) cetaceans; of these, 13 (60%) had lesions in the CNS, such as morbilliviral encephalitis, neurobrucellosis or encephalomalacia, and 3 were diagnosed as having experienced maternal separation. In a logistic regression model, CNS lesions and maternal separation were identified as risk factors for ingestion of foreign material, but with wide confidence intervals, probably due to the small sample size. In contrast, abnormal ingestion was not identified in any of the 25 (28%) cetaceans whose cause of death was attributed to interaction with humans. Abnormal ingestion should be interpreted with caution, and efforts should be made at necropsy to exclude CNS diseases through pathologic and microbiologic investigations. If disease of the CNS is a significant risk factor for ingestion of marine debris by small odontocetes, results of monitoring programmes may be biased by the prevalence of CNS disease in a specific area or population.


Asunto(s)
Privación Materna , Plásticos , Animales , Cetáceos , Estudios Retrospectivos , España/epidemiología
16.
Proc Natl Acad Sci U S A ; 114(23): 6052-6055, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28507128

RESUMEN

In just over half a century plastic products have revolutionized human society and have infiltrated terrestrial and marine environments in every corner of the globe. The hazard plastic debris poses to biodiversity is well established, but mitigation and planning are often hampered by a lack of quantitative data on accumulation patterns. Here we document the amount of debris and rate of accumulation on Henderson Island, a remote, uninhabited island in the South Pacific. The density of debris was the highest reported anywhere in the world, up to 671.6 items/m2 (mean ± SD: 239.4 ± 347.3 items/m2) on the surface of the beaches. Approximately 68% of debris (up to 4,496.9 pieces/m2) on the beach was buried <10 cm in the sediment. An estimated 37.7 million debris items weighing a total of 17.6 tons are currently present on Henderson, with up to 26.8 new items/m accumulating daily. Rarely visited by humans, Henderson Island and other remote islands may be sinks for some of the world's increasing volume of waste.


Asunto(s)
Monitoreo del Ambiente/métodos , Plásticos/química , Residuos/análisis , Contaminación del Agua/análisis , Humanos , Islas , Islas del Pacífico
17.
Ecotoxicol Environ Saf ; 189: 109936, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31767460

RESUMEN

Due to its widespread use, large amounts of expanded polystyrene (EPS) have been released into the marine environment, where it is broken down into small pieces with large surface areas. As such, chemical additives may be released into the environment, which can affect marine organisms; however, studies of the effects of such additives are lacking. We assessed the effects of leachate from EPS on the photosynthetic activities of four microalgal species (Dunaliella salina, Scenedesmus rubescens, Chlorella saccharophila, and Stichococcus bacillaris). They were exposed to EPS leachate for seven days and their photosynthetic activities were analyzed based on seven parameters. Overall, leachate exposure increased photosynthetic activity in all four species, albeit to different degrees and showing slightly different trends among the seven parameters. Based on chemical analysis, hexabromocyclododecane concentrations were higher in small-fragment leachate, whereas UV326 concentrations were higher in low-concentration-large-sphere leachate; bisphenol-A and total organic carbon showed no major differences among leachates. Thus, we speculate that exposure to trace chemicals influenced microalgal photosynthesis and overall growth. These results support further investigation of the impacts of plastic debris and chemical additives on marine ecosystems and organisms.


Asunto(s)
Microalgas/fisiología , Fotosíntesis/efectos de los fármacos , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos , Chlorella , Ecosistema , Hidrocarburos Bromados , Plásticos , Residuos/análisis , Contaminantes Químicos del Agua/análisis
18.
Ecotoxicol Environ Saf ; 200: 110753, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32450440

RESUMEN

Plastics and microplastics are ubiquitous contaminants in aquatic ecosystems. This critical review is the first attempt at analyzing sources, concentration, impacts and solutions of (micro)plastic litter in Portugal based on all currently available literature. We found that, besides sea-based sources (e.g. shipping, fishing), 5717 t of mismanaged waste and 4.1 trillion microplastics from wastewater, mostly from untreated wastewater, are released to the environment every year. The highest concentrations are found in the North, Center and Lisbon regions, mostly comprised of consumer products, fishing gear and microplastics (<5 mm), especially fragments and pellets. This contamination has resulted in ingestion of plastics by organisms, including mussels, fishes, birds and turtles. Thus, every Portuguese citizen may consume 1440 microplastics a year based on the consumption of mollusks. Awareness campaigns, improvements in waste management and reductions in the release of untreated wastewater are recommended measures to reduce plastic pollution in Portugal.


Asunto(s)
Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Aves , Bivalvos , Ecosistema , Monitoreo del Ambiente , Peces , Humanos , Microplásticos/toxicidad , Portugal , Tortugas , Administración de Residuos , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad
19.
Environ Monit Assess ; 192(10): 648, 2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32951088

RESUMEN

Here, we present a framework for a beach litter monitoring process, based on free and open-source software (FOSS), which allows customization for any sampling design. The framework was developed by means of a GIS project (QGIS), a GIS collector (QField), and an R code, allowing further adjustments according to the area to be surveyed and research questions. The aim is to improve data collection, accessibility, and interoperability, as well as to help to fill the currently existing gap between fieldwork and data analysis, preventing typos and allowing better data processing. Therefore, it is expected to take less than an hour from ending fieldwork to obtaining up-to-date products. To test the developed open-source geospatial framework, it was applied in different sectors and dates on an important southern Brazilian touristic beach. Results obtained from the open-source geospatial framework application produce baseline information on beach litter issues, such as amounts, sources, and spatial and temporal patterns. Adoption of the framework can facilitate data collection by local and regional stakeholders, and the results obtained from it can be applied to support management strategies. For researchers, it produces spatialized data for each item in an already tidy format, which can be used for robust and complex models. A series of supplementary files support reproducibility and provide a guide to future users.


Asunto(s)
Playas , Plásticos , Brasil , Monitoreo del Ambiente , Reproducibilidad de los Resultados , Residuos/análisis
20.
Glob Chang Biol ; 25(2): 744-752, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30513551

RESUMEN

Despite concerns regarding the environmental impacts of microplastics, knowledge of the incidence and levels of synthetic particles in large marine vertebrates is lacking. Here, we utilize an optimized enzymatic digestion methodology, previously developed for zooplankton, to explore whether synthetic particles could be isolated from marine turtle ingesta. We report the presence of synthetic particles in every turtle subjected to investigation (n = 102) which included individuals from all seven species of marine turtle, sampled from three ocean basins (Atlantic [ATL]: n = 30, four species; Mediterranean (MED): n = 56, two species; Pacific (PAC): n = 16, five species). Most particles (n = 811) were fibres (ATL: 77.1% MED: 85.3% PAC: 64.8%) with blue and black being the dominant colours. In lesser quantities were fragments (ATL: 22.9%: MED: 14.7% PAC: 20.2%) and microbeads (4.8%; PAC only; to our knowledge the first isolation of microbeads from marine megavertebrates). Fourier transform infrared spectroscopy (FT-IR) of a subsample of particles (n = 169) showed a range of synthetic materials such as elastomers (MED: 61.2%; PAC: 3.4%), thermoplastics (ATL: 36.8%: MED: 20.7% PAC: 27.7%) and synthetic regenerated cellulosic fibres (SRCF; ATL: 63.2%: MED: 5.8% PAC: 68.9%). Synthetic particles being isolated from species occupying different trophic levels suggest the possibility of multiple ingestion pathways. These include exposure from polluted seawater and sediments and/or additional trophic transfer from contaminated prey/forage items. We assess the likelihood that microplastic ingestion presents a significant conservation problem at current levels compared to other anthropogenic threats.


Asunto(s)
Exposición a Riesgos Ambientales , Plásticos/análisis , Tortugas/fisiología , Contaminantes Químicos del Agua/análisis , Animales , Organismos Acuáticos/fisiología , Océano Atlántico , Monitoreo del Ambiente , Mar Mediterráneo , Océano Pacífico , Plásticos/clasificación , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA