Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Metabolomics ; 20(4): 75, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980562

RESUMEN

INTRODUCTION: Microbial communities affect several aspects of the earth's ecosystem through their metabolic interaction. The dynamics of this interaction emerge from complex multilevel networks of crosstalk. Elucidation of this interaction could help us to maintain the balance for a sustainable future. OBJECTIVES: To investigate the chemical language among highly abundant microbial genera in the rhizospheres of medicinal plants based on the metabolomic analysis at the interaction level. METHODS: Coculturing experiments involving three microbial species: Aspergillus (A), Trichoderma (T), and Bacillus (B), representing fungi (A, T) and bacteria (B), respectively. These experiments encompassed various interaction levels, including dual cultures (AB, AT, TB) and triple cultures (ATB). Metabolic profiling by LC-QTOFMS revealed the effect of interaction level on the productivity and diversity of microbial specialized metabolites. RESULTS: The ATB interaction had the richest profile, while the bacterial profile in the monoculture condition had the lowest. Two native compounds of the Aspergillus genus, aspergillic acid and the dipeptide asperopiperazine B, exhibited decreased levels in the presence of the AT interaction and were undetectable in the presence of bacteria during the interaction. Trichodermarin N and Trichodermatide D isolated from Trichoderma species exclusively detected during coexistence with bacteria (TB and ATB). These findings indicate that the presence of Bacillus activates cryptic biosynthetic gene clusters in Trichoderma. The antibacterial activity of mixed culture extracts was stronger than that of the monoculture extracts. The TB extract exhibited strong antifungal activity compared to the monoculture extract and other mixed culture treatments. CONCLUSION: The elucidation of medicinal plant microbiome interaction chemistry and its effect on the environment will also be of great interest in the context of medicinal plant health Additionally, it sheds light on the content of bioactive constituents, and facilitating the discovery of novel antimicrobials.


Asunto(s)
Interacciones Microbianas , Plantas Medicinales , Rizosfera , Plantas Medicinales/metabolismo , Plantas Medicinales/microbiología , Aspergillus/metabolismo , Bacterias/metabolismo , Trichoderma/metabolismo , Bacillus/metabolismo , Hongos/metabolismo , Metabolómica , Técnicas de Cocultivo , Microbiología del Suelo
2.
Exp Eye Res ; 243: 109906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657786

RESUMEN

Pediatric cataract, including congenital and developmental cataract, is a kind of pediatric vision-threatening disease with extensive phenotypic heterogeneity and multiple mechanisms. We aimed to investigate the metabolite profile of aqueous humor (AH) in patients with pediatric cataracts, and identify underlying mutual correlations between differential metabolites. Metabolomic profiles of AH were analyzed and compared between pediatric cataract patients (n = 33) and age-related cataract patients without metabolic diseases (n = 29), using global untargeted metabolomics with ultra-high-performance liquid chromatography tandem mass spectrometry. Principal component analysis, partial least squares discriminant analysis and heat map were applied. Enriched pathway analysis was conducted using Kyoto Encyclopedia of Genes and Genomes. Receiver-operating characteristic (ROC) analyses were employed to select potential biomarkers. A total of 318 metabolites were identified, of which 54 differential metabolites (25 upregulated and 29 downregulated) were detected in pediatric cataract group compared with controls (variable importance of projection >1.0, fold change ≥1.5 or ≤ 0.667 and P < 0.05). A significant accumulation of N-Acetyl-Dl-glutamic acid was observed in pediatric cataract group. The differential metabolites were mainly enriched in histidine metabolism (increased L-Histidine and decreased 1-Methylhistamine) and the tryptophan metabolism (increased N-Formylkynurenine and L-Kynurenine). 5-Aminosalicylic acid showed strong positive mutual inter-correlation with L-Tyrosinemethylester and N,N-Diethylethanolamine, both of which were down-regulated in pediatric cataract group. The ROC analysis implied 11 metabolites served as potential biomarkers for pediatric cataract patients (all area under the ROC curve ≥0.900). These results illustrated novel potential metabolites and metabolic pathways in pediatric cataract, which provides new insights into the pathophysiology of pediatric cataract.


Asunto(s)
Humor Acuoso , Biomarcadores , Catarata , Metabolómica , Humanos , Humor Acuoso/metabolismo , Catarata/metabolismo , Metabolómica/métodos , Masculino , Femenino , Preescolar , Cromatografía Líquida de Alta Presión , Niño , Biomarcadores/metabolismo , Curva ROC , Espectrometría de Masas en Tándem , Metaboloma/fisiología , Lactante
3.
BMC Pediatr ; 24(1): 540, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174946

RESUMEN

BACKGROUND: Precursor B-cell acute lymphoblastic leukemia (B-ALL) is the most common cancers in children. Failure of induction chemotherapy is a major factor leading to relapse and death in children with B-ALL. Given the importance of altered metabolites in the carcinogenesis of pediatric B-ALL, studying the metabolic profile of children with B-ALL during induction chemotherapy and in different minimal residual disease (MRD) status may contribute to the management of pediatric B-ALL. METHODS: We collected paired peripheral blood plasma samples from children with B-ALL at pre- and post-induction chemotherapy and analyzed the metabolomic profiling of these samples by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). Healthy children were included as controls. We selected metabolites that were depleted in pediatric B-ALL and analyzed the concentrations in pediatric B-ALL samples. In vitro, we study the effects of the selected metabolites on the viability of ALL cell lines and the sensitivity to conventional chemotherapeutic agents in ALL cell lines. RESULTS: Forty-four metabolites were identified with different levels between groups. KEGG pathway enrichment analyses revealed that dysregulated linoleic acid (LA) metabolism and arginine (Arg) biosynthesis were closely associated with pediatric B-ALL. We confirmed that LA and Arg were decreased in pediatric B-ALL samples. The treatment of LA and Arg inhibited the viability of NALM-6 and RS4;11 cells in a dose-dependent manner, respectively. Moreover, Arg increased the sensitivity of B-ALL cells to L-asparaginase and daunorubicin. CONCLUSION: Arginine increases the sensitivity of B-ALL cells to the conventional chemotherapeutic drugs L-asparaginase and daunorubicin. This may represent a promising therapeutic approach.


Asunto(s)
Arginina , Metabolómica , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangre , Arginina/metabolismo , Arginina/sangre , Niño , Femenino , Metabolómica/métodos , Preescolar , Masculino , Estudios de Casos y Controles , Neoplasia Residual , Cromatografía Líquida de Alta Presión , Línea Celular Tumoral , Metaboloma , Quimioterapia de Inducción , Adolescente , Lactante
4.
Molecules ; 29(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39124986

RESUMEN

Citrus black spot (CBS) is a fungal disease caused by Phyllosticta citricarpa Kiely, (McAlpine Van der Aa), with most cultivars being susceptible to infection. Currently, disease control is based on the application of protective fungicides, which is restricted due to resistance, health and environmental concerns. Although using natural products for disease management is gaining momentum, more advances are required. This study obtained the metabolic profiles of the essential oil and cuticular waxes of two citrus cultivars with a varying susceptibility to CBS infection using gas chromatography-mass spectrometry. A multivariate data analysis identified possible biomarker compounds that contributed to the difference in susceptibility between the two cultivars. Several identified biomarkers were tested in vitro for their antifungal properties against P. citricarpa. Two biomarkers, propanoic acid and linalool, were able to completely inhibit pathogen growth at 750 mg/L and 2000 mg/L, respectively.


Asunto(s)
Ascomicetos , Biomarcadores , Citrus , Aceites Volátiles , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Citrus/química , Citrus/microbiología , Ascomicetos/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Cromatografía de Gases y Espectrometría de Masas , Antifúngicos/farmacología , Antifúngicos/química , Monoterpenos Acíclicos/farmacología , Monoterpenos Acíclicos/química , Metaboloma
5.
Mol Genet Metab ; 138(3): 107509, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791482

RESUMEN

Phenylketonuria (PKU, MIM #261600) is one of the most common inborn errors of metabolism (IEM) with an incidence of 1:10000 in the European population. PKU is caused by autosomal recessive mutations in phenylalanine hydroxylase (PAH) and manifests with elevation of phenylalanine (Phe) in plasma and urine. Untreated PKU manifests with intellectual disability including seizures, microcephaly and behavioral abnormalities. Early treatment and good compliance result in a normal intellectual outcome in many but not in all patients. This study examined plasma metabolites in patients with PKU (n = 27), hyperphenylalaninemia (HPA, n = 1) and healthy controls (n = 32) by LC- MS/MS. We hypothesized that PKU patients would exhibit a distinct "submetabolome" compared to that of healthy controls. We further hypothesized that the submetabolome of PKU patients with good metabolic control would resemble that of healthy controls. Results from this study show: (i) Distinct clustering of healthy controls and PKU patients based on polar metabolite profiling, (ii) Increased and decreased concentrations of metabolites within and afar from the Phe pathway in treated patients, and (iii) A specific PKU-submetabolome independently of metabolic control assessed by Phe in plasma. We examined the relationship between PKU metabolic control and extended metabolite profiles in plasma. The PKU submetabolome characterized in this study represents the combined effects of dietary adherence, adjustments in metabolic pathways to compensate for defective Phe processing, as well as metabolic derangements that could not be corrected with dietary management even in patients classified as having good metabolic control. New therapeutic targets may be uncovered to approximate the PKU submetabolome to that of healthy controls and prevent long-term organ damage.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Punto Alto de Contagio de Enfermedades , Espectrometría de Masas en Tándem , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilalanina , Análisis por Conglomerados
6.
J Exp Bot ; 74(14): 4143-4157, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010326

RESUMEN

Plant amino acid transporters regulate not only long-distance transport and reallocation of nitrogen (N) from source to sink organs, but also the amount of amino acids in leaves hijacked by invading pathogens. However, the function of amino acid transporters in plant defense responses to pathogen infection remains unknown. In this study, we found that the rice amino acid transporter gene OsLHT1 was expressed in leaves and up-regulated by maturation, N starvation, and inoculation of the blast fungus Magnaporthe oryzae. Knock out of OsLHT1 resulted in development stage- and N supply-dependent premature senescence of leaves at the vegetative growth stage. In comparison with the wild type, Oslht1 mutant lines showed sustained rusty red spots on fully mature leaf blades irrespective of N supply levels. Notably, no relationship between the severity of leaf rusty red spots and concentration of total N or amino acids was found in Oslht1 mutants at different developmental stages. Disruption of OsLHT1 altered transport and metabolism of amino acids and biosynthesis of flavones and flavonoids, enhanced expression of jasmonic acid- and salicylic acid-related defense genes, production of jasmonic acid and salicylic acid, and accumulation of reactive oxygen species. OsLHT1 inactivation dramatically prevented the leaf invasion by M. oryzae, a hemi-biotrophic ascomycete fungus. Overall, these results establish a link connecting the activity of an amino acid transporter with leaf metabolism and defense against rice blast fungus.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/fisiología , Senescencia de la Planta , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Salicilatos/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo
7.
Metabolomics ; 19(7): 65, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418094

RESUMEN

INTRODUCTION: Absolute quantification of individual metabolites in complex biological samples is crucial in targeted metabolomic profiling. OBJECTIVES: An inter-laboratory test was performed to evaluate the impact of the NMR software, peak-area determination method (integration vs. deconvolution) and operator on quantification trueness and precision. METHODS: A synthetic urine containing 32 compounds was prepared. One site prepared the urine and calibration samples, and performed NMR acquisition. NMR spectra were acquired with two pulse sequences including water suppression used in routine analyses. The pre-processed spectra were sent to the other sites where each operator quantified the metabolites using internal referencing or external calibration, and his/her favourite in-house, open-access or commercial NMR tool. RESULTS: For 1D NMR measurements with solvent presaturation during the recovery delay (zgpr), 20 metabolites were successfully quantified by all processing strategies. Some metabolites could not be quantified by some methods. For internal referencing with TSP, only one half of the metabolites were quantified with a trueness below 5%. With peak integration and external calibration, about 90% of the metabolites were quantified with a trueness below 5%. The NMRProcFlow integration module allowed the quantification of several additional metabolites. The number of quantified metabolites and quantification trueness improved for some metabolites with deconvolution tools. Trueness and precision were not significantly different between zgpr- and NOESYpr-based spectra for about 70% of the variables. CONCLUSION: External calibration performed better than TSP internal referencing. Inter-laboratory tests are useful when choosing to better rationalize the choice of quantification tools for NMR-based metabolomic profiling and confirm the value of spectra deconvolution tools.


Asunto(s)
Líquidos Corporales , Metabolómica , Femenino , Masculino , Humanos , Metabolómica/métodos , Flujo de Trabajo , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Líquidos Corporales/química
8.
Metabolomics ; 19(2): 13, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781606

RESUMEN

INTRODUCTION: This study sought to compare between metabolomic changes of human urine and plasma to investigate which one can be used as best tool to identify metabolomic profiling and novel biomarkers associated to the potential effects of ultraviolet (UV) radiation. METHOD: A pilot study of metabolomic patterns of human plasma and urine samples from four adult healthy individuals at before (S1) and after (S2) exposure (UV) and non-exposure (UC) were carried out by using liquid chromatography-mass spectrometry (LC-MS). RESULTS: The best results which were obtained by normalizing the metabolites to their mean output underwent to principal components analysis (PCA) and Orthogonal Partial least squares-discriminant analysis (OPLS-DA) to separate pre-from post-of exposure and non-exposure of UV. This separation by data modeling was clear in urine samples unlike plasma samples. In addition to overview of the scores plots, the variance predicted-Q2 (Cum), variance explained-R2X (Cum) and p-value of the cross-validated ANOVA score of PCA and OPLS-DA models indicated to this clear separation. Q2 (Cum) and R2X (Cum) values of PCA model for urine samples were 0.908 and 0.982, respectively, and OPLS-DA model values were 1.0 and 0.914, respectively. While these values in plasma samples were Q2 = 0.429 and R2X = 0.660 for PCA model and Q2 = 0.983 and R2X = 0.944 for OPLS-DA model. LC-MS metabolomic analysis showed the changes in numerous metabolic pathways including: amino acid, lipids, peptides, xenobiotics biodegradation, carbohydrates, nucleotides, Co-factors and vitamins which may contribute to the evaluation of the effects associated with UV sunlight exposure. CONCLUSIONS: The results of pilot study indicate that pre and post-exposure UV metabolomics screening of urine samples may be the best tool than plasma samples and a potential approach to predict the metabolomic changes due to UV exposure. Additional future work may shed light on the application of available metabolomic approaches to explore potential predictive markers to determine the impacts of UV sunlight.


Asunto(s)
Metabolómica , Rayos Ultravioleta , Adulto , Humanos , Metabolómica/métodos , Proyectos Piloto , Espectrometría de Masas , Cromatografía Liquida
9.
FASEB J ; 36(5): e22305, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35394692

RESUMEN

Identifying novel molecules involved in axon regeneration of neurons in the peripheral nervous system (PNS) will be of benefit in obtaining a therapeutic strategy for repairing axon damage both in the PNS and the central nervous system (CNS). Metabolism and axon regeneration are tightly connected. However, the overall metabolic processes and the landscape of the metabolites in axon regeneration of PNS neurons are uncovered. Here, we used an ultra high performance liquid tandem chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOFMS)-based untargeted metabolomics to analyze dorsal root ganglia (DRG) metabolic characteristics at different time points post sciatic nerve injury and acquired hundreds of differentially changed metabolites. In addition, the results reveal that several metabolic pathways were significantly altered, such as 'Histidine metabolism', 'Glycine serine and threonine metabolism', 'Arginine and proline metabolism', 'taurine and hypotaurine metabolism' and so on. Given metabolite could alter a cell's or an organism's phenotype, further investigation demonstrated that N, N-dimethylglycine (DMG) has a promoting effect on the regenerative ability post injury. Overall, our data may serve as a resource useful for further understanding how metabolites contribute to axon regeneration in DRG during sciatic nerve regeneration and suggest DMG may be a candidate drug to repair nerve injury.


Asunto(s)
Ganglios Espinales , Regeneración Nerviosa , Axones/metabolismo , Ganglios Espinales/metabolismo , Metabolómica , Regeneración Nerviosa/fisiología , Neuronas , Sarcosina/análogos & derivados
10.
Ecotoxicol Environ Saf ; 256: 114905, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37060802

RESUMEN

The aquatic plant Elodea canadensis is considered a good candidate for ecotoxicological investigations. Cadmium (Cd) is a widespread contaminant in aquatic systems. In this study, to better elucidate the underlying tolerance mechanism and molecular impact of environmentally relevant Cd concentration in aquatic plants, subcellular distribution, chemical forms, and gas chromatography-mass spectrometry-based non-targeted metabolomics profiles were comprehensively analyzed in E. canadensis subjected to 0 and 10 µM Cd treatment for 5 d. Subcellular fractionation analysis of Cd-containing leaves showed that 67% of Cd was compartmentalized in cell wall followed by the soluble fraction (24 %) and organelles (9 %). The majority of Cd (90 %) was found in the extraction using 1 M NaCl. Metabolomic analysis using unsupervised principal component analyses and a supervised partial least squares discriminant analysis revealed clear differences in metabolic profiles between the two groups, demonstrating the metabolic effects of Cd. The 155 identified compounds altered by Cd were mainly from primary metabolism, including sugars, amino acids, organic acids, and their derivatives. Secondary metabolites such as polyphenols and phenolamides were also detected. The massive up-regulation of metabolites, including trehalose, proline, sarcosine, nicotianamine, putrescine, α-ketoglutaric acid, citric acid, and phytol might represent a detoxification mechanism. These findings highlighted the mechanistic strategies that E. canadensis employs to defend against Cd toxicity.


Asunto(s)
Cadmio , Hydrocharitaceae , Cadmio/toxicidad , Hydrocharitaceae/metabolismo , Metabolómica , Metaboloma , Aminoácidos/metabolismo
11.
Molecules ; 28(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37836711

RESUMEN

The primary purpose of this work was the initiation and optimization of shoot cultures of different Vitis vinifera L. cultivars: cv. Chardonnay, cv. Hibernal, cv. Riesling, cv. Johanniter, cv. Solaris, cv. Cabernet Cortis, and cv. Regent. Cultures were maintained on 30-day growth cycles using two media, Murashige and Skoog (MS) and Schenk and Hildebrandt (SH), with various concentrations of plant growth regulators. Tested media ('W1'-'W4') contained varying concentrations of 6-benzylaminopurine (BA) in addition to indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA). High performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was used for metabolomic profiling. In all tested extracts, 45 compounds were identified (6 amino acids, 4 phenolic acids, 13 flavan-3-ols, 3 flavonols, and 19 stilbenoids). Principal component analysis (PCA) was performed to assess the influence of the genotype and medium on metabolic content. PCA showed that metabolic content was mainly influenced by genotype and to a lesser extent by medium composition. MS media variants induced the amino acid, procyanidin, and flavan-3-ol production. In addition, the antioxidant potential and anti-tyrosinase activity was measured spectrophotometrically. The studies on antioxidant activity clearly reveal very high efficiency in reducing free radicals in the tested extracts. The strongest tyrosinase inhibition capacity was proved for shoots cv. Hibernal cultured in SH medium and supplemented with NAA, with an inhibition of 17.50%. These studies show that in vitro cultures of V. vinifera cvs. can be proposed as an alternative source of plant material that can be potentially used in cosmetic industry.


Asunto(s)
Vitis , Vitis/química , Antioxidantes/farmacología , Cromatografía Liquida , Espectrometría de Masas en Tándem , Fitoquímicos , Cromatografía Líquida de Alta Presión
12.
Physiol Mol Biol Plants ; 29(12): 1959-1979, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38222284

RESUMEN

Chenopodium quinoa possesses remarkable nutritional value and adaptability to various agroecological conditions. Panicle architecture influences the number of spikelets and grains in a panicle, ultimately leading to productivity and yield. Therefore, this study aimed to investigate the metabolites, nutrients, and minerals in Chenopodium quinoa accessions of varying panicle architecture. Metabolic profiling using liquid chromatography-mass spectrometry (LC-MS) analysis identified seventeen metabolites, including flavonoids, phenolics, fatty acids, terpenoids, phenylbutenoid dimers, amino acids, and saccharides. Eight metabolic compounds were reported in this study for the first time in quinoa. Some metabolites were detected as differentially expressed. The compound (Z)-1-(2,4,5-trimethoxyphenyl) butadiene and chrysin were found only in SPrecm. Sodium ((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxtetrahydrofuran-2-yl) methyl hydrogen phosphate and elenolic acid were detected only in CHEN-33, and quercetin, 3-hydroxyphloretin-3'-C-glucoside, kurarinone, and rosmarinic acid were identified only in D-12175. Variable importance in projection (VIP) scores annotated ten metabolites contributing to variability. Mineral analysis using atomic absorption spectrophotometry indicated that the quantity of magnesium and calcium is high in D-12175. In comparison, SPrecm showed a high quantity of magnesium compared to CHEN-33, while CHEN-33 showed a high quantity of calcium compared to SPrecm. However, the proximate composition showed no significant difference among quinoa accessions. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01398-2.

13.
Curr Issues Mol Biol ; 44(12): 6428-6438, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36547099

RESUMEN

Imatinib has been the first and most successful tyrosine kinase inhibitor (TKI) for chronic myeloid leukemia (CML), but many patients develop resistance to it after a satisfactory response. Glutathione (GSH) metabolism is thought to be one of the factors causing the emergence of imatinib resistance. Since hsa-miR-203a-5p was found to downregulate Bcr-Abl1 oncogene and also a link between this oncogene and GSH metabolism is reported, the present study aimed to investigate whether hsa-miR-203a-5p could overcome imatinib resistance by targeting GSH metabolism in imatinib-resistant CML cells. After the development of imatinib-resistant K562 (IR-K562) cells by gradually exposing K562 (C) cells to increasing doses of imatinib, resistant cells were transfected with hsa-miR-203a-5p (R+203). Thereafter, cell lysates from various K562 cell sets (imatinib-sensitive, imatinib-resistant, and miR-transfected imatinib-resistant K562 cells) were used for GC-MS-based metabolic profiling. L-alanine, 5-oxoproline (also known as pyroglutamic acid), L-glutamic acid, glycine, and phosphoric acid (Pi)-five metabolites from our data, matched with the enumerated 28 metabolites of the MetaboAnalyst 5.0 for the GSH metabolism. All of these metabolites were present in higher concentrations in IR-K562 cells, but intriguingly, they were all reduced in R+203 and equated to imatinib-sensitive K562 cells (C). Concludingly, the identified metabolites associated with GSH metabolism could be used as diagnostic markers.

14.
Kidney Int ; 101(3): 510-526, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34856312

RESUMEN

Some patients with diabetic kidney disease (DKD) show a fast progression of kidney dysfunction and are known as a "fast decliner" (FD). Therefore, it is critical to understand pathomechanisms specific for fast decline. Here, we performed a comprehensive metabolomic analysis of patients with stage G3 DKD and identified increased urinary lysophosphatidylcholine (LPC) in fast decline. This was confirmed by quantification of urinary LPC using mass spectrometry and identified urinary LPC containing saturated fatty acids palmitic (16:0) and stearic (18:0) acids was increased in FDs. The upsurge in urinary LPC levels was correlated with a decline in estimated glomerular filtration rate after 2.5 years. To clarify a pathogenic role of LPC in FD, we studied an accelerated rat model of DKD and observed an increase in LPC (16:0) and (18:0) levels in the urine and kidney tubulointerstitium as the disease progressed. These findings suggested that local dysregulation of lipid metabolism resulted in excessive accumulation of this LPC species in the kidney. Our in vitro studies also confirmed LPC-mediated lipotoxicity in cultured proximal tubular cells. LPC induced accumulation of lipid droplets via activation of peroxisome proliferator-activated receptor-δ followed by upregulation of the lipid droplet membrane protein perilipin 2 and decreased autophagic flux, thereby inducing organelle stress and subsequent apoptosis. Thus, LPC (16:0) and (18:0) may mediate a fast progression of DKD and may serve as a target for novel therapeutic approaches.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Insuficiencia Renal , Animales , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/patología , Tasa de Filtración Glomerular , Humanos , Riñón/patología , Lisofosfatidilcolinas/metabolismo , Ratas
15.
Cardiovasc Diabetol ; 21(1): 70, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525960

RESUMEN

BACKGROUND: Diabetes mellitus (DM) and coronary artery disease (CAD) constitute inter-related clinical entities. Biomarker profiling emerges as a promising tool for the early diagnosis and risk stratification of either DM or CAD. However, studies assessing the predictive capacity of novel metabolomics biomarkers in coexistent CAD and DM are scarce. METHODS: This post-hoc analysis of the CorLipid trial (NCT04580173) included 316 patients with CAD and comorbid DM who underwent emergency or elective coronary angiography due to acute or chronic coronary syndrome. Cox regression analyses were performed to identify metabolomic predictors of the primary outcome, which was defined as the composite of major adverse cardiovascular or cerebrovascular events (MACCE: cardiovascular death, myocardial infarction, stroke, major bleeding), repeat unplanned revascularizations and cardiovascular hospitalizations. Linear regression analyses were also performed to detect significant predictors of CAD complexity, as assessed by the SYNTAX score. RESULTS: After a median 2-year follow up period (IQR = 0.7 years), the primary outcome occurred in 69 (21.8%) of patients. Acylcarnitine ratio C4/C18:2, apolipoprotein (apo) B, history of heart failure (HF), age > 65 years and presence of acute coronary syndrome were independent predictors of the primary outcome in diabetic patients with CAD (aHR = 1.89 [1.09, 3.29]; 1.02 [1.01, 1.04]; 1.28 [1.01, 1.41]; 1.04 [1.01, 1.05]; and 1.12 [1.05-1.21], respectively). Higher levels of ceramide ratio C24:1/C24:0, acylcarnitine ratio C4/C18:2, age > 65 and peripheral artery disease were independent predictors of higher CAD complexity (adjusted ß = 7.36 [5.74, 20.47]; 3.02 [0.09 to 6.06]; 3.02 [0.09, 6.06], respectively), while higher levels of apoA1 were independent predictors of lower complexity (adjusted ß= - 0.65 [- 1.31, - 0.02]). CONCLUSIONS: In patients with comorbid DM and CAD, novel metabolomic biomarkers and metabolomics-based prediction models could be recruited to predict clinical outcomes and assess the complexity of CAD, thereby enabling the integration of personalized medicine into routine clinical practice. These associations should be interpreted taking into account the observational nature of this study, and thus, larger trials are needed to confirm its results and validate them in different and larger diabetic populations.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus , Anciano , Biomarcadores , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/terapia , Diabetes Mellitus/diagnóstico , Humanos , Metabolómica , Pronóstico , Factores de Riesgo
16.
Metabolomics ; 18(10): 78, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36239863

RESUMEN

INTRODUCTION: Premature adrenarche (PA) for long time was considered a benign condition but later has been connected to various diseases in childhood and adulthood which remains controversial. OBJECTIVE: To investigate the effect of premature adrenarche on the metabolic phenotype, and correlate the clinical and biochemical data with the metabolic profile of children with PA. METHODS: Nuclear magnetic resonance (NMR)-based untargeted and targeted metabolomic approach in combination with multivariate and univariate statistical analysis applied to study the metabolic profiles of children with PA. Plasma, serum, and urine samples were collected from fifty-two children with Idiopathic PA and forty-eight age-matched controls from the division of Pediatric Endocrinology of the University Hospital of Patras were enrolled. RESULTS: Metabolomic results showed that plasma and serum glucose, myo-inositol, amino acids, a population of unsaturated lipids, and esterified cholesterol were higher and significantly different in PA children. In the metabolic profiles of children with PA and age-matched control group a gradual increase of glucose and myo-inositol levels was observed in serum and plasma, which was positively correlated their body mass index standard deviation score (BMI SDS) values respectively. Urine 1H NMR metabolic fingerprint of PA children showed positive correlation and a clustering-dependent relationship with their BMI and bone age (BA) respectively. CONCLUSION: This study provides evidence that PA driven metabolic changes begin during the childhood and PA may has an inductive role in a BMI-driven increase of specific metabolites. Finally, urine may be considered as the best biofluid for identification of the PA metabolism as it reflects more clearly the PA metabolic fingerprint.


Asunto(s)
Adrenarquia , Adrenarquia/genética , Aminoácidos , Colesterol , Glucosa , Inositol , Lípidos , Espectroscopía de Resonancia Magnética , Metabolómica
17.
Int J Med Sci ; 19(1): 186-194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34975312

RESUMEN

Chronic Venous Disease (CVD) refers to a wide variety of venous disorders being the varicose veins its most common manifestation. It is well-established the link between pregnancy and the risk of suffering CVD, due to hormonal or haematological factors, especially during the third trimester. In the same manner, previous studies have demonstrated the detrimental effect of this condition in the placental tissue of pregnant women, including in the normal physiology and the metabolomic profile of this organ. In this context, the aim of this study was to evaluate the glucose homeostasis in the placental tissue of women presenting CVD. Through immunohistochemistry, we studied the protein expression of the glucose transporter 1 (GLUT-1), Phosphoglycerate kinase 1 (PGK1), aldolase (ALD), Glyceraldehyde-3-phosphate dehydrogenase (GA3PDH) and lactate dehydrogenase (LDH). Our results have reported a significative increase in the expression of GLUT-1, PGK1, ALD, GA3PDH and the isoenzyme LDHA in placentas of women with CVD. This work has proven for the first-time an altered glucose metabolism in the placental tissue of women affected by CVD, what may aid to understand the pathophysiological mechanisms of this condition in more distant organs such as placenta. Furthermore, our research also supports the basis for further studies in the metabolic phenotyping of the human placenta due to CVD, which may be considered during the late pregnancy in these women.


Asunto(s)
Glucólisis , Placenta/metabolismo , Complicaciones del Embarazo/metabolismo , Enfermedades Vasculares/metabolismo , Enfermedad Crónica , Femenino , Fructosa-Bifosfato Aldolasa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Humanos , Inmunohistoquímica , L-Lactato Deshidrogenasa/metabolismo , Fosfoglicerato Quinasa/metabolismo , Placenta/irrigación sanguínea , Embarazo , Várices/metabolismo
18.
Mar Drugs ; 20(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35621972

RESUMEN

Today, marine natural products are considered one of the main sources of compounds for drug development. Starfish and sea cucumbers are potential sources of natural products of pharmaceutical interest. Among their metabolites, polar steroids, triterpene glycosides, and polar lipids have attracted a great deal of attention; however, studying these compounds by conventional methods is challenging. The application of modern MS-based approaches can help to obtain valuable information about such compounds. This review provides an up-to-date overview of MS-based applications for starfish and sea cucumber bioactive compounds analysis. While describing most characteristic features of MS-based approaches in the context of starfish and sea cucumber metabolites, including sample preparation and MS analysis steps, the present paper mainly focuses on the application of MS-based metabolic profiling of polar steroid compounds, triterpene glycosides, and lipids. The application of MS in metabolomics studies is also outlined.


Asunto(s)
Productos Biológicos , Pepinos de Mar , Triterpenos , Animales , Productos Biológicos/metabolismo , Glicósidos/metabolismo , Lípidos , Metabolómica , Pepinos de Mar/metabolismo , Estrellas de Mar , Triterpenos/metabolismo
19.
Biomed Chromatogr ; 36(1): e5241, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34505712

RESUMEN

Spontaneous intracerebral hemorrhage (ICH) accounts for 10-20% of all strokes and contributes to higher mortalities and severe disabilities. The aims of this study were, therefore, to characterize novel biomarkers, metabolic disruptions, and mechanisms involving ICH. A total 30 ICH patients and 30 controls were enrolled in the study, and their clinical characteristics were analyzed. Nontargeted metabolomic analysis was conducted using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF). Multivariate statistical analysis and receiver operating characteristic curve analysis were used for screening and evaluating the predictive ability of biomarkers. ICH patients showed significantly higher systolic blood pressure, diastolic blood pressure, blood glucose levels, white blood cell counts, neutrophil count, percentage of neutrophils and globulin and a lower albumin/globin ratio when compared with controls. In sum, 11 important metabolites were identified, which were associated with disruption of fatty acid oxidation and sphingolipid and phospholipid metabolism, as well as increased inflammation, oxidative stress, and vascular pathologies. Further multiple logistic regression analyses of these metabolites showed that l-carnitine and phosphatidylcholine (20:3/22:6) have potential as biomarkers of ICH, and the area under the curve, sensitivity, specificity were 0.974, 90%, and 93%, respectively. These findings provide insights into the pathogenesis, early prevention, and diagnosis of ICH.


Asunto(s)
Hemorragia Cerebral , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Metaboloma/fisiología , Metabolómica/métodos , Anciano , Biomarcadores/sangre , Biomarcadores/metabolismo , Hemorragia Cerebral/sangre , Hemorragia Cerebral/metabolismo , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Curva ROC , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362295

RESUMEN

12-oxo-phytodienoic acid (OPDA) is a biosynthetic precursor of jasmonic acid and triggers multiple biological processes from plant development to stress responses. However, the OPDA signaling and relevant regulatory networks were largely unknown in basal land plants. Using an integrated multi-omics technique, we investigated the global features in metabolites and transcriptional profiles of an Antarctic moss (Pohlia nutans) in response to OPDA treatment. We detected 676 metabolites based on the widely targeted metabolomics approach. A total of 82 significantly changed metabolites were observed, including fatty acids, flavonoids, phenolic acids, amino acids and derivatives, and alkaloids. In addition, the transcriptome sequencing was conducted to uncover the global transcriptional profiles. The representative differentially expressed genes were summarized into functions including Ca2+ signaling, abscisic acid signaling, jasmonate signaling, lipid and fatty acid biosynthesis, transcription factors, antioxidant enzymes, and detoxification proteins. The integrated multi-omics analysis revealed that the pathways of jasmonate and ABA signaling, lipid and fatty acid biosynthesis, and flavonoid biosynthesis might dominate the molecular responses to OPDA. Taken together, these observations provide insights into the molecular evolution of jasmonate signaling and the adaptation mechanisms of Antarctic moss to terrestrial habitats.


Asunto(s)
Briófitas , Bryopsida , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Bryopsida/genética , Briófitas/genética , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA