RESUMEN
Osteopontin (OPN) and Bone Sialoprotein (BSP), abundantly expressed by osteoblasts and osteoclasts, appear to have important, partly overlapping functions in bone. In gene-knockout (KO, -/-) models of either protein and their double (D)KO in the same CD1/129sv genetic background, we analyzed the morphology, matrix characteristics, and biomechanical properties of femur bone in 2 and 4 month old, male and female mice. OPN-/- mice display inconsistent, perhaps localized hypermineralization, while the BSP-/- are hypomineralized throughout ages and sexes, and the low mineralization of young DKO mice recovers with age. The higher contribution of primary bone remnants in OPN-/- shafts suggests a slow turnover, while their lower percentage in BSP-/- indicates rapid remodeling, despite FTIR-based evidence in this genotype of a high maturity of the mineralized matrix. In 3-point bending assays, OPN-/- bones consistently display higher Maximal Load, Work to Max. Load and in young mice Ultimate Stress, an intrinsic characteristic of the matrix. Young male and old female BSP-/- also display high Work to Max. Load along with low Ultimate Stress. Principal Component Analysis confirms the major role of morphological traits in mechanical competence, and evidences a grouping of the WT phenotype with the OPN-/- and of BSP-/- with DKO, driven by both structural and matrix parameters, suggesting that the presence or absence of BSP has the most profound effects on skeletal properties. Single or double gene KO of OPN and BSP thus have multiple distinct effects on skeletal phenotypes, confirming their importance in bone biology and their interplay in its regulation.
Asunto(s)
Sialoproteína de Unión a Integrina , Osteopontina , Animales , Femenino , Masculino , Ratones , Fenómenos Biomecánicos , Huesos/metabolismo , Densidad Ósea/fisiología , Densidad Ósea/genética , Calcificación Fisiológica/fisiología , Calcificación Fisiológica/genética , Fémur/metabolismo , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Ratones Noqueados , Osteopontina/genética , Osteopontina/metabolismoRESUMEN
The aim of the study was to evaluate the effects of erosion and abrasion on resin-matrix ceramic CAD/CAM materials [CERASMART (GC); VITA ENAMIC (VITA Zahnfabrik); Lava Ultimate (3 M)] in comparison to feldspar ceramic (VITABLOCS Mark II, VITA Zahnfabrik) and resin composite materials (ceram.x universal, Dentsply Sirona). Daily brushing and acid exposure were simulated using a brushing apparatus and a solution of 0.5 vol% citric acid. Microhardness, surface roughness, and substance loss were measured at baseline and after simulation of 1 and 3 years of function. All materials showed a decrease in microhardness after 3 years and an increase in surface roughness (Ra) after 1 and 3 years. The Ra increase was statistically significantly lower for the resin-matrix ceramics than for feldspar ceramic and similar to composite material. After 3 years, only feldspar ceramic showed no significant substance loss. In conclusion, resin-matrix ceramics demonstrate reduced roughening compared to feldspar ceramics, potentially improving restoration longevity by preventing plaque buildup, but differences in abrasion resistance suggest the need for further material-specific research. Future research should aim to replicate clinical conditions closely and to transition to in vivo trials.
Asunto(s)
Cerámica , Porcelana Dental , Compuestos de Potasio , Propiedades de Superficie , Ensayo de Materiales , Resinas Compuestas , Silicatos de Aluminio , Diseño Asistido por Computadora , Materiales DentalesRESUMEN
AIM: The aim was to develop a standardized curved root canal model in bovine dentine and to assess whether that natural substrate would behave differently from the resin in standard plastic training blocks when prepared chemo-mechanically. The impact of substrate microhardness on simulated canal transportation was considered. METHODOLOGY: High-precision computer numerical control (CNC) milling was used to recreate a simulated root canal from a resin training block (Endo Training Bloc J-Shape, size 15) in longitudinally sectioned, dis- and re-assembled bovine incisor roots. Optical overlays obtained from 10 resin blocks were used to identify an average canal and program the CNC milling apparatus accordingly. Resin and dentine microhardness were measured. Simulated root canals in resin training blocks and their bovine counterparts were then instrumented at 37°C using Reciproc R25 instruments (VDW) with water or 17% EDTA (n = 10). Open-access image processing software was used to superimpose and analyse pre- and postoperative images obtained with a digital microscope. Centering ratios were averaged to indicate canal transportation. The effects of substrate and irrigant on canal transportation were assessed by two-way anova. RESULTS: Superimposed images showed that resin blocks under investigation varied considerably in terms of simulated canal length and curvature, whilst the milled canals were highly similar. The microhardness of dentine was more than three times higher than that of the resin. Conversely, canal transportation was considerably greater in dentine compared to resin, and in dentine had a tendency to be increased by EDTA. There was a strong effect of substrate on canal transportation (p < .001), no overall effect of irrigant, and a marginally significant interaction between irrigant and substrate (p = .077). CONCLUSIONS: CNC milling allows to create standardized simulated curved root canals in bovine dentine. These models may be useful to test and compare materials and concepts of chemo-mechanical root canal instrumentation. Microhardness is a bulk feature that does not predict the response to chemo-mechanical instrumentation of a composite material such as dentine.
Asunto(s)
Cavidad Pulpar , Preparación del Conducto Radicular , Bovinos , Animales , Ácido Edético/farmacología , Tratamiento del Conducto Radicular , DentinaRESUMEN
A lightweight AlSiBeTiV high entropy alloy (HEA) powder is synthesized by the ball milling process and is reinforced on SS410 through friction stir processing (FSP). Subsequently, the annealing process is conducted on the processed samples at 450, 600, and 750°C for 120 mins. The grains are refined at 600°C by 23.3% than the processed HEA sample. A higher microhardness of 672 HV is attained on the processed HEA sample annealed at 600°C due to the synergistic effect of FSP and annealing through refined grains. The electrochemical corrosion under a 3.5 wt.% NaCl environment, and the hot corrosion under the salt mixture environments of 75% Na2SO4 +25% NaCl, and 60% Na2SO4 +20% NaCl + 20% V2O5 at 800°C for 50 h are investigated on the processed samples. The microstructure, induced corrosion products, and elemental distribution of the corroded surface of the annealed processed HEA sample are evaluated by morphological analysis. The induced oxidation effect enhances the Cr2O3 and TiO2 films on the corroded surfaces leading to higher corrosion resistance. A high corrosion resistance appears on the annealed processed HEA sample through the formation of a stable passive layer, hindering the pitting corrosion mechanism, grain refinement, and homogeneous distribution.
So far, the majority of work focuses on Al and composites. However, the current work made a surface modification on SS410 steel by reinforcing lightweight HEA particles through friction stir processing followed by the annealing process. The lightweight AlSiBeTiV HEA particles are reinforced in SS410 through FSP and subsequently annealing process is performed for enhancing the refined grain structure.Corrosion behaviours of processed samples at room and high temperature and the effect of annealing on corrosion behaviours of HEA reinforced steel are a novel area in materials science.
RESUMEN
This pH cycling study aimed to investigate the effects of L-Ascorbic acid 2-phosphate (AA2P) salts of Mg, Zn, Mn, Sr, and Ba on the surface microhardness, compressive strength, diametral tensile strength (DTS), and solubility of root canal dentin. 186 cylindrical dentin specimens from 93 teeth were fortified with optimal concentrations of AA2P salts of Mg (0.18 mM), Zn (5.3 µM), Mn (2.2 × 10-8 M), Sr (1.8 µM), and Ba (1.9 µM). Saline was used as the control group. These dentin specimens underwent a 3-day cycling process simulating dentin caries formation through repeated sequences of demineralization and remineralization. Surface microhardness at 100 and 500 µm depths (n = 10/subgroup), scanning electron microscopy (n = 3/group), compressive strength (n = 10/group), DTS (n = 6/group), and solubility (n = 5/group) tests were performed to analyze the dentin specimens. Data were analyzed using Kolmogorov-Smirnov, one-way ANOVA, and Post Hoc Tukey tests (p < 0.05). The control group had significantly lower microhardness at both depths (p < 0.001), reduced DTS (p = 0.001), decreased compressive strength (p < 0.001), and higher weight loss (p < 0.001) than all other groups. The Sr group had the highest compressive strength and microhardness among all the groups. The microhardness was significantly higher for the 500 µm depth than the 100 µm depth (p < 0.001), but the difference in microhardness between depths across groups was not significant (p = 0.211). All fortifying solutions provided some protection against artificial caries lesions. Therefore, these elements might have penetrated and reinforced the demineralized dentin against acid dissolution.
Asunto(s)
Ácido Ascórbico/análogos & derivados , Caries Dental , Dentina , Humanos , Susceptibilidad a Caries Dentarias , Sales (Química)/farmacologíaRESUMEN
This study analyzed and compared the physicochemical and mechanical properties of preheated resin composite with light-cured resin cement for luting indirect restorations. 210 specimens of resin cement/resin composite were prepared according to preheating treatment heated (Htd) or not (NHtd). Light-cured resin cement (Variolink Veneer, Ivoclar), and resin composite (Microhybrid-Z100, 3 M; Nanohybrid-Empress direct, Ivoclar; and Bulk fill-Filtek One, 3 M) were used (n = 10). Resin cement specimens were not preheated. The response variables were (n = 10): film thickness, microhardness, liquid sorption and solubility. Data were analyzed by 2-way ANOVA and Tukey HSD post-test (α = 0.05). Bulk fill NHtd resin had the highest film thickness values (p < 0.001). Microhybrid and nanohybrid Htd resins had the smallest thicknesses and did not differ from the cement (p > 0.05). The highest microhardness values were found for Bulk fill NHtd and Bulk fill Htd resins. The nanohybrid and microhybrid Htd resins showed the lowest microhardness values, with no difference in cement (p > 0.05). For liquid sorption, there was no significant difference between the groups (p = 0.1941). The microhybrid Htd resin showed higher solubility values than the other materials (p = 0.0023), but it did not differ statistically from resin cement (p > 0.05). Preheating composite resins reduced the film thickness. After heating, nanohybrid and Bulk fill resins retained stable microhardness, sorption, and solubility values.
Asunto(s)
Cerámica , Resinas Compuestas , Ensayo de Materiales , Solubilidad , Resinas Compuestas/química , Cerámica/química , Cementos de Resina/química , Propiedades de Superficie , Dureza , Calor , Fenómenos QuímicosRESUMEN
Dental caries is a commonly occurring non-communicable disease throughout the world that might compromise the quality of any individual's life. Glass ionomer cements (GIC) are the most acceptable restorative materials due to their ease of manipulation, minimal tooth loss and least invasive strategy; however, they lack mechanical stability that has become a point of concern. Nanoparticles (NPs) are an outstanding option for modifying and enhancing the properties of dental materials. The focus of this study was to prepare novel, biocompatible titania dioxide (TiO2) NPs as a dental-restorative material using an efficient probiotic Bacillus coagulans. The prepared NPs were incorporated into glass ionomer restorative material at varying concentrations and investigated for cell viability percentage, microhardness and surface morphology. Results indicated that pure 100% anatase phase TiO2 NPs with particle size of 21.84 nm arranged in smooth, spherical agglomerates and clusters forms. These NPs depicted cell viability > 90%, thus confirming their non-cytotoxic behavior. GIC restorative materials reinforced by 5% titania (TiO2) NPs demonstrated the highest microhardness in comparison to the control group and other experimental groups of the study. Surface morphology analysis revealed a reduction in cracks in this novel dental-restorative material supporting its compatible biological nature with better hardness strength and negligible crack propagation. Overall, these results indicated that TiO2 NPs produced using a biological approach could be easily used as restorative materials in dental applications.
Asunto(s)
Bacillus coagulans , Cementos de Ionómero Vítreo , Dureza , Ensayo de Materiales , Nanopartículas , Probióticos , Propiedades de Superficie , Titanio , Titanio/química , Cementos de Ionómero Vítreo/química , Supervivencia Celular , Microscopía Electrónica de Rastreo , Restauración Dental Permanente/métodos , Humanos , Tamaño de la PartículaRESUMEN
OBJECTIVE: The purpose of this study was to evaluate the effect of aging and fiber-reinforcement on the color stability, translucency, and microhardness of single-shade resin composites versus multi-shade resin composite. MATERIALS AND METHODS: Four resin composites (Filtek Z250, Omnichroma, Vittra APS Unique, Zenchroma) were tested. Three subgroups of specimens were prepared for each of the composites: control, polyethylene fiber-reinforcement, and glass fiber-reinforcement- groups (n = 10/per group). The samples were subjected to aging for 10,000 thermal cycles. Color differences (ΔE00 ) were calculated after aging. Relative translucency parameter (RTP00 ) and microhardness values were calculated before and after aging. A two-way analysis of variance and the generalized linear model was used (p < 0.05). RESULTS: The lowest and highest ΔE00 values were found for Filtek Z250 (0.6 ± 0.2) and Omnichroma resin composites (1.6 ± 0.4), respectively. The ΔE00 value of the polyethylene fiber-reinforcement group (1.2 ± 0.6) was significantly higher than the ΔE00 value of the glass fiber-reinforcement group (1.0 ± 0.4, p < 0.001). The RTP00 value of the glass fiber-reinforcement group (1.92 ± 0.78) was significantly higher than the RTP00 value of the polyethylene fiber-reinforcement group (1.72 ± 0.77, p < 0.001). The highest microhardness values were found in glass fiber-reinforcement group (76.48 ± 17.07, p < 0.001). CONCLUSION: Single-shade resin composites were more translucent, had higher color change, and lower hardness than multi-shade resin composite. For relative translucency and microhardness, statistical significance was found in the material and fiber type interaction. The glass fiber-reinforcement provided higher translucency, lower color change and higher microhardness values than polyethylene fiber-reinforcement group after aging. Thermocycling had a significant impact on the color stability, translucency parameter, and microhardness of the tested resin composite materials. CLINICAL SIGNIFICANCE: Single-shade resin composite materials have greater color-changing potential. The glass fiber-reinforcement optimize resin material mechanical properties and color stability more than polyethylene fiber-reinforcement.
Asunto(s)
Resinas Compuestas , Polietileno , Color , Dureza , Ensayo de MaterialesRESUMEN
OBJECTIVES: To evaluate surface microhardness and gingival marginal adaptation of three different bulk-fill flowable resin composites (FB-RBCs) in Class V cavities with enamel or dentin margins before and after thermocycling (TMC). MATERIALS AND METHODS: Three available FB-RBCs were used; Palfique Bulk Flow (PaBF) (Tokuyama Dental), SDR Flow+ Bulk Fill Flowable (Dentsply Sirona), and I-Flow Bulk Fill (I-Dental). Thirty discs were prepared from each type of FB-RBCs. The discs were subjected to Vickers microhardness tester machine. Class V cavities were prepared on 180 molars. Gingival margins of half the specimens were prepared above CEJ and the other half below CEJ. Cavities were restored with FB-RBCs for gingival marginal adaptation test. Two-way ANOVA was used in microhardness, while three-way ANOVA was used for marginal adaptation. RESULTS: The used materials showed statistically significant differences in microhardness and marginal adaptation. CONCLUSIONS: Regarding microhardness, PaBF showed the highest value before TMC and SDR was the highest after TMC. Regarding marginal adaptation, SDR revealed the best marginal adaptation than PaBF and I-flow, either subjected to TMC or not. CLINICAL SIGNIFICANCE: The longevity of cervical restorations depend on both the location of the cavity margin and the material used. The microfractures in resin composite surface due to low surface microhardness as well as marginal gaps seen in laboratory studies could be considered as an indicative parameter for clinical problem associated with marginal differences.
Asunto(s)
Resinas Compuestas , Resinas Compuestas/química , Humanos , Dureza , Propiedades de Superficie , Adaptación Marginal Dental , Encía , Ensayo de Materiales , Restauración Dental Permanente/métodosRESUMEN
BACKGROUND: The aim of this study is to evaluate the surface microhardness, surface chemical composition of bioactive restorative materials pre- and post- thermal aging. METHOD: A total of 200 disc-shaped samples were prepared by using the materials: Cention N, ACTIVA BioActive Restorative, Equia Forte HT Fil, Glass Fill glass carbomer cement (GCP), and Fuji II LC. Vickers microhardness test were used to measure surface hardness. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM/EDS) was used to determine the characterization of the microstructures and elemental analysis of the materials. These measurements were repeated after thermal aging. One-Way ANOVA test, Bonferroni test and the Games-Howell test was used for data analysis. The significance level was accepted as 0.05. RESULTS: Cention N had the highest vickers microhardness value before thermal cycle. The highest fluoride ion ratio among the materials before thermal aging was detected in the Equia Forte HT Fil and Fuji II LC groups. While a decrease in fluorideF ion was detected in all groups except the Cention N group after thermal aging. It is observed that ACTIVA BioActive Restorative has a more microporous and rougher surface in the scanning electron microscopy image after the thermal cycle than in the image before the thermal cycle. CONCLUSIONS: The chemical properties of the materials and the properties of the filler particles may be related to the differences in the mechanical properties, surface characterizations and ion releases of the materials Thermal aging affected the microhardness, surface characteristics and elemental mass ratios of the studied materials. Alkasite bioactive materials are more similar to composite restorative materials and show better mechanical properties than other materials, but do not have the same effect on fluoride release. CLINICAL RELEVANCE: Most of the bioactive materials showed a decrease in the fluoride ion ratio after thermal aging, while no difference was found in the ion exchange of alkasite materials. Material selection should be made more carefully in caries-active individuals whose fluoride release is clinically important.
Asunto(s)
Cementos de Ionómero Vítreo , Dureza , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X , Propiedades de Superficie , Cementos de Ionómero Vítreo/química , Calor , Resinas Compuestas/química , Fluoruros/química , Fluoruros/análisis , Materiales Dentales/química , Factores de Tiempo , Apatitas , Resinas SintéticasRESUMEN
BACKGROUND: Zinc-oxide eugenol (ZOE) cements are among the most used temporary materials in dentistry. Although ZOE has advantages over other temporary fillers, its mechanical strength is weaker, so researchers are working to improve it. E-glass fibers have emerged as promising reinforcing fibers in recent years due to their strong mechanical behavior, adequate bonding, and acceptable aesthetics. OBJECTIVES: To evaluate and compare the compressive strength, surface microhardness, and solubility of the ZOE and those reinforced with 10 wt.% E-glass fibers. METHODS: A total of 60 ZEO specimens were prepared; 30 specimens were reinforced with 10 wt.% E-glass fibers, considered modified ZOE. The characterization of the E-glass fibers was performed by XRF, SEM, and PSD. The compressive strength, surface microhardness, and solubility were evaluated. Independent sample t-tests were used to statistically assess the data and compare mean values (P ≤ 0.05). RESULTS: The results revealed that the modified ZOE showed a significantly higher mean value of compressive strength and surface microhardness while having a significantly lower mean value of solubility compared to unmodified ZOE (P ≤ 0.05). CONCLUSION: The modified ZOE with 10 wt.% E-glass fibers had the opportunity to be used as permanent filling materials.
Asunto(s)
Fuerza Compresiva , Vidrio , Dureza , Ensayo de Materiales , Solubilidad , Cemento de Óxido de Zinc-Eugenol , Cemento de Óxido de Zinc-Eugenol/química , Vidrio/química , Propiedades de Superficie , Microscopía Electrónica de RastreoRESUMEN
BACKGROUND: Currently, the advantages of monochromatic universal composite resin restorative materials have increased their use in dentistry. Accordingly, the optical, surface and mechanical properties of these materials have become more important. This study aimed to evaluate the effect of detox solution on discoloration, surface roughness (SR), and microhardness of different monochromatic universal composite resins (Omnichroma [O], Zenchroma [Z], Vittra [V], and Charisma Diamond One [CDO]). Another aim of this study was to evaluate the monomer conversion degree (DC) of the materials. METHODS: A total of 80 specimens were prepared to evaluate the materials (n = 10). After the initial measurements, the specimens were immersed in a red detox solution for 21 days. Statistical data analysis was performed using one-way ANOVA and Tukey's multiple comparisons. RESULTS: The ∆E values of Z were highest on the 21st day. There was an increase in the SR values of the materials immersed in the detox solution. On the 21st day, top surface microhardness of O was lower than the other materials. There was no statistically significant difference at DC values among material groups. CONCLUSIONS: The use of detox solutions for a commercially recommended period of 21 days is suggested. However, this usage period can cause discoloration in restorative materials. Furthermore, especially in the initial one-week period, detox solution may have a negative impact on the microhardness of the materials. In light of all these data, we recommend the cautious use of detox solutions to prevent adverse effects on restorative materials.
Asunto(s)
Color , Resinas Compuestas , Dureza , Ensayo de Materiales , Propiedades de Superficie , Resinas Compuestas/química , Materiales Dentales/químicaRESUMEN
This study evaluated the efficacy of a formulated remineralizing gallic acid (GA) varnish in treating artificial enamel caries lesions. Fifty-five intact bovine incisors were collected. Enamel blocks (5 × 9 mm) were prepared. A third of each block's surface remained intact. Primary carious lesions were induced on the middle and bottom thirds of the blocks by immersing the samples in a demineralization solution for 6 h. The bottom third of the blocks were further remineralized by randomly applying 0.5%, 2%, or 8% GA varnishes and 2.26% fluoride varnish (V varnish, Vericom, Seoul, Korea), or the varnish base without active ingredients (n = 11 each). The specimens were immersed in a remineralizing solution for 4 h and then subjected to a 2-hour immersion in the demineralizing solution. After six days of pH cycling, the surface microhardness was measured at depths of 30, 75, and 120 µm. The percentage of surface microhardness recovery (SMHR%) was compared among the groups using the Shapiro-Wilk, ANOVA, and Tukey HSD post-hoc tests (α = 0.05). The SMHR% of all experimental groups was higher than the control group at 30 µm (p < 0.05). The 0.5% GA varnish showed the highest SMHR% at all depths; however, the difference with the other experimental groups was significant at a depth of 30 µm (p < 0.05). The SMHR% of the fluoride and the 2% and 8% GA varnishes was comparable at all depths. All treatments potentially remineralize enamel lesions, with 0.5% GA varnish having the greatest effect, particularly on the top surface layer. As such, this newly developed varnish may emerge as a promising alternative to fluoride varnish.
Asunto(s)
Caries Dental , Fluoruros Tópicos , Animales , Bovinos , Caries Dental/prevención & control , Esmalte Dental , Fluoruros Tópicos/farmacología , Fluoruros Tópicos/uso terapéutico , Remineralización DentalRESUMEN
BACKGROUND: Self-adhesive resin cements (SARCs) are widely used for fixed prostheses, but incomplete cleaning near the gingival margin can cause inflammation. However, the factors influencing cement properties and the biological response of gingival fibroblasts to cement eluates are not well understood. This study examines the impact of two light-polymerizing units (LPUs) on the physical and chemical properties of two SARCs under simulated clinical conditions, as well as the subsequent response of human gingival fibroblasts (hGFs) to these eluates. METHODS: Dental cement discs of SARCs were polymerized using Kerr DemiPlus and 3 M Elipar DeepCure-S LED LPUs with or without a 2-mm thick zirconia screen. Physical properties (microhardness, surface roughness, residual monomers) were evaluated. hGFs' cell viability, wound healing potency, and gene expression were assessed. RESULTS: Both Maxcem and RelyX exhibited reduced microhardness and increased surface roughness when polymerized through zirconia or with DemiPlus LPU. Higher residual monomers (HEMA and GDMA in Maxcem; TEGDMA in RelyX) concentration was observed with DemiPlus and zirconia polymerization. Maxcem polymerized with DemiPlus exhibited lower cell viability, impaired healing, and altered gene expression in hGFs compared to those polymerized with Elipar LPU. Gene expression changes included downregulated NRF2 and HO-1 and upregulated CCR-3. CONCLUSIONS: Light-polymerizing Maxcem through zirconia with DemiPlus LPU compromised SARCs' properties, leading to higher residual monomers and negatively impacting hGFs' viability, healing, and gene expression. Careful material selection and polymerization techniques are crucial to minimize adverse effects on surrounding tissues. CLINICAL SIGNIFICANCE: Clinicians should exercise caution when using LPUs and SARCs, especially when polymerizing through zirconia. This will help optimize the physical and chemical properties of SARCs and minimize potential adverse effects on the surrounding gingival soft tissues.
Asunto(s)
Supervivencia Celular , Fibroblastos , Encía , Ensayo de Materiales , Cementos de Resina , Propiedades de Superficie , Circonio , Circonio/química , Humanos , Cementos de Resina/química , Fibroblastos/efectos de los fármacos , Encía/citología , Encía/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dureza , Ácidos Polimetacrílicos , Polimerizacion , Metacrilatos , Polietilenglicoles , Cicatrización de Heridas/efectos de los fármacos , Curación por Luz de Adhesivos Dentales , Luces de Curación Dental , Bisfenol A Glicidil Metacrilato , Células CultivadasRESUMEN
BACKGROUND: Recent studies have reported the inhomogeneity in the light emitted by dental light-curing units (LCUs). It is essential to understand how this uneven light distribution affects the physical properties of resin-based composites (RBCs) at various points across their surfaces. This study aimed to evaluate the effect of LCU beam's inhomogeneity on the microhardness of RBCs with different shades and thicknesses. METHODS: Four body (A1B, A2B, A3B, and A4B), one dentin (A3D), and one enamel shade (A3E) of RBC (Filtek Z350 XT) were examined. The specimens were fabricated in four thicknesses (1, 2, 3, and 4 mm) and subjected to a 40-second light-curing. Vickers microhardness testing was performed at the center point, and 3 mm left and right from the center at the bottom surface of each sample. The LCU beam profile was characterized using a beam profiler, while irradiance after specimen passage was measured using a spectrometer. One-way analysis of variance (ANOVA) and Tukey's post-hoc tests were used to analyze the effects of shades and thicknesses on irradiance and microhardness, respectively. One-way repeated-measures ANOVA was used to compare the microhardness across different points. Pearson's correlation analysis examined the relationship between irradiance and microhardness. RESULTS: The beam profile of LCU revealed inhomogeneous light distribution. Light irradiance was decreased with both the increase in thickness and darker shade of the specimens (p < 0.05). Microhardness was found to decline with an increase in sample thickness (p < 0.05), and was consistently higher at the center point compared to the periphery, particularly in thicker (3 and 4 mm) and darker shades (A3B, A4B, and A3D). A positive correlation was found between the irradiance and microhardness across all evaluated points (p < 0.05). CONCLUSIONS: Inhomogeneous light emission from LCU significantly influences the microhardness of RBC samples, depending on the thicknesses and shades. The findings underline the importance of considering LCU beam inhomogeneity in clinical settings to ensure optimal polymerization of RBC.
Asunto(s)
Color , Resinas Compuestas , Luces de Curación Dental , Dureza , Ensayo de Materiales , Resinas Compuestas/efectos de la radiación , Resinas Compuestas/química , Humanos , Propiedades de Superficie , Curación por Luz de Adhesivos Dentales/métodos , Esmalte Dental/efectos de la radiación , Dentina/efectos de la radiación , Materiales Dentales/efectos de la radiación , Materiales Dentales/química , Polimerizacion , LuzRESUMEN
BACKGROUND: Surface remineralization is recommended for the management of active non-cavitated interproximal carious lesions in primary teeth. According to the American Academy of Pediatric Dentistry, a recently recognized category of materials called bioactive restorative materials can be used for remineralization. This study aimed to evaluate the release of fluoride (F), calcium (Ca) and phosphate (P) ions from Predicta® Bioactive Bulk-fill composite compared with EQUIA Forte® and Filtek™ Z350 and to determine the remineralization effect of these 3 restorative materials on adjacent initial interproximal enamel carious lesions. METHODS: The release of F, Ca and P ions from 3 groups ((n = 10/group) (Group 1- Predicta®, Group 2- EQUIA Forte® and Group 3- Filtek™ Z350)) was determined at 1st, 4th, 7th and 14th days. After creating artificial carious lesions, human enamel samples were randomly assigned into 3 groups (n = 13/group) which were placed in contact with occluso-proximal restorative materials and exposed to a 14-day pH cycling period. Surface microhardness was determined using a Knoop microhardness assay at baseline, after artificial carious lesions formation and after pH cycling. The difference in the percentage of surface microhardness recovery (%SMHR) among groups was compared. Mineral deposition was analyzed with energy-dispersive x-ray spectroscopy (EDS) and the enamel surface morphology was evaluated with scanning electron microscopy (SEM). Kruskal-Wallis's test with Dunn's post hoc test and one-way ANOVA with Tukey's post hoc test were used for data analysis. RESULTS: EQUIA Forte® released the highest cumulative amount of F and P ions, followed by Predicta® and Filtek™ Z350. Predicta® released higher amount of Ca ions than EQUIA Forte® and Filtek™ Z350. Predicta® demonstrated the highest %SMHR, followed by EQUIA Forte® and Filtek™ Z350. There was a significant difference in the %SMHR between Predicta® and Filtek™ Z350 (p < 0.05). However, EQUIA Forte® demonstrated the highest fluoride content, followed by Predicta® and Filtek™ Z350. The SEM images of EQUIA Forte® and Predicta® revealed the greater mineral deposition. CONCLUSION: Predicta® demonstrated a marked increase in surface microhardness and fluoride content of adjacent initial interproximal enamel carious lesions in primary molars compared with Filtek™ Z350. Predicta® is an alternative restorative material to remineralize adjacent initial interproximal enamel carious lesions in primary molars, especially in high-risk caries patients.
Asunto(s)
Caries Dental , Fluoruros , Niño , Humanos , Fluoruros/uso terapéutico , Caries Dental/terapia , Esmalte Dental , Materiales Dentales , Minerales , Diente MolarRESUMEN
BACKGROUND: Recently, universal single-shade resin composites have become increasingly available in the dental market. The modification of their composition can have an inadvertent effect on their physical and surface properties, and subsequently determinantal effect on their clinical function and longevity. Therefore, this study aimed to evaluate the effect of different finishing and polishing (F/P) systems on surface roughness (Ra), surface gloss (GU), and Vickers microhardness (VMH) of universal single-shade RBCs. MATERIALS AND METHODS: Four commercial RBCs were used; the universal single-shade RBCs were Omnichroma, Charisma® Diamond ONE, and Vittra APS Unique, and a conventional nanocomposite Filtek™ Z250 XT was used as a control. The 3 F/P systems were Sof-Lex™ XT, Enhance®/PoGo®, and Diacomp® Plus Twist. A total of 160 discs were used for the 3 F/P system groups for all RBCs (n = 10). After F/P, the Ra, GU, and VMH were assessed. The data were analyzed using 2-way ANOVA at p-value < 0.05. RESULTS: Significant differences were found among the four RBCs and the 3 F/P systems (p < .000). Omnichroma showed the lowest Ra and acceptable GU, but the lowest VMH. Charisma showed the highest Ra, acceptable GU, and VMH. Vittra showed acceptable Ra, GU, and VMH and Filtek showed the highest GU, VMH, and acceptable Ra. CONCLUSION: Although conventional nanohybrid RBC (Filtek Z250 XT) showed better GU and VMH values, the universal single-shade RBCs demonstrated comparable surface properties. The highest GU & VMH and lowest Ra were achieved by Diacomp followed by Enhance and Soflex.
Asunto(s)
Resinas Compuestas , Pulido Dental , Humanos , Ensayo de Materiales , Materiales Dentales , Diamante , Propiedades de SuperficieRESUMEN
BACKGROUND: Poly-methyl methacrylate (PMMA) is a type of polymer mostly used to make denture bases. Self-cured acrylic resin (PMMA) can be used to repair a fractured acrylic denture base; however, even after repair, this area remains vulnerable. Carbon nanotubes (CNTs) could be used as a filler for polymer reinforcement. Furthermore, silver nanoparticles are efficient agents for the prevention of dental biofilm and improving their mechanical properties. The doping of CNTs with silver nanoparticles may lead to a synergistic interaction that is predicted to enhance the mechanical characteristics of the fillers. OBJECTIVES: The aim of the study was to assess the influnce of manual incorporation of 0.5% weight percent (%wt.) of silver doped carbon nanotubes (Ag-doped CNTs) into commercial self-cured PMMA on its flexural strength, impact strength, and surface microhardness. METHODS: In this investigation, a total of 60 specimens comprised of acrylic resin were employed. They are divided into two main groups: (a) the control group, which was made by using liquid monomer and commercial self-cured PMMA powder; and (b) the modified group, prepared by hand mixing the purchased silver-doped CNTs powder (0.5% wt.) to self-cured PMMA powder (99.5%wt.), and then the blended powder was incorporated into the liquid monomer. Flexural strength, flexural modulus, impact strength, and surface microhardness were evaluated. Independent sample t-tests were used to statistically analyze the data and compare the mean values of flexural strength, flexural modulus, impact strength, and surface microhardness (p-value ≤ 0.05). RESULTS: The flexural strength of the modified groups with Ag-doped CNTs (132.4 MPa) was significantly greater than that of the unmodified (control) groups (63.2 MPa). Moreover, the flexural modulus of the modified groups with Ag-doped CNTs (3.067 GPa) was significantly greater than that of the control groups (1.47 GPa). Furthermore, the impact strength of the modified groups with Ag-doped CNTs (11.2 kJ/mm2) was significantly greater than that of the control groups (2.3 kJ/mm2). Furthermore, the microhardness of the modified groups with Ag-doped CNTs (29.7 VHN) was significantly greater than that of the control groups (16.4 VHN), (p-value = 0.0001). CONCLUSION: The incorporation of 0.5% wt. silver doped CNTs fillers to the self-cured acrylic resin enhanced its flexural strength, flexural modulus, impact strength, and surface microhardness.
Asunto(s)
Nanopartículas del Metal , Nanotubos de Carbono , Humanos , Resinas Acrílicas , Polimetil Metacrilato , Resistencia Flexional , Plata , Polvos , Ensayo de Materiales , Bases para Dentadura , Polímeros , Propiedades de SuperficieRESUMEN
PURPOSE: To compare the impact of four effervescent vitamin tablets on the surface roughness, microhardness, and color of human enamel and contemporary composite resins. MATERIAL AND METHODS: Sixty enamel and a total of 240 anterior (Gradia Direct Anterior), posterior (Gradia Direct Posterior), and universal composite resin (Filtek Ultimate) specimens (n = 60 per group) were fabricated. Each group was subdivided into five subgroups (n = 12, per subgroup). The specimens were subsequently immersed in YOUPLUS, Redoxon, Sunlife Immuvit, and Sambucol effervescent vitamin solutions for 2 min per day over 30 days. Distilled water was used as control. Subsequently, surface roughness (Ra) was detected using a profilometer, and microhardness (VHN) was measured using a microhardness tester. A spectrophotometer device was used to record the L,a,b color coordinates of the specimens after 24 h, 7 days, and 30 days, and the color changes (ΔE00) of the groups were calculated. The data were analyzed by ANOVA, two-way ANOVA, Kruskal-Wallis, Levene's, and Fisher's least significant difference (LSD) tests (p < 0.05). SEM analysis was conducted on one randomly selected specimen per group (×1000). RESULTS: In terms of surface roughness, material X vitamin interactions were found significant (p < 0.05). The increase in Ra from 24 h to 30 days was found significant (p < 0.05) except for Gradia Direct Anterior X Redoxon, Sunlife Immuvit and Sambucol, Filtek Ultimate X Sunlife Immuvit and Sambucol, and all control groups. Ra changes were also concluded by SEM. Regarding VHNs, material X vitamin interactions were significant (p < 0.005), except for all Filtek Ultimate subgroups. The changes in VHNs of the groups from 24 h to 30 days were significant for all enamel and Gradia Direct Anterior X YOUPLUS, Gradia Posterior X YOUPLUS, Sunlife Immuvit, and Sambucol groups (p < 0.05). In terms of ΔE00, significant differences were observed between the 7 days and 30 days in the enamel (p = 0.047), Gradia Direct Anterior (p = 0.019), and Gradia Direct Posterior groups (p = 0.038). CONCLUSIONS: Daily consumption of effervescent vitamin tablets can increase surface roughness, decrease microhardness, and influence the color of human enamel and contemporary anterior, posterior, and universal composite resins after a 30-day period.
Asunto(s)
Color , Resinas Compuestas , Esmalte Dental , Dureza , Propiedades de Superficie , Vitaminas , Humanos , Esmalte Dental/efectos de los fármacos , Resinas Compuestas/química , Comprimidos , Ensayo de MaterialesRESUMEN
The aim of this study was to compare the aging effects on wear, surface roughness and microhardness of fissure sealants having varying contents. Four fissure sealant types were used in the study: Aegis (Bosworth, USA) (Group A), Beautisealant (Shofu, Japan) (Group B), Clinpro (3M, USA) (Group C), and Ultraseal XT/Hydro (Ultradent, USA) (Group U). Hundred disc-shaped specimens (5 mm diameter/3 mm width) were designed according to the manufacturer's instructions and assigned for microhardness/Vickers Hardness (VHN), surface roughness, and wear tests. Thermocycling (10,000 times/5-55 °C ± 2 °C/20 s) and chewing simulator (75,000 times/49 N) were applied as the aging procedures. Measurements were made before and after the aging procedures. The specimens were examined by Scanning Electrone Microscopy (SEM). Data was statistically analyzed through Kruskal Wallis, Wilcoxon and Welch tests. The highest and the lowest changes in mean microhardness values were obtained for Group U (9.88 ± 1.46) and Group A (4.40 ± 0.46), respectively; and a significant difference (p < 0.001) was found between the mean changes in microhardness numbers (U > B > C > A). The median roughness values had no significant difference; the surface roughness had the highest mean differences in Groups U and C (U = C > A > B). Significant difference was found between the mean changes in wear/weight values (p < 0.001); the highest and the lowest mean weight losses were recorded in Group U (0.0097 ± 0.0003 gr), and Group C (0.0041 ± 0.0006 gr), respectively (U > B > A > C). The highest physical changes were determined in Group U after the aging procedures. It is concluded that the aging procedures affect physical structures of all test materials with varying degrees, however Ultraseal XT/Hydro is the most affected. The individual treatment needs and material properties must be considered to select a fissure sealant material.