RESUMEN
Mass spectrometry-based omics technologies are increasingly used in perturbation studies to map drug effects to biological pathways by identifying significant molecular events. Significance is influenced by fold change and variation of each molecular parameter, but also by multiple testing corrections. While the fold change is largely determined by the biological system, the variation is determined by experimental workflows. Here, it is shown that memory effects of prior subculture can influence the variation of perturbation profiles using the two colon carcinoma cell lines SW480 and HCT116. These memory effects are largely driven by differences in growth states that persist into the perturbation experiment. In SW480 cells, memory effects combined with moderate treatment effects amplify the variation in multiple omics levels, including eicosadomics, proteomics, and phosphoproteomics. With stronger treatment effects, the memory effect was less pronounced, as demonstrated in HCT116 cells. Subculture homogeneity was controlled by real-time monitoring of cell growth. Controlled homogeneous subculture resulted in a perturbation network of 321 causal conjectures based on combined proteomic and phosphoproteomic data, compared to only 58 causal conjectures without controlling subculture homogeneity in SW480 cells. Some cellular responses and regulatory events were identified that extend the mode of action of arsenic trioxide (ATO) only when accounting for these memory effects. Controlled prior subculture led to the finding of a synergistic combination treatment of ATO with the thioredoxin reductase 1 inhibitor auranofin, which may prove useful in the management of NRF2-mediated resistance mechanisms.
Asunto(s)
Proteómica , Humanos , Proteómica/métodos , Línea Celular Tumoral , Células HCT116 , Técnicas de Cultivo de Célula/métodos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Trióxido de Arsénico/farmacología , Auranofina/farmacología , Proliferación Celular/efectos de los fármacos , Espectrometría de Masas/métodosRESUMEN
Retinoblastoma protein is central in signaling networks of fundamental cell decisions such as proliferation and differentiation in all metazoans and cancer development. Immunostaining and biochemical evidence demonstrated that during interphase retinoblastoma protein is in the nucleus and is hypophosphorylated, and during mitosis is in the cytoplasm and is hyperphosphorylated. The purpose of this study was to visualize in vivo in a non-diseased tissue, the dynamic spatial and temporal nuclear exit toward the cytoplasm of this protein during mitosis and its return to the nucleus to obtain insights into its potential cytosolic functions. Using high-resolution time-lapse images from confocal microscopy, we tracked in vivo the ortholog in plants the RETINOBLASTOMA RELATED (RBR) protein tagged with Green Fluorescent Protein (GFP) in Arabidopsis thaliana's root. RBR protein exits from dense aggregates in the nucleus before chromosomes are in prophase in less than 2 min, spreading outwards as smaller particles projected throughout the cytosol during mitosis like a diffusive yet controlled event until telophase, when the daughter's nuclei form; RBR returns to the nuclei in coordination with decondensing chromosomal DNA forming new aggregates again in punctuated larger structures in each corresponding nuclei. We propose RBR diffused particles in the cytoplasm may function as a cytosolic sensor of incoming signals, thus coordinating re-aggregation with DNA is a mechanism by which any new incoming signals encountered by RBR may lead to a reconfiguration of the nuclear transcriptomic context. The small RBR diffused particles in the cytoplasm may preserve topologic-like properties allowing them to aggregate and restore their nuclear location, they may also be part of transient cytoplasmic storage of the cellular pre-mitotic transcriptional context, that once inside the nuclei may execute both the pre mitosis transcriptional context as well as new transcriptional instructions.
RESUMEN
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
RESUMEN
We investigated the mechanism of action of an arylsulfonamide with whole-cell activity against Mycobacterium tuberculosis. We newly synthesized the molecule and confirmed it had activity against both extracellular and intracellular bacilli. The molecule had some activity against HepG2 cells but maintained some selectivity. Bacterial cytological profiling suggested that the mechanism of action was via disruption of cell wall synthesis, with similarities to an inhibitor of the mycolic acid exporter MmpL3. The compound induced expression from the IniB promoter and caused a boost in ATP production but did not induce reactive oxygen species. A mutation in MmpL3 (S591I) led to low-level resistance. Taken together, these data confirm the molecule targets cell wall biosynthesis with MmpL3 as the most probable target.
Asunto(s)
Antituberculosos , Proteínas Bacterianas , Pared Celular , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Sulfonamidas , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Sulfonamidas/farmacología , Antituberculosos/farmacología , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Hep G2 , Ácidos Micólicos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Janus kinases (JAKs) are a family of cytosolic tyrosine kinases that regulate cytokine signal transduction, including cytokines involved in a range of inflammatory diseases, such as RA, psoriasis, atopic dermatitis and IBD. Several small-molecule JAK inhibitors (JAKis) are now approved for the treatment of various immune-mediated inflammatory diseases. There are, however, key differences between these agents that could potentially translate into unique clinical profiles. Each JAKi has a unique chemical structure, resulting in a distinctive mode of binding within the catalytic cleft of the target JAK, and giving rise to distinct pharmacological characteristics. In addition, the available agents have differing selectivity for JAK isoforms, as well as off-target effects against non-JAKs. Other differences include effects on haematological parameters, DNA damage repair, reproductive toxicity and metabolism/elimination. Here we review the pharmacological profiles of the JAKis abrocitinib, baricitinib, filgotinib, peficitinib, tofacitinib and upadacitinib.
Asunto(s)
Antirreumáticos , Artritis Reumatoide , Inhibidores de las Cinasas Janus , Psoriasis , Humanos , Inhibidores de las Cinasas Janus/uso terapéutico , Inhibidores de las Cinasas Janus/farmacología , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Quinasas Janus/metabolismo , Psoriasis/tratamiento farmacológicoRESUMEN
Single, high doses of TCDD in rats are known to cause wasting, a progressive loss of 30 to 50% body weight and death within several weeks. To identify pathway perturbations at or near doses causing wasting, we examined differentially gene expression (DGE) and pathway enrichment in centrilobular (CL) and periportal (PP) regions of female rat livers following 6 dose levels of TCDD - 0, 3, 22, 100, 300, and 1000 ng/kg/day, 5 days/week for 4 weeks. At the higher doses, rats lost weight, had increased liver/body weight ratios and nearly complete cessation of liver cell proliferation, signs consistent with wasting. DGE curves were left shifted for the CL versus the PP regions. Canonical Phase I and Phase II genes were maximally increased at lower doses and remained elevated at all doses. At lower doses, ≤ 22 ng/kg/day in the CL and ≤ 100 ng/kg/day, upregulated genes showed transcription factor (TF) enrichment for AHR and ARNT. At the mid- and high-dose doses, there was a large number of downregulated genes and pathway enrichment for DEGs which showed downregulation of many cellular metabolism processes including those for steroids, fatty acid metabolism, pyruvate metabolism and citric acid cycle. There was significant TF enrichment of the hi-dose downregulated genes for RXR, ESR1, LXR, PPARalpha. At the highest dose, there was also pathway enrichment with upregulated genes for extracellular matrix organization, collagen formation, hemostasis and innate immune system. TCDD demonstrates most of its effects through binding the aryl hydrocarbon receptor (AHR) while the downregulation of metabolism genes at higher TCDD doses is known to be independent of AHR binding to DREs. Based on our results with DEG, we provide a hypothesis for wasting in which high doses of TCDD shift circadian processes away from the resting state, leading to greatly reduced synthesis of steroids and complex lipids needed for cell growth, and producing gene expression signals consistent with an epithelial-to-mesenchymal transition in hepatocytes.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Hígado , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Dibenzodioxinas Policloradas/toxicidad , Ratas , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Ratas Sprague-Dawley , Relación Dosis-Respuesta a DrogaRESUMEN
Some rat and dog toxicology studies with the fungicide valifenalate showed minimal, non-adverse thyroid changes, mostly above the maximum tolerated dose, and concomitantly with liver effects. This publication describes their mode of action (MOA), combining in vivo and new approach methodologies (NAMs), in a weight of evidence approach. Data demonstrate a MOA of liver enzyme induction via nuclear receptor CAR/PXR activation, increased thyroxine (T4) metabolism and elevated thyroid stimulating hormone (TSH) level, leading to thyroid follicular cell hypertrophy and increased thyroid weight. Non-human relevance of the MOA was demonstrated in in vitro cross species assays in rat, dog and human hepatocytes. Increased gene expression and activity of cytochrome P450s (CYPs) and uridine 5'-diphospho-glucuronosyltransferases (UGTs) were observed in rat and dog hepatocytes exposed to valifenalate, with increased T4 clearance and/or T4 glucuronidation/T4-UGT activity. Therefore, a causal relationship between increased liver enzyme induction and thyroid effects in dogs and rats is concluded. Rat hepatocytes were most sensitive, while valifenalate did not increase T4-UGT activity above 2-fold of vehicle control or T4 glucuronidation and T4 clearance in human hepatocytes. Consequently, valifenalate exposure in humans is unlikely to lead to decreased T4 levels, and subsequent thyroid and developmental neurotoxicity effects. Alternative human-relevant thyroid MOAs were excluded, i.e. inhibition of deiodinases (DIO), thyroperoxidase (TPO) or the sodium iodide symporter (NIS). Due to known species differences in thyroid homeostasis between humans and laboratory animals and, importantly, based on the presented data, this liver enzyme mediated MOA is considered not relevant for human hazard assessment.
RESUMEN
Dieldrin is an organochlorine insecticide that was widely used until 1970 when its use was banned because of its liver carcinogenicity in mice. Several long-term rodent bioassays have reported dieldrin to induce liver tumors in in several strains of mice, but not in rats. This article reviews the available information on dieldrin liver effects and performs an analysis of mode of action (MOA) and human relevance of these liver findings. Scientific evidence strongly supports a MOA based on CAR activation, leading to alterations in gene expression, which result in increased hepatocellular proliferation, clonal expansion leading to altered hepatic foci, and ultimately the formation of hepatocellular adenomas and carcinomas. Associative events include increased liver weight, centrilobular hypertrophy, increased expression of Cyp2b10 and its resulting increased enzymatic activity. Other associative events include alterations of intercellular gap junction communication and oxidative stress. Alternative MOAs are evaluated and shown not to be related to dieldrin administration. Weight of evidence shows that dieldrin is not DNA reactive, it is not mutagenic, and it is not genotoxic in general. Furthermore, activation of other pertinent nuclear receptors, including PXR, PPARα, AhR, and estrogen are not related to dieldrin-induced liver tumors nor is there liver cytotoxicity. In previous studies, rats, dogs, and non-human primates did not show increased cell proliferation or production of pre-neoplastic or neoplastic lesions following dieldrin treatment. Thus, the evidence strongly indicates that dieldrin-induced mouse liver tumors are due to CAR activation and are specific to the mouse, which are qualitatively not relevant to human hepatocarcinogenesis. Thus, there is no carcinogenic risk to humans. This conclusion is also supported by a lack of positive epidemiologic findings for evidence of liver carcinogenicity. Based on current understanding of the mode of action of dieldrin-induced liver tumors in mice, the appropriate conclusion is that dieldrin is a mouse specific liver carcinogen and it does not pose a cancer risk to humans.
Asunto(s)
Dieldrín , Neoplasias Hepáticas , Dieldrín/toxicidad , Animales , Humanos , Neoplasias Hepáticas/inducido químicamente , Medición de Riesgo , Insecticidas/toxicidad , Ratones , Ratas , Receptor de Androstano Constitutivo , Hígado/efectos de los fármacos , Hígado/patologíaRESUMEN
Risk assessment of human health hazards has traditionally relied on experiments that use animal models. Although exposure studies in rats and mice are a major basis for determining risk in many cases, observations made in animals do not always reflect health hazards in humans due to differences in biology. In this critical review, we use the mode-of-action (MOA) human relevance framework to assess the likelihood that bronchiolar lung tumors observed in mice chronically exposed to styrene represent a plausible tumor risk in humans. Using available datasets, we analyze the weight-of-evidence 1) that styrene-induced tumors in mice occur through a MOA based on metabolism of styrene by Cyp2F2; and 2) whether the hypothesized key event relationships are likely to occur in humans. This assessment describes how the five modified Hill causality considerations support that a Cyp2F2-dependent MOA causing lung tumors is active in mice, but only results in tumorigenicity in susceptible strains. Comparison of the key event relationships assessed in the mouse was compared to an analogous MOA hypothesis staged in the human lung. While some biological concordance was recognized between key events in mice and humans, the MOA as hypothesized in the mouse appears unlikely in humans due to quantitative differences in the metabolic capacity of the airways and qualitative uncertainties in the toxicological and prognostic concordance of pre-neoplastic and neoplastic lesions arising in either species. This analysis serves as a rigorous demonstration of the framework's utility in increasing transparency and consistency in evidence-based assessment of MOA hypotheses in toxicological models and determining relevance to human health.
Asunto(s)
Neoplasias Pulmonares , Humanos , Ratones , Ratas , Animales , Neoplasias Pulmonares/inducido químicamente , Medición de Riesgo , Estireno/toxicidad , IncertidumbreRESUMEN
Oxanthromicin is an anthranone-type natural product isolated from Streptomyces sp. TRM 15522, which exhibits antifungal activity. However, the underlying mechanisms remain unclear. This study, therefore, aimed at investigating the mode of action of oxanthromicin against the phytopathogen Verticillium dahliae. We found that oxanthromicin substantially suppressed spore germination and mycelial growth in V. dahliae. Further, electron microscopy and staining with propidium iodide and Rhodamine 123 indicated that oxanthromicin causes cell membrane damage and induces changes in mitochondrial membrane potential. These findings suggest that oxanthromicin exhibits its antifungal activity by damaging fungal cell membranes. This discovery could potentially facilitate the development of oxanthromicin as a biological pesticide.
Asunto(s)
Ascomicetos , Verticillium , Antifúngicos/farmacología , Antifúngicos/metabolismo , Enfermedades de las Plantas/microbiología , AntraquinonasRESUMEN
Rodent inhalation studies indicate styrene is a mouse lung-specific carcinogen. Mode-of-action (MOA) analyses indicate that the lung tumors cannot be excluded as weakly quantitatively relevant to humans due to shared oxidative metabolites detected in rodents and humans. However, styrene also is not genotoxic following in vivo dosing. The objective of this review was to characterize occupational and general population cancer risks by conservatively assuming mouse lung tumors were relevant to humans but operating by a non-genotoxic MOA. Inhalation cancer values reference concentrations for respective occupational and general population exposures (RfCcar-occup and RfCcar-genpop) were derived from initial benchmark dose (BMD) modeling of mouse inhalation tumor dose-response data. An overall lowest BMDL10 of 4.7 ppm was modeled for lung tumors, which was further duration- and dose-adjusted by physiologically based pharmacokinetic (PBPK) modeling to derive RfCcar-occup/genpop values of 6.2 ppm and 0.8 ppm, respectively. With the exception of open-mold fiber reinforced composite workers not using personal protective equipment (PPE), the RfCcar-occup/genpop values are greater than typical occupational and general population human exposures, thus indicating styrene exposures represent a low potential for human lung cancer risk. Consistent with this conclusion, a review of styrene occupational epidemiology did not support a conclusion of an association between styrene exposure and lung cancer occurrence, and further supports a conclusion that the conservatively derived RfCcar-occup is lung cancer protective.
Asunto(s)
Neoplasias Pulmonares , Exposición Profesional , Estireno , Animales , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Estireno/toxicidad , Ratones , Medición de Riesgo , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Carcinógenos/toxicidad , Relación Dosis-Respuesta a DrogaRESUMEN
AIMS: The research aimed to optimize the ultrasound-assisted extraction of secondary metabolites and the antibacterial activity of the plant species Geranium robertianum. The phytochemical profiles of the optimized extracts, as well as their antibacterial and synergistic activity with an antibiotic and their potential mechanisms of action and cytotoxicity, were examined. METHODS AND RESULTS: Response Surface Methodology was used to optimize extraction conditions. Optimized ethanol and acetone extracts were tested via microdilution, checkerboard, time-kill kinetics, and cell membrane permeability methods. The extracts displayed broad antibacterial activity with minimum inhibitory concentrations ranging from 1.25 to 20 mg ml-1. In addition, the extract synergistically reacted with gentamicin against gentamicin-resistant strains of Escherichia coli and Staphylococcus aureus, enhancing the efficacy of the antibiotic up to 32-fold. The extracts demonstrated strain-dependent bactericidal activity in a 24-h time interval. They increase the permeability of the cell membrane, thus disrupting its normal functioning. The cytotoxic concentration (CC50) on human keratinocytes was 1771.24 ± 5.78 µg ml-1 for ethanol extract, and 958.01 ± 6.14 µg ml-1 for acetone extract. Kaempferol, ellagic acid, quercetin, and rutin were recognized as the main components in both extracts. CONCLUSIONS: The findings of this study indicate that the extracts of G. robertianum can be considered as potential natural antibacterial agents in the control of microorganisms.
Asunto(s)
Antibacterianos , Escherichia coli , Geranium , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Staphylococcus aureus , Antibacterianos/farmacología , Geranium/química , Extractos Vegetales/farmacología , Staphylococcus aureus/efectos de los fármacos , Humanos , Escherichia coli/efectos de los fármacos , Gentamicinas/farmacología , Queratinocitos/efectos de los fármacosRESUMEN
Diseases caused by plant viruses and pathogens pose a serious threat to crop yield and quality. Traditional pesticides have gradually developed drug resistance and brought certain environmental safety issues during long-term overuse. There is an urgent need to discover new candidate compounds to address these issues. In this study, we achieved the efficient synthesis of iheyamine A and its derivatives, and discovered their excellent antiviral activities against tobacco mosaic virus (TMV). Most compounds displayed higher antiviral activities against TMV than commercial ribavirin at 500 µg/mL, with compounds 3a (Inactive effect IC50: 162 µg/mL), 3d (Inactive effect IC50: 249 µg/mL), 6p (Inactive effect IC50: 254 µg/mL), and 7a (Inactive effect IC50: 234 µg/mL) exhibiting better antiviral activities than ningnanmycin at 500 µg/mL (Inactive effect IC50: 269 µg/mL). Meanwhile, the structure-activity relationships of this type of compounds were systematically studied. We chose 3a for further antiviral mechanism research and found that it can directly act on viral coat protein (CP). The interaction of 3a and CP was further verified via molecular docking. These compounds also showed broad-spectrum fungicidal activities against 8 plant pathogenic fungi, especially for P. piricola. This study provides a reference for the role of iheyamine alkaloids in combating plant pathogenic diseases.
RESUMEN
In this study, we synthesized and characterized a series of coumarin-imidazopyridine hybrid ligands (HL1-HL4) and their corresponding Zn(II) complexes (C1-C4). The ligands were synthesized via a two-step process in 56-90 % yields. The resulting ligands, were utilized to form Zn(II) complexes, characterized by conductivity measurements, HRMS, IR, 1H NMR spectroscopy and X-ray diffractions. Biological evaluations revealed that these compounds exhibited potent antiviral activity against Zika virus (ZIKV), with EC50 values ranging from 0.55 to 4.8 µM and SI of up to 1490. Notably, the complexes (the first-in-class Zn(II) anti-ZIKV complexes) generally displayed enhanced activity compared to their respective ligands, with some compounds outperforming the reference antiviral, ribavirin. The Time of Addition assay suggested that while some compounds interfere with both viral entry (with a virucidal component) and replication phases, other only acted in replication phases. These results together with molecular modeling studies on ZIKV Envelope protein and ZIKV NS2B-NS3 offered insights for their mode of actions and further optimizations.
RESUMEN
Pesticides play an important role in the development of agriculture, as they can prevent and control crop diseases and pests, improve crop yield and quality. However, the abuse and improper use of pesticides can lead to negative impacts such as environmental pollution and pest resistance issues. There is an urgent need to develop green, safe, and efficient pesticides. In this work, natural product arecoline was selected as parent structure, a series of arecoline derivatives were designed, synthesized, and systematically investigated antiviral activities against tobacco mosaic virus (TMV). These compounds were found to have good to excellent anti-TMV activities for the first time. The antiviral activities of 4a, 4 h, 4 l, 4p, 6a, 6c, and 6f are higher than that of ningnanmycin. Compounds 4 h (EC50 value 146 µg/mL) and 4p (EC50 value 161 µg/mL) with simple structures and excellent activities emerged as new antiviral candidates. We chose 4 h to further investigate the antiviral mechanism, which revealed that it can cause virus fragmentation by acting on the viral coat protein (CP). We further validated this result through molecular docking. These compounds also displayed broad-spectrum fungicidal activities against 8 plant pathogenic fungi. This work lays the theoretical foundation for the application of arecoline derivatives in the agricultural field.
Asunto(s)
Antivirales , Arecolina , Diseño de Fármacos , Oxadiazoles , Virus del Mosaico del Tabaco , Virus del Mosaico del Tabaco/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Oxadiazoles/química , Oxadiazoles/farmacología , Oxadiazoles/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Arecolina/farmacología , Arecolina/síntesis química , Arecolina/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento MolecularRESUMEN
The mode of action (MOA) framework is proposed to inform a biological link between chemical exposures and adverse health effects. Despite a significant increase in knowledge and awareness, the application of MOA in human health risk assessment (RA) remains limited. This study aims to discuss the adoption of MOA for health RA within a regulatory context, taking our previously proposed but not yet validated MOA for lead neurotoxicity as an example. We first conducted a quantitative weight of evidence (qWOE) assessment, which revealed that the MOA has a moderate confidence. Then, targeted bioassays were performed within an in vitro blood-brain barrier (BBB) model to quantitatively validate the scientific validity of key events (KEs) in terms of essentiality and concordance of empirical support (dose/temporal concordance), which increases confidence in utilizing the MOA for RA. Building upon the quantitative validation data, we further conducted benchmark dose (BMD) analysis to map dose-response relationships for the critical toxicity pathways, and the lower limit of BMD at a 5% response (BMDL5) was identified as the point of departure (POD) value for adverse health effects. Notably, perturbation of the Aryl Hydrocarbon Receptor (AHR) signaling pathway exhibited the lowest POD value, measured at 0.0062 µM. Considering bioavailability, we further calculated a provisional health-based guidance value (HBGV) for children's lead intake, determining it to be 2.56 µg/day. Finally, the health risk associated with the HBGV was assessed using the hazard quotient (HQ) approach, which indicated that the HBGV established in this study is a relative safe reference value for lead intake. In summary, our study described the procedure for utilizing MOA in health RA and set an example for MOA-based human health risk regulation.
Asunto(s)
Plomo , Medición de Riesgo/métodos , Humanos , Plomo/toxicidad , Barrera Hematoencefálica/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Relación Dosis-Respuesta a DrogaRESUMEN
Fungal infections represent a significant health risk worldwide. Opportunistic infections caused by yeasts, particularly by Candida spp. and their virulent emerging isolates, have become a major threat to humans, with an increase in fatal cases of infections attributed to the lack of effective anti-yeast therapies and the emergence of fungal resistance to the currently applied drugs. In this regard, the need for novel anti-fungal agents with modes of action different from those currently available is undeniable. Anti-microbial peptides (AMPs) are promising candidates for the development of novel anti-fungal biomolecules to be applied in clinic. A class of AMPs that is of particular interest is the small cysteine-rich proteins (CRPs). Among CRPs, plant defensins and anti-fungal proteins (AFPs) of fungal origin constitute two of the largest and most promising groups of CRPs showing anti-fungal properties, including activity against multi-resistant pathogenic yeasts. In this review, we update and compare the sequence, structure, and properties of plant defensins and AFPs with anti-yeast activity, along with their in vitro and in vivo potency. We focus on the current knowledge about their mechanism of action that may lead the way to new anti-fungals, as well as on the developments for their effective biotechnological production. KEY POINTS: ⢠Plant defensins and fungal AFPs are alternative anti-yeast agents ⢠Their multi-faceted mode of action makes occurrence of resistance rather improbable ⢠Safe and cost-effective biofactories remain crucial for clinical application.
Asunto(s)
Defensinas , Proteínas Fúngicas , Humanos , Proteínas Fúngicas/genética , Defensinas/farmacología , Plantas/microbiología , Antifúngicos/química , Hongos/metabolismo , Proteínas de Plantas/metabolismo , Pruebas de Sensibilidad MicrobianaRESUMEN
Emerging resistance of fungal pathogens and challenges faced in drug development have prompted renewed investigations into novel antifungal lipopeptides. The antifungal lipopeptide AF3 reported here is a natural lipopeptide isolated and purified from Bacillus subtilis. The AF3 lipopeptide's secondary structure, functional groups, and the presence of amino acid residues typical of lipopeptides were determined by circular dichroism, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The lipopeptide's low minimum inhibitory concentrations (MICs) of 4-8 mg/L against several fungal strains demonstrate its strong antifungal activity. Biocompatibility assays showed that ~ 80% of mammalian cells remained viable at a 2 × MIC concentration of AF3. The treated Candida albicans cells examined by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy clearly showed ultrastructural alterations such as the loss of the cell shape and cell membrane integrity. The antifungal effect of AF3 resulted in membrane permeabilization facilitating the uptake of the fluorescent dyes-acridine orange (AO)/propidium iodide (PI) and FUN-1. Using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 4-(2-[6-(dioctylamino)-2-naphthalenyl] ethenyl)-1-(3-sulfopropyl) pyridinium inner salt (di-8-ANEPPS), we observed that the binding of AF3 to the membrane bilayer results in membrane disruption and depolarization. Flow cytometry analyses revealed a direct correlation between lipopeptide activity, membrane permeabilization (~ 75% PI uptake), and reduced cell viability. An increase in 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence demonstrates endogenous reactive oxygen species production. Lipopeptide treatment appears to induce late-stage apoptosis and alterations to nuclear morphology, suggesting that AF3-induced membrane damage may lead to a cellular stress response. Taken together, this study illustrates antifungal lipopeptide's potential as an antifungal drug candidate. KEY POINTS: ⢠The studied lipopeptide variant AF3 displayed potent antifungal activity against C. albicans ⢠Its biological activity was stable to proteolysis ⢠Analytical studies demonstrated that the lipopeptide is essentially membranotropic and able to cause membrane dysfunction, elevated ROS levels, apoptosis, and DNA damage.
Asunto(s)
Antifúngicos , Bacillus subtilis , Animales , Antifúngicos/farmacología , Membrana Celular , Aminoácidos , Candida albicans , Lipopéptidos/farmacología , MamíferosRESUMEN
The widespread presence of tolerance to copper in Xanthomonas species has resulted in the need to develop alternative approaches to control plant diseases caused by xanthomonads. In recent years, nanotechnological approaches have resulted in the identification of novel materials to control plant pathogens. With many metal-based nanomaterials having shown promise for disease control, an important question relates to the mode of action of these new materials. In this study, we used several approaches, such as scanning electron microscopy, propidium monoazide quantitative polymerase chain reaction, epifluorescence microscopy, and RNA sequencing to elucidate the mode of action of a Cu/Zn hybrid nanoparticle against copper-tolerant strains of Xanthomonas euvesicatoria. We demonstrate that Cu/Zn did not activate copper resistance genes (i.e., copA and copB) in the copper-tolerant bacterium but functioned by disrupting the bacterial cell structure and perturbing important biological processes such as cell respiration and chemical homeostasis.
Asunto(s)
Cobre , Enfermedades de las Plantas , Xanthomonas , Zinc , Xanthomonas/efectos de los fármacos , Xanthomonas/genética , Cobre/farmacología , Zinc/farmacología , Enfermedades de las Plantas/microbiología , Nanopartículas del Metal/química , Nanopartículas/químicaRESUMEN
OBJECTIVES: Mortality from respiratory and cardiovascular health conditions contributes largely to the total mortality that has been associated with exposure to PM2.5 in epidemiology studies. A mode of action (MoA) for these underlying morbidities has not been established, but it has been proposed that some effects of PM2.5 occur through activation of neural reflexes. MATERIALS AND METHODS: We critically reviewed the experimental studies of PM2.5 (including ambient PM2.5, diesel exhaust particles, concentrated ambient particles, diesel exhaust, and cigarette smoke) and neural reflex activation, and applied the principles of the International Programme on Chemical Safety (IPCS) MoA/human relevance framework to assess whether they support a biologically plausible and human-relevant MoA by which PM2.5 could contribute to cardiovascular and respiratory causes of death. We also considered whether the evidence from these studies supports a non-threshold MoA that operates at low, human-relevant PM2.5 exposure concentrations. RESULTS AND DISCUSSION: We found that the proposed MoA of neural reflex activation is biologically plausible for PM2.5-induced respiratory effects at high exposure levels used in experimental studies, but further studies are needed to fill important data gaps regarding the relevance of this MoA to humans at lower PM2.5 exposure levels. A role for the proposed MoA in PM2.5-induced cardiovascular effects is plausible for some effects but not others. CONCLUSIONS: Further studies are needed to determine whether neural reflex activation is the MoA by which PM2.5 could cause either respiratory or cardiovascular morbidities in humans, particularly at the ambient concentrations associated with total mortality in epidemiology studies.