Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.024
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 41: 73-98, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37126422

RESUMEN

Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.


Asunto(s)
Adenosina , ARN , Humanos , Animales , Sistema Inmunológico
2.
Cell ; 187(11): 2875-2892.e21, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38626770

RESUMEN

Ubiquitylation regulates most proteins and biological processes in a eukaryotic cell. However, the site-specific occupancy (stoichiometry) and turnover rate of ubiquitylation have not been quantified. Here we present an integrated picture of the global ubiquitylation site occupancy and half-life. Ubiquitylation site occupancy spans over four orders of magnitude, but the median ubiquitylation site occupancy is three orders of magnitude lower than that of phosphorylation. The occupancy, turnover rate, and regulation of sites by proteasome inhibitors are strongly interrelated, and these attributes distinguish sites involved in proteasomal degradation and cellular signaling. Sites in structured protein regions exhibit longer half-lives and stronger upregulation by proteasome inhibitors than sites in unstructured regions. Importantly, we discovered a surveillance mechanism that rapidly and site-indiscriminately deubiquitylates all ubiquitin-specific E1 and E2 enzymes, protecting them against accumulation of bystander ubiquitylation. The work provides a systems-scale, quantitative view of ubiquitylation properties and reveals general principles of ubiquitylation-dependent governance.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitinación , Humanos , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteolisis , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Ratones , Línea Celular
3.
Cell ; 186(26): 5812-5825.e21, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38056462

RESUMEN

Acyl-coenzyme A (acyl-CoA) species are cofactors for numerous enzymes that acylate thousands of proteins. Here, we describe an enzyme that uses S-nitroso-CoA (SNO-CoA) as its cofactor to S-nitrosylate multiple proteins (SNO-CoA-assisted nitrosylase, SCAN). Separate domains in SCAN mediate SNO-CoA and substrate binding, allowing SCAN to selectively catalyze SNO transfer from SNO-CoA to SCAN to multiple protein targets, including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1). Insulin-stimulated S-nitrosylation of INSR/IRS1 by SCAN reduces insulin signaling physiologically, whereas increased SCAN activity in obesity causes INSR/IRS1 hypernitrosylation and insulin resistance. SCAN-deficient mice are thus protected from diabetes. In human skeletal muscle and adipose tissue, SCAN expression increases with body mass index and correlates with INSR S-nitrosylation. S-nitrosylation by SCAN/SNO-CoA thus defines a new enzyme class, a unique mode of receptor tyrosine kinase regulation, and a revised paradigm for NO function in physiology and disease.


Asunto(s)
Insulina , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Transducción de Señal , Animales , Humanos , Ratones , Acilcoenzima A/metabolismo , Tejido Adiposo/metabolismo , Resistencia a la Insulina , Óxido Nítrico/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo
4.
Cell ; 186(25): 5517-5535.e24, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37992713

RESUMEN

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates.


Asunto(s)
ARN de Transferencia , Animales , Humanos , Ratas , Anticodón , Línea Celular , Codón , Glicosilación , Nucleósido Q/química , Nucleósido Q/genética , Nucleósido Q/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Porcinos , Pez Cebra/metabolismo , Conformación de Ácido Nucleico
5.
Cell ; 186(5): 1066-1085.e36, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36868209

RESUMEN

A generalizable strategy with programmable site specificity for in situ profiling of histone modifications on unperturbed chromatin remains highly desirable but challenging. We herein developed a single-site-resolved multi-omics (SiTomics) strategy for systematic mapping of dynamic modifications and subsequent profiling of chromatinized proteome and genome defined by specific chromatin acylations in living cells. By leveraging the genetic code expansion strategy, our SiTomics toolkit revealed distinct crotonylation (e.g., H3K56cr) and ß-hydroxybutyrylation (e.g., H3K56bhb) upon short chain fatty acids stimulation and established linkages for chromatin acylation mark-defined proteome, genome, and functions. This led to the identification of GLYR1 as a distinct interacting protein in modulating H3K56cr's gene body localization as well as the discovery of an elevated super-enhancer repertoire underlying bhb-mediated chromatin modulations. SiTomics offers a platform technology for elucidating the "metabolites-modification-regulation" axis, which is widely applicable for multi-omics profiling and functional dissection of modifications beyond acylations and proteins beyond histones.


Asunto(s)
Cromatina , Proteoma , Acilación , Mapeo Cromosómico , Histonas , Supervivencia Celular
6.
Cell ; 186(2): 428-445.e27, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36626902

RESUMEN

O-GlcNAc is a dynamic post-translational modification (PTM) that regulates protein functions. In studying the regulatory roles of O-GlcNAc, a major roadblock is the inability to change O-GlcNAcylation on a single protein at a time. Herein, we developed a dual RNA-aptamer-based approach that simultaneously targeted O-GlcNAc transferase (OGT) and ß-catenin, the key transcription factor of the Wnt signaling pathway, to selectively increase O-GlcNAcylation of the latter without affecting other OGT substrates. Using the OGT/ß-catenin dual-specificity aptamers, we found that O-GlcNAcylation of ß-catenin stabilizes the protein by inhibiting its interaction with ß-TrCP. O-GlcNAc also increases ß-catenin's interaction with EZH2, recruits EZH2 to promoters, and dramatically alters the transcriptome. Further, by coupling riboswitches or an inducible expression system to aptamers, we enabled inducible regulation of protein-specific O-GlcNAcylation. Together, our findings demonstrate the efficacy and versatility of dual-specificity aptamers for regulating O-GlcNAcylation on individual proteins.


Asunto(s)
Aptámeros de Nucleótidos , beta Catenina/metabolismo , Procesamiento Proteico-Postraduccional , Vía de Señalización Wnt , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo
7.
Cell ; 186(19): 4100-4116.e15, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37643610

RESUMEN

Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , Histonas , Nucleosomas , Ensamble y Desensamble de Cromatina , ADN , Metilasas de Modificación del ADN , Epigénesis Genética , Histonas/genética , Nucleosomas/genética , Semen , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
8.
Cell ; 185(18): 3390-3407.e18, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055200

RESUMEN

Chemical synapses between axons and dendrites mediate neuronal intercellular communication. Here, we describe a synapse between axons and primary cilia: the axo-ciliary synapse. Using enhanced focused ion beam-scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between brainstem serotonergic axons and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, the 5-hydroxytryptamine receptor 6 (5-HTR6). Using a cilia-targeted serotonin sensor, we show that opto- and chemogenetic stimulation of serotonergic axons releases serotonin onto cilia. Ciliary 5-HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway, which modulates nuclear actin and increases histone acetylation and chromatin accessibility. Ablation of this pathway reduces chromatin accessibility in CA1 pyramidal neurons. As a signaling apparatus with proximity to the nucleus, axo-ciliary synapses short circuit neurotransmission to alter the postsynaptic neuron's epigenetic state.


Asunto(s)
Axones/fisiología , Cromatina/química , Cilios , Sinapsis , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cilios/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Serotonina/metabolismo , Transducción de Señal , Sinapsis/fisiología
9.
Annu Rev Cell Dev Biol ; 39: 223-252, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37339680

RESUMEN

Transfer RNAs (tRNAs) decode messenger RNA codons to peptides at the ribosome. The nuclear genome contains many tRNA genes for each amino acid and even each anticodon. Recent evidence indicates that expression of these tRNAs in neurons is regulated, and they are not functionally redundant. When specific tRNA genes are nonfunctional, this results in an imbalance between codon demand and tRNA availability. Furthermore, tRNAs are spliced, processed, and posttranscriptionally modified. Defects in these processes lead to neurological disorders. Finally, mutations in the aminoacyl tRNA synthetases (aaRSs) also lead to disease. Recessive mutations in several aaRSs cause syndromic disorders, while dominant mutations in a subset of aaRSs lead to peripheral neuropathy, again due to an imbalance between tRNA supply and codon demand. While it is clear that disrupting tRNA biology often leads to neurological disease, additional research is needed to understand the sensitivity of neurons to these changes.

10.
Cell ; 184(14): 3612-3625.e17, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34115980

RESUMEN

Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.


Asunto(s)
Arginina/análogos & derivados , Condensados Biomoleculares/metabolismo , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/metabolismo , Animales , Arginina/metabolismo , Núcleo Celular/metabolismo , Cuerpos Enrollados/metabolismo , Drosophila melanogaster/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligandos , Metilación , Ratones , Modelos Biológicos , Células 3T3 NIH , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
11.
Cell ; 183(7): 1813-1825.e18, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33296703

RESUMEN

Binding of arrestin to phosphorylated G-protein-coupled receptors (GPCRs) controls many aspects of cell signaling. The number and arrangement of phosphates may vary substantially for a given GPCR, and different phosphorylation patterns trigger different arrestin-mediated effects. Here, we determine how GPCR phosphorylation influences arrestin behavior by using atomic-level simulations and site-directed spectroscopy to reveal the effects of phosphorylation patterns on arrestin binding and conformation. We find that patterns favoring binding differ from those favoring activation-associated conformational change. Both binding and conformation depend more on arrangement of phosphates than on their total number, with phosphorylation at different positions sometimes exerting opposite effects. Phosphorylation patterns selectively favor a wide variety of arrestin conformations, differently affecting arrestin sites implicated in scaffolding distinct signaling proteins. We also reveal molecular mechanisms of these phenomena. Our work reveals the structural basis for the long-standing "barcode" hypothesis and has important implications for design of functionally selective GPCR-targeted drugs.


Asunto(s)
Arrestina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Arrestina/química , Simulación por Computador , Células HEK293 , Humanos , Fosfatos/metabolismo , Fosfopéptidos/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Análisis Espectral
12.
Cell ; 181(4): 914-921.e10, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32330414

RESUMEN

SARS-CoV-2 is a betacoronavirus responsible for the COVID-19 pandemic. Although the SARS-CoV-2 genome was reported recently, its transcriptomic architecture is unknown. Utilizing two complementary sequencing techniques, we present a high-resolution map of the SARS-CoV-2 transcriptome and epitranscriptome. DNA nanoball sequencing shows that the transcriptome is highly complex owing to numerous discontinuous transcription events. In addition to the canonical genomic and 9 subgenomic RNAs, SARS-CoV-2 produces transcripts encoding unknown ORFs with fusion, deletion, and/or frameshift. Using nanopore direct RNA sequencing, we further find at least 41 RNA modification sites on viral transcripts, with the most frequent motif, AAGAA. Modified RNAs have shorter poly(A) tails than unmodified RNAs, suggesting a link between the modification and the 3' tail. Functional investigation of the unknown transcripts and RNA modifications discovered in this study will open new directions to our understanding of the life cycle and pathogenicity of SARS-CoV-2.


Asunto(s)
Betacoronavirus/genética , ARN Viral/genética , Transcriptoma , Animales , Chlorocebus aethiops , Epigénesis Genética , Procesamiento Postranscripcional del ARN , SARS-CoV-2 , Análisis de Secuencia de ARN , Células Vero
13.
Cell ; 180(6): 1160-1177.e20, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32160526

RESUMEN

Selective autophagy of organelles is critical for cellular differentiation, homeostasis, and organismal health. Autophagy of the ER (ER-phagy) is implicated in human neuropathy but is poorly understood beyond a few autophagosomal receptors and remodelers. By using an ER-phagy reporter and genome-wide CRISPRi screening, we identified 200 high-confidence human ER-phagy factors. Two pathways were unexpectedly required for ER-phagy. First, reduced mitochondrial metabolism represses ER-phagy, which is opposite of general autophagy and is independent of AMPK. Second, ER-localized UFMylation is required for ER-phagy to repress the unfolded protein response via IRE1α. The UFL1 ligase is brought to the ER surface by DDRGK1 to UFMylate RPN1 and RPL26 and preferentially targets ER sheets for degradation, analogous to PINK1-Parkin regulation during mitophagy. Our data provide insight into the cellular logic of ER-phagy, reveal parallels between organelle autophagies, and provide an entry point to the relatively unexplored process of degrading the ER network.


Asunto(s)
Autofagia/fisiología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Autofagia/genética , Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Células HCT116 , Células HEK293 , Células HeLa , Homeostasis , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo , Proteínas Ribosómicas/metabolismo , Respuesta de Proteína Desplegada/fisiología
14.
Cell ; 183(7): 1962-1985.e31, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33242424

RESUMEN

We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteogenómica , Neoplasias Encefálicas/inmunología , Niño , Variaciones en el Número de Copia de ADN/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Glioma/genética , Glioma/patología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Mutación/genética , Clasificación del Tumor , Recurrencia Local de Neoplasia/patología , Fosfoproteínas/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
15.
Cell ; 178(4): 887-900.e14, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398342

RESUMEN

Variable, glutamine-encoding, CAA interruptions indicate that a property of the uninterrupted HTT CAG repeat sequence, distinct from the length of huntingtin's polyglutamine segment, dictates the rate at which Huntington's disease (HD) develops. The timing of onset shows no significant association with HTT cis-eQTLs but is influenced, sometimes in a sex-specific manner, by polymorphic variation at multiple DNA maintenance genes, suggesting that the special onset-determining property of the uninterrupted CAG repeat is a propensity for length instability that leads to its somatic expansion. Additional naturally occurring genetic modifier loci, defined by GWAS, may influence HD pathogenesis through other mechanisms. These findings have profound implications for the pathogenesis of HD and other repeat diseases and question the fundamental premise that polyglutamine length determines the rate of pathogenesis in the "polyglutamine disorders."


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Péptidos/genética , Expansión de Repetición de Trinucleótido/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Alelos , Secuencia de Bases/genética , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
16.
Annu Rev Cell Dev Biol ; 36: 291-313, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32559387

RESUMEN

Plants constantly perceive internal and external cues, many of which they need to address to safeguard their proper development and survival. They respond to these cues by selective activation of specific metabolic pathways involving a plethora of molecular players that act and interact in complex networks. In this review, we illustrate and discuss the complexity in the combinatorial control of plant specialized metabolism. We hereby go beyond the intuitive concept of combinatorial control as exerted by modular-acting complexes of transcription factors that govern expression of specialized metabolism genes. To extend this discussion, we also consider all known hierarchical levels of regulation of plant specialized metabolism and their interfaces by referring to reported regulatory concepts from the plant field. Finally, we speculate on possible yet-to-be-discovered regulatory principles of plant specialized metabolism that are inspired by knowledge from other kingdoms of life and areas of biological research.


Asunto(s)
Plantas/metabolismo , Evolución Biológica , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Plantas/genética , Transducción de Señal
17.
Annu Rev Biochem ; 87: 75-100, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29328783

RESUMEN

RNA polymerase (Pol) III has a specialized role in transcribing the most abundant RNAs in eukaryotic cells, transfer RNAs (tRNAs), along with other ubiquitous small noncoding RNAs, many of which have functions related to the ribosome and protein synthesis. The high energetic cost of producing these RNAs and their central role in protein synthesis underlie the robust regulation of Pol III transcription in response to nutrients and stress by growth regulatory pathways. Downstream of Pol III, signaling impacts posttranscriptional processes affecting tRNA function in translation and tRNA cleavage into smaller fragments that are increasingly attributed with novel cellular activities. In this review, we consider how nutrients and stress control Pol III transcription via its factors and its negative regulator, Maf1. We highlight recent work showing that the composition of the tRNA population and the function of individual tRNAs is dynamically controlled and that unrestrained Pol III transcription can reprogram central metabolic pathways.


Asunto(s)
ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Animales , Humanos , Modelos Biológicos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Conformación Proteica , ARN Polimerasa III/química , Procesamiento Postranscripcional del ARN , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Estrés Fisiológico , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
18.
Immunity ; 57(5): 987-1004.e5, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38614090

RESUMEN

The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.


Asunto(s)
Diferenciación Celular , Cromatina , Código de Histonas , Histonas , Células Th2 , Diferenciación Celular/inmunología , Animales , Cromatina/metabolismo , Ratones , Células Th2/inmunología , Histonas/metabolismo , Factor de Transcripción GATA3/metabolismo , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Región de Control de Posición , Citocinas/metabolismo
19.
Annu Rev Biochem ; 86: 129-157, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28375744

RESUMEN

Ubiquitin E3 ligases control every aspect of eukaryotic biology by promoting protein ubiquitination and degradation. At the end of a three-enzyme cascade, ubiquitin ligases mediate the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to specific substrate proteins. Early investigations of E3s of the RING (really interesting new gene) and HECT (homologous to the E6AP carboxyl terminus) types shed light on their enzymatic activities, general architectures, and substrate degron-binding modes. Recent studies have provided deeper mechanistic insights into their catalysis, activation, and regulation. In this review, we summarize the current progress in structure-function studies of ubiquitin ligases as well as exciting new discoveries of novel classes of E3s and diverse substrate recognition mechanisms. Our increased understanding of ubiquitin ligase function and regulation has provided the rationale for developing E3-targeting therapeutics for the treatment of human diseases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Eucariotas/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Proteínas Virales/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Drogas en Investigación/síntesis química , Células Eucariotas/microbiología , Células Eucariotas/virología , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Especificidad por Sustrato , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/clasificación , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteínas Virales/química , Proteínas Virales/genética
20.
Annu Rev Biochem ; 86: 159-192, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28498721

RESUMEN

Protein ubiquitination is one of the most powerful posttranslational modifications of proteins, as it regulates a plethora of cellular processes in distinct manners. Simple monoubiquitination events coexist with more complex forms of polyubiquitination, the latter featuring many different chain architectures. Ubiquitin can be subjected to further posttranslational modifications (e.g., phosphorylation and acetylation) and can also be part of mixed polymers with ubiquitin-like modifiers such as SUMO (small ubiquitin-related modifier) or NEDD8 (neural precursor cell expressed, developmentally downregulated 8). Together, cellular ubiquitination events form a sophisticated and versatile ubiquitin code. Deubiquitinases (DUBs) reverse ubiquitin signals with equally high sophistication. In this review, we conceptualize the many layers of specificity that DUBs encompass to control the ubiquitin code and discuss examples in which DUB specificity has been understood at the molecular level. We further discuss the many mechanisms of DUB regulation with a focus on those that modulate catalytic activity. Our review provides a framework to tackle lingering questions in DUB biology.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Células Eucariotas/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Acetilación , Regulación Alostérica , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/genética , Humanos , Modelos Moleculares , Proteína NEDD8 , Fosforilación , Unión Proteica , Conformación Proteica , Proteolisis , Especificidad por Sustrato , Sumoilación , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Ubiquitinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA