Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306580

RESUMEN

Although both are salient features of genomes, at first glance ribosomal DNAs and transposable elements are genetic elements with not much in common: whereas ribosomal DNAs are mainly viewed as housekeeping genes that uphold all prime genome functions, transposable elements are generally portrayed as selfish and disruptive. These opposing characteristics are also mirrored in other attributes: organization in tandem (ribosomal DNAs) versus organization in a dispersed manner (transposable elements); evolution in a concerted manner (ribosomal DNAs) versus evolution by diversification (transposable elements); and activity that prolongs genomic stability (ribosomal DNAs) versus activity that shortens it (transposable elements). Re-visiting relevant instances in which ribosomal DNA-transposable element interactions have been reported, we note that both repeat types share at least four structural and functional hallmarks: (1) they are repetitive DNAs that shape genomes in evolutionary timescales, (2) they exchange structural motifs and can enter co-evolution processes, (3) they are tightly controlled genomic stress sensors playing key roles in senescence/aging, and (4) they share common epigenetic marks such as DNA methylation and histone modification. Here, we give an overview of the structural, functional, and evolutionary characteristics of both ribosomal DNAs and transposable elements, discuss their roles and interactions, and highlight trends and future directions as we move forward in understanding ribosomal DNA-transposable element associations.


Asunto(s)
Elementos Transponibles de ADN , Genómica , ADN Ribosómico , Metilación de ADN , Análisis Citogenético , Evolución Molecular
2.
Chromosoma ; 132(4): 289-303, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37493806

RESUMEN

Crocodilians have maintained very similar karyotype structures and diploid chromosome numbers for around 100 million years, with only minor variations in collinearity. Why this karyotype structure has largely stayed unaltered for so long is unclear. In this study, we analyzed the karyotypes of six species belonging to the genera Crocodylus and Osteolaemus (Crocodylidae, true crocodiles), among which the Congolian endemic O. osborni was included and investigated. We utilized various techniques (differential staining, fluorescence in situ hybridization with repetitive DNA and rDNA probes, whole chromosome painting, and comparative genomic hybridization) to better understand how crocodile chromosomes evolved. We studied representatives of three of the four main diploid chromosome numbers found in crocodiles (2n = 30/32/38). Our data provided new information about the species studied, including the identification of four major chromosomal rearrangements that occurred during the karyotype diversification process in crocodiles. These changes led to the current diploid chromosome numbers of 2n = 30 (fusion) and 2n = 38 (fissions), derived from the ancestral state of 2n = 32. The conserved cytogenetic tendency in crocodilians, where extant species keep near-ancestral state, contrasts with the more dynamic karyotype evolution seen in other major reptile groups.


Asunto(s)
Caimanes y Cocodrilos , Animales , Caimanes y Cocodrilos/genética , Pintura Cromosómica , Hibridación Fluorescente in Situ , Hibridación Genómica Comparativa , Cariotipo , Evolución Molecular
3.
BMC Plant Biol ; 24(1): 391, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735929

RESUMEN

BACKGROUND: Unreduced gamete formation during meiosis plays a critical role in natural polyploidization. However, the unreduced gamete formation mechanisms in Triticum turgidum-Aegilops umbellulata triploid F1 hybrid crosses and the chromsome numbers and compostions in T. turgidum-Ae. umbellulata F2 still not known. RESULTS: In this study, 11 T.turgidum-Ae. umbellulata triploid F1 hybrid crosses were produced by distant hybridization. All of the triploid F1 hybrids had 21 chromosomes and two basic pathways of meiotic restitution, namely first-division restitution (FDR) and single-division meiosis (SDM). Only FDR was found in six of the 11 crosses, while both FDR and SDM occurred in the remaining five crosses. The chromosome numbers in the 127 selfed F2 seeds from the triploid F1 hybrid plants of 10 crosses (no F2 seeds for STU 16) varied from 35 to 43, and the proportions of euploid and aneuploid F2 plants were 49.61% and 50.39%, respectively. In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes. The chromosome loss of the U genome was the highest (26.77%) among the three genomes, followed by that of the B (22.83%) and A (11.81%) genomes, and the chromosome gain for the A, B, and U genomes was 3.94%, 3.94%, and 1.57%, respectively. Of the 21 chromosomes, 7U (16.54%), 5 A (3.94%), and 1B (9.45%) had the highest loss frequency among the U, A, and B genomes. In addition to chromosome loss, seven chromosomes, namely 1 A, 3 A, 5 A, 6 A, 1B, 1U, and 6U, were gained in the aneuploids. CONCLUSION: In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes, chromsomes, and crosses. In addition to variations in chromosome numbers, three types of chromosome translocations including 3UL·2AS, 6UL·1AL, and 4US·6AL were identified in the F2 plants. Furthermore, polymorphic fluorescence in situ hybridization karyotypes for all the U chromosomes were also identified in the F2 plants when compared with the Ae. umbellulata parents. These results provide useful information for our understanding the naturally occurred T. turgidum-Ae. umbellulata amphidiploids.


Asunto(s)
Aegilops , Inestabilidad Cromosómica , Cromosomas de las Plantas , Hibridación Genética , Triticum , Triticum/genética , Cromosomas de las Plantas/genética , Aegilops/genética , Meiosis/genética , Triploidía , Poliploidía , Genoma de Planta
4.
Genome ; 67(4): 109-118, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316150

RESUMEN

Charadriiformes, which comprises shorebirds and their relatives, is one of the most diverse avian orders, with over 390 species showing a wide range of karyotypes. Here, we isolated and characterized the whole collection of satellite DNAs (satDNAs) at both molecular and cytogenetic levels of one of its representative species, named the wattled jacana (Jacana jacana), a species that contains a typical ZZ/ZW sex chromosome system and a highly rearranged karyotype. In addition, we also investigate the in situ location of telomeric and microsatellite repeats. A small catalog of 11 satDNAs was identified that typically accumulated on microchromosomes and on the W chromosome. The latter also showed a significant accumulation of telomeric signals, being (GA)10 the only microsatellite with positive hybridization signals among all the 16 tested ones. These current findings contribute to our understanding of the genomic organization of repetitive DNAs in a bird species with high degree of chromosomal reorganization contrary to the majority of bird species that have stable karyotypes.


Asunto(s)
Charadriiformes , Animales , Charadriiformes/genética , ADN Satélite/genética , Heterocromatina/genética , Secuencias Repetitivas de Ácidos Nucleicos , Cromosomas Sexuales/genética , Cariotipo , Aves/genética , Evolución Molecular
5.
Mol Breed ; 44(8): 54, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39148502

RESUMEN

Utilization of crop wild relatives of wheat can be very effective in building the genetic diversity to cater to the evolving strains of disease pathogens. Aegilops speltoides is a rich source of rust resistance genes however transferring those to wheat genome can be tedious due to co-transfer and preferential transmission of undesirable genes causing gametocidal activity. Such an unholy association was observed in Triticum aestivum-Ae. speltoides derivative line Sel. 2427 which possess the broad-spectrum leaf rust seedling resistance gene (LrS2427). Molecular analysis based on 35 K wheat breeder's array revealed the maximum percentage of Ae. speltoides genome introgression on homoeologous group 2. In situ hybridization studies revealed the presence of S genome in Sel. 2427, showing six translocations on four chromosomes. Karyotyping using repetitive probe (AAG)6 revealed that the two chromosomes involved are 2D and 2B. Genic regions causing gametocidal activity were identified by dissecting it into component traits and QTLs on 2D and 2B chromosomes were revealed in case of the trait seed shrivelling index. To break the inadvertent association of LrS2427 with gametocidal genes, F1(Agra Local X Sel. 2427) seeds were irradiated with gamma rays and stable leaf rust resistant mutants lacking gametocidal activity were developed. These mutants showed resistance to different races of leaf rust pathogen and showed superior agronomic performance as well. These mutants could be a great resource in wheat improvement for utilization of the leaf rust resistance gene LrS2427 without any yield penalty. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01491-8.

6.
Am J Hum Genet ; 106(1): 41-57, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31866047

RESUMEN

Unexplained infertility affects 2%-3% of reproductive-aged couples. One approach to identifying genes involved in infertility is to study subjects with this clinical phenotype and a de novo balanced chromosomal aberration (BCA). While BCAs may reduce fertility by production of unbalanced gametes, a chromosomal rearrangement may also disrupt or dysregulate genes important in fertility. One such subject, DGAP230, has severe oligozoospermia and 46,XY,t(20;22)(q13.3;q11.2). We identified exclusive overexpression of SYCP2 from the der(20) allele that is hypothesized to result from enhancer adoption. Modeling the dysregulation in budding yeast resulted in disrupted structural integrity of the synaptonemal complex, a common cause of defective spermatogenesis in mammals. Exome sequencing of infertile males revealed three heterozygous SYCP2 frameshift variants in additional subjects with cryptozoospermia and azoospermia. In sum, this investigation illustrates the power of precision cytogenetics for annotation of the infertile genome, suggests that these mechanisms should be considered as an alternative etiology to that of segregation of unbalanced gametes in infertile men harboring a BCA, and provides evidence of SYCP2-mediated male infertility in humans.


Asunto(s)
Proteínas de Ciclo Celular/genética , Aberraciones Cromosómicas , Proteínas de Unión al ADN/genética , Mutación del Sistema de Lectura , Infertilidad Masculina/etiología , Oligospermia/etiología , Adulto , Femenino , Humanos , Infertilidad Masculina/patología , Cariotipificación , Masculino , Oligospermia/patología , Linaje , Fenotipo , Translocación Genética
7.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240350

RESUMEN

Scleropages formosus (Osteoglossiformes, Teleostei) represents one of the most valued ornamental fishes, yet it is critically endangered due to overexploitation and habitat destruction. This species encompasses three major color groups that naturally occur in allopatric populations, but the evolutionary and taxonomic relationships of S. formosus color varieties remain uncertain. Here, we utilized a range of molecular cytogenetic techniques to characterize the karyotypes of five S. formosus color phenotypes, which correspond to naturally occurring variants: the red ones (Super Red); the golden ones (Golden Crossback and Highback Golden); the green ones (Asian Green and Yellow Tail Silver). Additionally, we describe the satellitome of S. formosus (Highback Golden) by applying a high-throughput sequencing technology. All color phenotypes possessed the same karyotype structure 2n = 50 (8m/sm + 42st/a) and distribution of SatDNAs, but different chromosomal locations of rDNAs, which were involved in a chromosome size polymorphism. Our results show indications of population genetic structure and microstructure differences in karyotypes of the color phenotypes. However, the findings do not clearly back up the hypothesis that there are discrete lineages or evolutionary units among the color phenotypes of S. formosus, but another case of interspecific chromosome stasis cannot be excluded.


Asunto(s)
Genoma , Genómica , Animales , Peces/genética , Cariotipo , Análisis Citogenético
8.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047699

RESUMEN

Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) is an excellent gene resource for wheat breeding, which is characterized by early maturity, low plant height, and disease resistance. The wheat-P. huashanica derivatives were created by the elite genes of P. huashanica and permeate into common wheat through hybridization. Among them, a long-glume material 20JH1155 was identified, with larger grains and longer spike than its parents. In the present study, the methods of cytological observation, GISH, and sequential FISH analysis showed that 20JH1155 contained 21 pairs of wheat chromosomes and a pair of P. huashanica. There were some differences in 5A and 7B chromosomes between 20JH1155 and parental wheat 7182. Molecular marker, FISH, and sequence cloning indicated 20JH1155 alien chromosomes were 3Ns of P. huashanica. In addition, differentially expressed genes during immature spikelet development of 20JH1155 and 7182 and predicted transcription factors were obtained by transcriptome sequencing. Moreover, a total of 7 makers derived from Ph#3Ns were developed from transcriptome data. Taken together, the wheat-P. huashanica derived line 20JH1155 provides a new horizon on distant hybridization of wheat and accelerates the utilization of genes of P. huashanica.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Poaceae/genética , Resistencia a la Enfermedad/genética , Hibridación Genética , Enfermedades de las Plantas/genética
9.
BMC Plant Biol ; 22(1): 564, 2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463134

RESUMEN

BACKGROUND: Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is prevalent in the main wheat-producing regions of China, resulting in severe yield losses in recent years. Mining and utilization of resistant genes from wild relatives of wheat is the most environmentally sound measure to control disease. Aegilops geniculata Roth (2n = 2x = 28, UgUgMgMg) is an essential and valuable disease-resistance gene donor for wheat improvement as a close relative species. RESULTS: In this study, to validate powdery mildew resistance locus on chromosome 7Mg, two genetic populations were constructed and through crossing wheat - Ae. geniculata 7Mg disomic addition line NA0973-5-4-1-2-9-1 and 7Mg (7 A) alien disomic substitution line W16998 with susceptible Yuanfeng175 (YF175, authorized varieties from Shaanxi province in 2005), respectively. Cytological examination, in situ hybridization (ISH), and functional molecular markers analysis revealed that the plants carrying chromosome 7Mg showed high resistance to powdery mildew in both F1 and F2 generation at the seedling stage. Besides, 84 specific markers were developed to identify the plants carrying chromosome 7Mg resistance based on the specific-locus amplified fragment sequencing (SLAF-seq) technique. Among them, four markers were selected randomly to check the reliability in F2 segregating populations derived from YF175/NA0973-5-4-1-2-9-1 and YF175/W16998. In summary, the above analysis confirmed that a dominant high powdery mildew resistance gene was located on chromosome 7Mg of Ae. geniculata. CONCLUSION: The results provide a basis for mapping the powdery mildew resistance gene mapping on chromosome 7Mg and specific markers for their utilization in the future.


Asunto(s)
Aegilops , Triticum/genética , Reproducibilidad de los Resultados , Erysiphe , Biomarcadores , Cromosomas
10.
Cytogenet Genome Res ; 162(3): 140-147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35981520

RESUMEN

Cervids are characterized by their greatest karyotypic diversity among mammals. A great diversity of chromosome numbers in notably similar morphological groups leads to the existence of several complexes of cryptic species and taxonomic uncertainties. Some deer lineages, such as those of Neotropical deer, stand out for a rapid chromosomal reorganization and intraspecific chromosome polymorphisms, which have not been properly explored yet. For that reason, we contribute to the study of deer karyotype diversity and taxonomy by producing and characterizing new molecular cytogenetic markers for the gray brocket deer (Subulo gouazoubira), a deer species that retained the hypothetical ancestral karyotype of Cervidae. We used bacterial artificial chromosome (BAC) clones derived from the cattle genome (Bos taurus) as markers, which were hybridized on S. gouazoubira metaphase chromosomes. In total, we mapped 108 markers, encompassing all gray brocket deer chromosomes, except the Y chromosome. The detailed analysis of fluorescent in situ hybridization results showed 6 fissions and 1 fusion as interchromosomal rearrangements that have separated cattle and gray brocket deer karyotypes. Each group of BAC probes derived from bovine chromosome pairs 1, 2, 5, 6, 8, and 9 showed hybridization signals on 2 different chromosomes, while pairs 28 and 26 are fused in tandem in a single acrocentric chromosome in S. gouazoubira. Furthermore, the BAC markers detected the occurrence of intrachromosomal rearrangements in the S. gouazoubira chromosomes homologous to pair 1 and the X chromosome of cattle. We present a karyotypic map of the 108 new markers, which will be of great importance for future karyotypic evolution studies in cervids and, consequently, help in their conservation and taxonomy resolution.


Asunto(s)
Ciervos , Animales , Bovinos/genética , Cromosomas Artificiales Bacterianos/genética , Ciervos/genética , Hibridación Fluorescente in Situ/métodos , Cariotipo , Cariotipificación , Cromosoma X
11.
Planta ; 255(6): 112, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501619

RESUMEN

MAIN CONCLUSION: Coffea karyotype organization and evolution has been uncovered by classical cytogenetics and cytogenomics. We revisit these discoveries and present new karyotype data. Coffea possesses ~ 124 species, including C. arabica and C. canephora responsible for commercial coffee production. We reviewed the Coffea cytogenetics, from the first chromosome counting, encompassing the karyotype characterization, chromosome DNA content, and mapping of chromosome portions and DNA sequences, until the integration with genomics. We also showed new data about Coffea karyotype. The 2n chromosome number evidenced the diploidy of almost all Coffea, and the C. arabica tetraploidy, as well as the polyploidy of other hybrids. Since then, other genomic similarities and divergences among the Coffea have been shown by karyotype morphology, nuclear and chromosomal C-value, AT and GC rich chromosome portions, and repetitive sequence and gene mapping. These cytogenomic data allowed us to know and understand the phylogenetic relations in Coffea, as well as their ploidy level and genomic origin, highlighting the relatively recent allopolyploidy. In addition to the euploidy, the role of the mobile elements in Coffea diversification is increasingly more evident, and the comparative analysis of their structure and distribution on the genome of different species is in the spotlight for future research. An integrative look at all these data is fundamental for a deeper understanding of Coffea karyotype evolution, including the key role of polyploidy in C. arabica origin. The 'Híbrido de Timor', a recent natural allotriploid, is also in the spotlight for its potential as a source of resistance genes and model for plant polyploidy research. Considering this, we also present some unprecedented results about the exciting evolutionary history of these polyploid Coffea.


Asunto(s)
Coffea , Coffea/genética , Café , Genómica , Cariotipo , Filogenia , Poliploidía
12.
Mol Biol Rep ; 49(9): 8555-8566, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35997851

RESUMEN

BACKGROUND: The 45S rDNA is considered the most useful chromosomal marker for cytogenetic analysis of Passiflora. Amplification of 45S rDNA sequence via PCR are more advantageous than sequence maintenance in vectors for chromosomal hybridization via FISH. We aimed both to identify 45S rDNA by sequencing data for chromosomal localization and to verify the relationship between GC content and CMA3/DAPI banding. METHODS AND RESULTS: Low-coverage sequencing of Passiflora alata, P. cincinnata, and P. edulis was performed, and 45S rDNA units were identified using RepeatExplorer. The 45S rDNA units were used to construct a neighbor-joining tree to verify the similarities between the three species' 18S and 26S rDNA sequences. Clusters (CL)116 (P. alata), CL71 (P. cincinnata), and CL116 (P. edulis) were remarkably similar among the three species, and the 26S rDNA sequences of the clusters were similar to those of Populus tremuloides, Salix interior, and Averrhoa carambola (98% identity). The 26S rDNA was cytologically localized in the chromosomes of P. edulis, P. bahiensis, and the backcrossed hybrid (P. sublanceolata vs. HD13). The hybridization transfer capacity was evaluated in Citrus sunki and Cucumis melo. Finally, a chromosomal pair with a heteromorphic 26S rDNA site was observed in P. edulis, which was the same to that observed for CMA3. CONCLUSION: The amplification of the 26S rDNA in Passiflora via PCR and the chromosomal localization in Passiflora and other plant species was successfully achieved. The CMA3 bands were found to be related not only to the amount of GC but also to its structure and the number of repetitions.


Asunto(s)
Passiflora , Composición de Base , Cromosomas de las Plantas/genética , ADN Ribosómico/genética , Hibridación Fluorescente in Situ , Passiflora/genética
13.
Mol Biol Rep ; 49(10): 9699-9714, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35461437

RESUMEN

Lentil is an annual protein rich valuable edible crop with only one cultivated and six wild taxa. Keeping in mind its narrow gene pool, the genus deserves critical assessment of genomic diversity at the chromosomal level. Genetic diversity represents the heritable variation within and between populations of organisms. Over the decades classical and molecular cytogenetics have played an immense role in the field of crop improvement. Lentil, though grown in different countries, country-wise chromosomal information is inadequate. Critical evaluation of more than seven decades chromosomal information has revealed unique karyotype diversity within the landraces of different countries. Application of fluorescent banding and fluorescent in situ hybridization (FISH) has helped to segregate cultivars based on cultivar specific chromosomal markers and landmarks. Selection of cultivated and wild cultivars based on qualitative and diseases related morpho-traits and new information from this critical review especially on molecular cytogenetics may provide more options for crop improvement. More research in the field of molecular cytogenetics from country specific species and cultivars are needed to enrich the repository of gene pool. Alien gene introgression from extended gene pool through the advanced genomics and biotechnological tools could facilitate the path of sustainable improvement of this crop.


Asunto(s)
Lens (Planta) , Citogenética , Hibridación Fluorescente in Situ , Cariotipo , Cariotipificación , Lens (Planta)/genética
14.
Breed Sci ; 72(3): 213-221, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36408326

RESUMEN

Psathyrostachys huashanica is a relative of wheat (Triticum aestivum L.) with many disease resistance genes that can be used to improve wheat disease resistance. In order to enrich the germplasm resources available in wheat genetics and breeding, we assessed Fusarium head blight (FHB) resistance in 45 interspecific derivatives between wheat and Psathyrostachys huashanica during two years from 2017-2018. Two interspecific derivatives comprising, H-34-8-2-6-1 and H-24-3-1-5-19-1 were identified as FHB resistant lines. These two lines were examined based on their morphology and cytogenetics, as well as by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), molecular markers, and 660K genotyping array to determine their genetic construction. The results confirmed H-34-8-2-6-1 as a wheat-P. huashanica 1Ns long arm ditelosomic addition line and H-24-3-1-5-19-1 as a wheat-P. huashanica 2Ns substitution line. Assessments of the agronomic traits showed that H-34-8-2-6 had significantly higher kernel number per spike and self-fertility rate than parent 7182. In addition, compared with 7182, H-24-3-1-5-19-1 had a much lower plant height while the other agronomic traits were relatively similar. The two new lines are valuable germplasm materials for breeding FHB resistance in wheat.

15.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269816

RESUMEN

Leymus mollis (2n = 4x = 28, NsNsXmXm), a wild relative of common wheat (Triticum aestivum L.), carries numerous loci which could potentially be used in wheat improvement. In this study, line 17DM48 was isolated from the progeny of a wheat and L. mollis hybrid. This line has 42 chromosomes forming 21 bivalents at meiotic metaphase I. Genomic in situ hybridization (GISH) demonstrated the presence of a pair chromosomes from the Ns genome of L. mollis. This pair substituted for wheat chromosome 2D, as shown by fluorescence in situ hybridization (FISH), DNA marker analysis, and hybridization to wheat 55K SNP array. Therefore, 17DM48 is a wheat-L. mollis 2Ns (2D) disomic substitution line. It shows longer spike and a high level of stripe rust resistance. Using specific-locus amplified fragment sequencing (SLAF-seq), 13 DNA markers were developed to identify and trace chromosome 2Ns of L. mollis in wheat background. This line provides a potential bridge germplasm for genetic improvement of wheat stripe rust resistance.


Asunto(s)
Basidiomycota , Triticum , Basidiomycota/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Hibridación Fluorescente in Situ , Enfermedades de las Plantas/genética , Poaceae/genética , Triticum/genética
16.
J Contemp Dent Pract ; 23(1): 123-131, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35656669

RESUMEN

AIM: To evaluate the application of cytogenetic techniques in determining the diagnosis, prognosis, and therapeutics in oral cancer. BACKGROUND: Genetic aberrations that play an important role in oral oncogenesis demand substantial research for in-depth characterization of the tumor. Cytogenetic techniques have the potential to detect these aberrations. This review highlights about various cytogenetic approaches in cancer and how these findings support its application in the field of oral oncology. METHODS: Google scholar search was done for articles on cancer cytogenetics, and in particular, PubMed database was queried for articles published from 2015 to 2020 using keywords cytogenetics, chromosomal aberrations, conventional cytogenetics, karyotyping, banding techniques, molecular cytogenetics, fluorescent in situ hybridization, spectral karyotyping, comparative genomic hybridization, multiplex ligation probe analysis, and next-generation sequencing (NGS) in oral cancer. Abstracts were reviewed, and relevant full text was accessed to extract the cytogenetic findings in oral cancer. RESULTS: Data regarding various cytogenetic approaches from conventional to molecular techniques have been published in oral cancer. They convey a highly complex cytogenetic finding from gross chromosomal aberrations to specific gene mutations in oral cancer. CONCLUSION: Crucial information in the development and progression of oral cancer is achieved through cytogenetic findings in particular with the molecular cytogenetic techniques. Novel technologies like NGS have emerged in recent years that hold promise in the detection of these alterations more efficiently. CLINICAL SIGNIFICANCE: An appraisal of cytogenetic analysis in oral cancer helps to determine the diagnosis and the most important prognosticators. It assists in building targeted therapies for patient benefit.


Asunto(s)
Neoplasias de la Boca , Aberraciones Cromosómicas , Hibridación Genómica Comparativa , Análisis Citogenético/métodos , Humanos , Hibridación Fluorescente in Situ/métodos , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/genética
17.
BMC Genomics ; 22(1): 508, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34225677

RESUMEN

BACKGROUND: In the course of evolution, chromosomes undergo evolutionary changes; thus, karyotypes may differ considerably among groups of organisms, even within closely related taxa. The genus Daucus seems to be a promising model for exploring the dynamics of karyotype evolution. It comprises some 40 wild species and the cultivated carrot, a crop of great economic significance. However, Daucus species are very diverse morphologically and genetically, and despite extensive research, the taxonomic and phylogenetic relationships between them have still not been fully resolved. Although several molecular cytogenetic studies have been conducted to investigate the chromosomal structure and karyotype evolution of carrot and other Daucus species, detailed karyomorphological research has been limited to carrot and only a few wild species. Therefore, to better understand the karyotype relationships within Daucus, we (1) explored the chromosomal distribution of carrot centromeric repeats (CentDc) in 34 accessions of Daucus and related species by means of fluorescence in situ hybridization (FISH) and (2) performed detailed karyomorphological analysis in 16 of them. RESULTS: We determined the genomic organization of CentDc in 26 accessions of Daucus (belonging to both Daucus I and II subclades) and one accession of closely related species. The CentDc repeats were present in the centromeric regions of all chromosomes of 20 accessions (representing 11 taxa). In the other Daucus taxa, the number of chromosome pairs with CentDc signals varied depending on the species, yet their centromeric localization was conserved. In addition, precise chromosome measurements performed in 16 accessions showed the inter- and intraspecific karyological relationships among them. CONCLUSIONS: The presence of the CentDc repeats in the genomes of taxa belonging to both Daucus subclades and one outgroup species indicated the ancestral status of the repeat. The results of our study provide useful information for further evolutionary, cytotaxonomic, and phylogenetic research on the genus Daucus and may contribute to a better understanding of the dynamic evolution of centromeric satellites in plants.


Asunto(s)
Apiaceae , Daucus carota , Daucus carota/genética , Hibridación Fluorescente in Situ , Cariotipo , Filogenia
18.
BMC Plant Biol ; 21(1): 575, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34872505

RESUMEN

BACKGROUND: Aegilops geniculata Roth is closely related to common wheat (Triticum aestivum L.) and is a valuable genetic resource for improvement of wheat. RESULTS: In this study, the W19513 line was derived from the BC1F10 progeny of a cross between wheat 'Chinese Spring' and Ae. geniculata SY159. Cytological examination showed that W19513 contained 44 chromosomes. Twenty-two bivalents were formed at the first meiotic metaphase I in the pollen mother cellsand the chromosomes were evenly distributed to opposite poles at meiotic anaphase I. Genomic in situ hybridization demonstrated that W19513 carried a pair of alien chromosomes from the M genome. Fluorescence in situ hybridization confirmed detection of variation in chromosomes 4A and 6B. Functional molecular marker analysis using expressed sequence tag-sequence-tagged site and PCR-based landmark unique gene primers revealed that the alien gene belonged to the third homologous group. The marker analysis confirmed that the alien chromosome pair was 3Mg. In addition, to further explore the molecular marker specificity of chromosome 3Mg, based on the specific locus amplified fragment sequencing technique, molecular markers specific for W19513 were developed with efficiencies of up to 47.66%. The W19513 line was inoculated with the physiological race E09 of powdery mildew (Blumeria graminis f. sp. tritici) at the seedling stage and showed moderate resistance. Field inoculation with a mixture of the races CYR31, CYR32, CYR33, and CYR34 of the stripe rust fungus (Puccinia striiformis f. sp. triticii) revealed that the line W19513 showed strong resistance. CONCLUSIONS: This study provides a foundation for use of the line W19513 in future genetic research and wheat improvement.


Asunto(s)
Aegilops/genética , Enfermedades de las Plantas/genética , Triticum/genética , Aegilops/microbiología , Ascomicetos/fisiología , Basidiomycota/fisiología , Cromosomas de las Plantas , Análisis Citogenético , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Hibridación Fluorescente in Situ , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Triticum/microbiología
19.
Cytogenet Genome Res ; 161(1-2): 63-69, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33823507

RESUMEN

Small nuclear RNA (snRNA) is a class of molecules involved in the processing of pre-mRNA and in regulatory cell processes. snRNAs are always associated with a set of specific proteins. The complexes are referred to as small nuclear ribonucleoproteins, and spliceosome U RNAs are their most common snRNA components. The repetitive sequences of U snDNAs have been cytogenetically mapped in several species of Arthropoda, fishes, and mammals; however, their distribution remains unknown in amphibians. Here, we show results of FISH mapping of U2 snDNA repetitive sequences in species of the amphibian genus Leptodactylus to reveal the distribution patterns of this sequence in their karyotypes. The probe hybridized in the metacentric chromosome pair 6 in Leptodactylus fuscus, L. gracilis, L. latrans, L. chaquensis, L. petersii, L. podicipinus, and L. brevipes. A different pattern was observed in L. labyrinthicus with hybridization signals in 4 chromosome pairs. The same localization of U2 gene sequences in most of the species analyzed suggests a relatively conserved pattern and a similarity of the chromosome 6 among these species of Leptodactylus.


Asunto(s)
Anuros/genética , Bandeo Cromosómico , Cariotipo , Animales , Mapeo Cromosómico , Secuencia Conservada , Citogenética , Hibridación Fluorescente in Situ , Cariotipificación , ARN Nuclear Pequeño/genética , Secuencias Repetitivas de Ácidos Nucleicos , Especificidad de la Especie
20.
J Evol Biol ; 34(9): 1466-1476, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34331340

RESUMEN

Ribosomal DNA (rDNA) loci are essential for cellular metabolism due to their participation in ribosome biogenesis. Although these genes have been widely cytogenetically mapped, the evolutionary mechanisms behind their variability in number and chromosomal location remain elusive, even in well-known biological groups, such as ants, bees and wasps (Insecta: Hymenoptera). To address this question in Hymenoptera and therefore advance the understanding of rDNA evolution in insects in general, we integrated molecular cytogenetic data, a phylogenomic framework, model-based predictions and genome sequencing. Hence, we assessed the main evolutionary trends shaping the chromosomal distribution of rDNA loci in Hymenoptera. We noticed the conservation of one site of rDNA per haploid genome, suggesting that a single 45S rDNA locus is the putative ancestral pattern for aculeate Hymenoptera. Moreover, our results highlighted a nonrandom distribution of rDNA in Hymenoptera karyotypes, as well as a lineage-specific preferential location. The proximal location of rDNA is favoured in species with multiple loci and in the two families of Hymenoptera that show the highest range of chromosome numbers: Formicidae and Vespidae. We propose that chromosome fissions have played a crucial role in the distribution pattern of rDNA loci through the evolutionary diversification of Hymenoptera. Moreover, our genomic analysis of two species, one with a single locus of rDNA and one with multiple loci, supported that loci multiplication is followed by sequence divergence. Our results provide detailed information about the number and chromosomal position of rDNA in Hymenoptera and, therefore, broaden our knowledge regarding rDNA evolutionary dynamics in insects.


Asunto(s)
Hormigas , Avispas , Animales , Hormigas/genética , Abejas , ADN Ribosómico/genética , Cariotipo , Filogenia , Avispas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA