Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Econ Bot ; 76(1): 1-15, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465299

RESUMEN

Wild-foraged mushrooms represent a natural resource that provides economic value to foragers through both market and nonmarket recreational channels. Despite the importance of non-timber forest resources for sustainable management of forestlands, little attention has been paid to who forages for wild mushrooms, why they choose to forage, where they go, and what economic value is generated. This report draws upon survey data from 78 foragers who are certified to sell their mushrooms and 85 noncertified foraging enthusiasts. Its goal is to understand foraging patterns and values for morels (Morchella spp.) in the State of Michigan (USA). Most foragers spend fewer than 10 days each year foraging, and those who sell their morels are most likely to sell to local restaurants, pubs and bars, and informally to their friends. Certified foragers who choose to sell their morels sell for an average price of $36 per pound ($36/lb) for fresh black or yellow morels. Costs to supply fresh morels ranged widely among the 16 certified sellers who reported full cost details; over 70% of morels were supplied at costs below $30/lb, but some certified sellers incurred costs in the hundreds of dollars per pound. Recreational morel gatherers paid $43 to $335 per trip of foraging morels, with a median value of $93 per trip. Morel foragers also search for other mushrooms with oyster mushrooms (Pleurtous spp.), chanterelles (Cantharellus spp), hen-of the-woods (Grifola frondosa), and chicken-of-the-woods (Laetiporus spp) being the most popular.

2.
J Food Sci Technol ; 58(2): 692-700, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33568863

RESUMEN

In present study, total phenolic compound, antioxidant activities and fatty acids of several Morchella species collected from different regions of Turkey were determined. Six species were detected, namely Morchella dunalii (HT562), M. purpurascens group (HT565, HT592, HT662, HT699), M. deliciosa (HT682), M. mediterraneensis (HT698), M. importuna (HT667, HT681) and M. esculenta (HT704). The highest phenolic content was determined in the collection numbered as HT565 (281.96 mg gallic acid equivalent (GAE)/g dry weight), followed by HT699, HT562, HT662, HT592, HT698, HT704, HT681, HT667 and HT682. Antioxidant activities were also evaluated by DPPH and FRAP assays and the maximum (0.51 and 1.04 mmol trolox equivalent (TE)/g dry weight respectively) was observed in HT565. The results for the fatty acids composition showed that assessed Morchella species were rich in nutritionally important unsaturated fatty acids and oleic acid, palmitoleic acid, linoleic acid, α-linolenic acid, palmitic acid, stearic acid and myristic acid were the identified compounds. Linoleic acid was the most common in samples like HT565, HT592, HT704, HT662, HT682 and HT667 and followed by oleic acid except in HT565. In HT681, HT698, HT699 and HT562, oleic acid was dominant and followed by linoleic acid. The ratios of unsaturated fatty acids to saturated fatty acids were calculated as 10.79, 4.78, 6.80, 8.09, 6.67, 4.35, 8.70, 8.64, 7.90 and 7.43 in HT562, HT565, HT592, HT662, HT667, HT681, HT682, HT698, HT699 and HT704 respectively. The sampling locations and species of Morels had influenced the bioactivities and fatty acid compositions of specimens.

3.
Microb Pathog ; 105: 356-360, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28286150

RESUMEN

The antimicrobial properties of morel compounds from wild edible mushrooms (Morchella esculenta and Verpa bohemica) from Kashmir valley was investigated against different clinical pathogens. The butanol crude fraction of most popular or true morel M. esculenta showed highest 19 mm IZD against E.coli while as same fraction of Verpa bohemica exhibited 15 mm IZD against same strain. The ethyl acetate and butanol crude fractions of both morels also exhibited good antifungal activity with highest IZD shown against A. fumigates. The three morel compounds showed quite impressive anti bacterial and fungal activities. The Cpd 3 showed highest inhibitory activity almost equivalent to the synthetic antibiotics used as control. The MIC/MBC values revealed the efficiency of isolated compounds against the pathogenic strains. In the current study significant inhibitory activity of morel compounds have been obtained paying the way for their local use from ancient times.


Asunto(s)
Agaricales/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Acetatos/química , Antiinfecciosos/aislamiento & purificación , Antifúngicos/farmacología , Ascomicetos/química , Aspergillus fumigatus/efectos de los fármacos , Butanoles/química , Escherichia coli/efectos de los fármacos , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Extractos Vegetales/aislamiento & purificación
4.
Mycologia ; 107(4): 729-44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25911699

RESUMEN

Colonies of Costantinella species growing on soil, moss and woody debris in the autumn in the inland Pacific Northwest USA were established in culture. Five different mitospore taxa were distinguished based on colony color, presence or absence of setae and internal transcribed spacer region (ITS) rDNA amplicon size. Sequence data from the largest and second largest subunits of RNA polymerase II, translation elongation factor 1-α, D1 and D2 domains of nuclear large subunit rDNA and ITS were used to connect each of the distinct mitospore taxa to corresponding vernal-fruiting Pezizales, including Disciotis cf. venosa, Gyromitra cf. esculenta and three species of Morchella. Both meiospore and mitospore stages of Morchella brunnea and M. populiphila collected in spring and autumn within a meter of each other at two urban sites had identical multilocus haplotypes, providing evidence connecting the two stages of the life cycle. Among other Morchella mitospore stages collected, some had identical haplotypes to previously sampled meiospore stages, while others were distinct, possibly representing undescribed species. Mitospore isolates with sequences assigning them to Disciotis or Gyromitra had different haplotypes from meiospore stages occurring in the same area. Meiospore stages of Disciotis and Gyromitra sampled as part of the study were also genetically distinct from European collections of D. venosa and G. esculenta, indicating more diversity is present in these taxa than is reflected in the current taxonomy. The widespread occurrence of mitospore stages of these fungi suggests that the life cycles of morels, false morels and allied taxa are more complex than previously recognized.


Asunto(s)
Ascomicetos/clasificación , Esporas Fúngicas/crecimiento & desarrollo , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Ascomicetos/aislamiento & purificación , ADN de Hongos/genética , ADN Ribosómico/genética , Noroeste de Estados Unidos , Filogenia , Esporas Fúngicas/clasificación , Esporas Fúngicas/genética , Esporas Fúngicas/aislamiento & purificación
5.
Mycologia ; 106(1): 113-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24603835

RESUMEN

An abundant fruiting of a black morel was encountered in temperate northwestern New South Wales (NSW), Australia, during a mycological survey in Sep 2010. The site was west of the Great Dividing Range in a young, dry sclerophyll forest dominated by Eucalyptus and Callitris north of Coonabarabran in an area known as the Pilliga Scrub. Although the Pilliga Scrub is characterized by frequent and often large, intense wildfires, the site showed no sign of recent fire, which suggests this species is not a postfire morel. Caps of the Morchella elata-like morel were brown with blackish ridges supported by a pubescent stipe that became brown at maturity. Because no morel has been described as native to Australia, the collections were subjected to multilocus molecular phylogenetic and morphological analyses to assess its identity. Results of these analyses indicated that our collection, together with collections from NSW and Victoria, represented a novel, genealogically exclusive lineage, which is described and illustrated here as Morchella australiana T. F. Elliott, Bougher, O'Donnell & Trappe, sp. nov.


Asunto(s)
Ascomicetos/aislamiento & purificación , Cupressaceae/microbiología , Eucalyptus/microbiología , Enfermedades de las Plantas/microbiología , Ascomicetos/clasificación , Ascomicetos/genética , Enfermedades Endémicas/estadística & datos numéricos , Datos de Secuencia Molecular , Nueva Gales del Sur/epidemiología , Filogenia , Árboles/microbiología , Victoria/epidemiología
6.
J Basic Microbiol ; 54 Suppl 1: S63-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23712903

RESUMEN

Morels are wild edible ascomycetous mushrooms that are highly prized because of their medicinal and nutritional qualities. Ligninolytic enzymes are considered as one of the most important enzymes in fungi due to their involvement in fruiting body formation during artificial cultivation on different substrates. In the life cycle of morels, sclerotia are the intermediate stage to form a fruiting body from mycelia. We have studied the production of ligninolytic enzymes by Morchella crassipes MR8 growing on different substrates and during sclerotia formation. This fungus is able to produce ligninolytic enzymes such as laccase (Lac), lignin peroxidase (LiP), and manganese-dependent peroxidase (MnP) when grown on different substrates. Maximum Lac activity was observed when grown in wheat grains whereas maximum activities of MnP and LiP were observed when grown in rice straw. Laccase enzyme was produced in high titers during sclerotia formation and maturation when grown in combinations of soil and substrates. A large number of sclerotia was observed in soil and wheat grains, along with high titers of laccase. Cellulase activity was observed to be constant during sclerotia formation and maturation. The present study results suggest that laccase enzyme might play an important role in sclerotia formation in morels.


Asunto(s)
Ascomicetos/enzimología , Ascomicetos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/enzimología , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Lacasa/metabolismo , Peroxidasas/metabolismo , Celulosa/metabolismo , Medios de Cultivo/química , Micelio/enzimología , Micelio/crecimiento & desarrollo , Oryza/microbiología , Triticum/microbiología
7.
J Food Sci ; 89(8): 4745-4757, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955792

RESUMEN

Food fraud is a problematic yet common phenomenon in the food industry. It impacts numerous sectors, including the market of edible mushrooms. Morel mushrooms are prized worldwide for their culinary and medicinal use. They represent a taxonomically complex group in which food fraud has already been reported. Among the methods to evaluate food fraud, some rely on comparisons of genetic sequences obtained from a sample to existing databases. However, the quality and usefulness of the results are limited by the type of comparison tool and the quality of the database used. The Centroid-based approach is applied by SmartGene in a proprietary artificial intelligence-based method for the generation of automatically curated reference databases that can be further expert curated. In this study, using sequences of the ribosomal internal transcribed spacer (ITS) of the genus Morchella (true morels), we compared this approach to the traditional pairwise alignment tool using two other databases: UNITE and Mycobank (MLST). The Centroid-based approach using an expert-curated database was more performant for the identification of 53 representative ITS sequences corresponding to validated species (83% accuracy, compared to 36% and 47% accuracy for UNITE and MLST, respectively). The Centroid method also revealed an inaccurate taxonomic annotation for sequences of commercial cultivars submitted to public databases. Combined with the web-based commercial software IDNS® available at Smartgene, the Centroid-based approach constitutes a valuable tool to ensure the quality of morel products on the market for actors of the food industry. PRACTICAL APPLICATION: The Centroid-based approach can be used by agri-food actors who need to identify true morels down to the species level without any prior taxonomical knowledge. These include routine laboratories of the food industry, food distributors, and public surveillance agencies. This is a reliable method that requires minimal skills and resources, therefore being particularly adapted for nonspecialists.


Asunto(s)
Ascomicetos , Ascomicetos/genética , Ascomicetos/clasificación , ADN de Hongos/genética , Contaminación de Alimentos/análisis , ADN Espaciador Ribosómico/genética
8.
eNeurologicalSci ; 35: 100502, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38770222

RESUMEN

A case-control study of sporadic amyotrophic lateral sclerosis (ALS) in a mountainous village in the French Alps discovered an association of cases with a history of eating wild fungi (false morels) collected locally and initially identified and erroneously reported as Gyromitra gigas. Specialist re-examination of dried specimens of the ALS-associated fungi demonstrated they were members of the G. esculenta group, namely G. venenata and G. esculenta, species that have been reported to contain substantially higher concentrations of gyromitrin than present in G. gigas. Gyromitrin is metabolized to monomethylhydrazine, which is responsible not only for the acute oral toxic and neurotoxic properties of false morels but also has genotoxic potential with proposed mechanistic relevance to the etiology of neurodegenerative disease. Most ALS patients had a slow- or intermediate-acetylator phenotype predicted by N-acetyltransferase-2 (NAT2) genotyping, which would increase the risk for neurotoxic and genotoxic effects of gyromitrin metabolites.

9.
J Plant Physiol ; 290: 154094, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837877

RESUMEN

The postharvest senescence of morels was observed to be easily affected by temperature fluctuations. The objective of this study was to examine the influence of various storage temperatures on the postharvest senescence of morels. The study evaluated the variations of water content, respiration, nutrients substances, cell membrane permeability, and volatile compounds in morels stored at 20 °C and 4 °C. Results showed that low-temperature storage suppressed the loss of water and firmness, delayed the time of respiration and ethylene peak, and reduced the loss of nutrients and cell membrane permeability. Furthermore, the content of volatile compounds increased and then decreased during storage. The characteristic aroma substances of 1-octen-3-ol were identified using odor activity values and OPLS-DA analysis. The study observed a decrease in the content and changes of aroma compounds during low-temperature storage. This decrease may be attributed to the decreased activities of lipoxygenase (LOX) and alcohol dehydrogenase (ADH).


Asunto(s)
Ascomicetos , Frío , Temperatura , Agua
10.
Front Nutr ; 10: 1159029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006947

RESUMEN

Morels are valuable mushrooms being used as foods and medical substances for a long history. The commonly cultivated morel species include M. eximia, M. importuna, and M. sextelata in China, M. conica and M. esculenta in the US. Morels' nutritional profile mainly consists of carbohydrates, proteins, fatty acids, vitamins, minerals, and organic acids, which are also responsible for its complex sensory attributes and health benefits. The bioactive compounds in morels including polysaccharides, phenolics, tocopherols, and ergosterols contribute to the anti-oxidative abilities, anti-inflammation, immunoprotection, gut health preservation, and anti-cancer abilities. This review depicted on the cultivation of morels, major bioactive compounds of different morel species both from fruit bodies and mycelia, and their health benefits to provide a comprehensive understanding of morels and support the future research and applications of morels as high-value functional food sources.

11.
Biol Trace Elem Res ; 201(8): 4177-4190, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36434421

RESUMEN

This study evaluates macro-nutrient (MN) and prevailing heavy metal (HM) concentrations in wild edible morels (WEM) species viz., Morchella crassipes, Morchella pulchella, and Morchella eohespera and the associated soil that were collected from different altitudinal zones (Azad Kashmir, Murree, Swat, and Skardu) of Pakistan. A special emphasis on potential health risk analysis for HM in WEM consumption was also explored. In general, MN concentration in fruiting bodies and their associated soil samples were in the following order: potassium (K) > magnesium (Mg) > calcium (Ca) > sodium (Na) and Ca > Mg > K > Na, respectively. The concentration for HM in WEM ranged between 20.0 and 78.0 mg/kg, 1.09 and 22.1 mg/kg, 2.1 and 22.1 mg/kg, 0.26 and 13.1 mg/kg, 0.43 and 9.1 mg/kg, 1.07 and 7.0 mg/kg, 1.01 and 5.4 mg/kg, and BDL and 3.1 mg/kg for zinc (Zn), copper (Cu), nickel (Ni), manganese (Mn), cobalt (Co), chromium (Cr), lead (Pb), and cadmium (Cd), respectively, and those in underlying soil samples, lowest and highest HM concentration were recorded for Zn (33.7-113.6 mg/kg), Cu (13.0-40.8 mg/kg), Ni (3.1-23.0 mg/kg), Pb (1.3-22.0 mg/kg), Co (2.9-5.6 mg/kg), Cr (2.7-11.1 mg/kg), Mn (2.0-7.1 mg/kg), and Cd (1.1 mg/kg 7.6). Although, Cd, Pb, and Zn concentrations in some of the WEM samples and Cd in the soil had exceeded the permissible limits set by different organizations. The greater accumulation/or transfer potential for Zn, Co, Ni, and Cu were recorded in WEM from their associated soil. The health risk index (HRI) for HM in all assessed samples of WEM was < 1, predicting no risk to the consuming population. Furthermore, the correlation analyses depicted that the power of hydrogen (pH), low organic matter contents, and sandy texture are likely to be responsible for HM transfer to the lower pool of soil. But the increasing concentration of HM in WEM warrants threats and suggests further monitoring and future policy plan and implementation to avoid the potential health risks via its regular consumption.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Suelo/química , Pakistán , Plomo/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Zinc/análisis , Níquel/análisis , Cobalto/análisis , Cromo/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis
12.
J Fungi (Basel) ; 9(8)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37623626

RESUMEN

Morels are one of the most highly prized edible and medicinal mushrooms worldwide. Therefore, historically, there has been a large international interest in their cultivation. Numerous ecological, physiological, genetic, taxonomic, and mycochemical studies have been previously developed. At the beginning of this century, China finally achieved artificial cultivation and started a high-scale commercial development in 2012. Due to its international interest, its cultivation scale and area expanded rapidly in this country. However, along with the massive industrial scale, a number of challenges, including the maintenance of steady economic profits, arise. In order to contribute to the solution of these challenges, formal research studying selection, species recognition, strain aging, mating type structure, life cycle, nutrient metabolism, growth and development, and multi-omics has recently been boosted. This paper focuses on discussing current morel cultivation technologies, the industrial status of cultivation in China, and the relevance of basic biological research, including, e.g., the study of strain characteristics, species breeding, mating type structure, and microbial interactions. The main challenges related to the morel cultivation industry on a large scale are also analyzed. It is expected that this review will promote a steady global development of the morel industry based on permanent and robust basic scientific knowledge.

13.
Food Res Int ; 159: 111571, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940783

RESUMEN

Mushrooms have been well known for centuries in traditional Chinese medicine for their medicinal properties. Morchella esculenta (L.) Pers. (Morchellaceae) is a species of edible mushroom. Due to its distinctive and precise flavor, it has been used as a food and food-flavoring material in soups and sauces. It is one of the most medicinally important and economically beneficial wild species of mushroom. The fruiting body of M. esculenta contains a wide range of active constituents like vitamins, proteins, steroids, minerals, polysaccharides, and polynucleotides. M. esculenta and its active compounds possess significant cardiovascular protective, antitumor, immunomodulatory, antiparasitic, hepatoprotective, antibacterial, antiviral, and antidiabetic properties. In this article, the mycochemical profile, nutritional values, and bioactivities of M. esculenta were reviewed.


Asunto(s)
Agaricales , Ascomicetos , Agaricales/química , Antioxidantes/farmacología , Ascomicetos/química , Polisacáridos
14.
Foods ; 11(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35626955

RESUMEN

Morchella esculenta (ME), or "true" morel mushrooms, are one of the most expensive mushrooms. M. esculenta contain all the important nutrients including carbohydrates, proteins, polyunsaturated fatty acids, and several bioactive compounds such as polysaccharides, organic acids, polyphenolic compounds, and tocopherols, which are promising for antioxidant, immunomodulation, anti-cancer, and anti-inflammatory applications. However, the M. esculenta fruiting body is difficult to collect in nature and the quality is not always reliable. For this reason, the cultivation of its mycelia represents a useful alternative for large-scale production. However, for M. esculenta mycelia to be used as an innovative food ingredient, it is very important to prove it is safe for human consumption while providing high-quality nutrients. Hence, for the first time in this study, the nutritional composition, as well as 90 days of oral toxicity of fermented ME mycelia in Sprague Dawley rats, is examined. Results showed that the ME mycelia contained 4.20 ± 0.49% moisture, 0.32 ± 0.07% total ash, 17.17 ± 0.07% crude lipid, 39.35 ± 0.35% crude protein, 38.96 ± 4.60% carbohydrates, and 467.77 ± 0.21 kcal/100 g energy, which provides similar proportions of macronutrients as the U.S. Dietary Reference Intakes recommend. Moreover, forty male and female Sprague Dawley rats administrating ME mycelia at oral doses of 0, 1000, 2000, and 3000 mg/kg for 90 days showed no significant changes in mortality, clinical signs, body weight, ophthalmology, and urinalysis. Although there were alterations in hematological and biochemical parameters, organ weights, necropsy findings, and histological markers, they were not considered to be toxicologically significant. Hence, the results suggest that the no-observed-adverse-effects level (NOAEL) of ME mycelia was greater than 3000 mg/kg/day and can therefore be used safely as a novel food at the NOAEL.

15.
J Ethnobiol Ethnomed ; 18(1): 32, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418143

RESUMEN

BACKGROUND: Wild edible mushrooms (WEM) are economically significant and used in traditional medicines worldwide. The region of Jammu and Kashmir (Western Himalayas) is enriched with the diversity of edible mushrooms, collected by the rural people for food and income generation. This is the first detailed study on diversity and ethno-medicinal uses of mushrooms from the State of Jammu and Kashmir. METHODS: Consecutive surveys were conducted to record ethnomycological diversity and socio-economic importance of wild edible mushrooms value chain in rural areas of Azad Jammu and Kashmir during 2015-2019. Ethnomycological data were collected with a semi-structured questionnaire having a set of questions on indigenous mycological knowledge and collection and retailing of wild edible mushrooms. A total of 923 informants from the study area provided the results identifying the gender, type of mushroom species, medicinal uses, and marketing of mushrooms. Diversity of mushrooms was studied by using quadrat and transect methods. Principal component analysis (PCA) and detrended correspondence analysis (DCA) were also applied to the dataset to analyse the relationship between species distribution, the underlying environmental factors, and habitat types. PCA identified the major species-specific to the sites and put them close to the sites of distribution. RESULTS: A total of 131 mushroom species were collected and identified during 2015-2019 from the study area. Ninety-seven species of mushrooms were reported new to the State of Azad Jammu and Kashmir. The dominant mushroom family was Russulaceae with 23 species followed by Agaricaceae, 16 species. Major mushroom species identified and grouped by the PCA were Coprinus comatus, Lactarius sanguifluus, Amanita fulva, Armillaria gallica, Lycoperdon perlatum, Lycoperdon pyriforme, and Russula creminicolor. Sparassis crispa, Pleurotus sp, and Laetiporus sulphureus were recorded most edible and medicinally significant fungi. Morels were also expensive and medicinally important among all harvested macro-fungal species. These were reported to use against common ailments and various health problems. CONCLUSIONS: Collection and retailing of WEM contribute to improving the socio-economic status, providing alternative employment and food security to rural people of the area. These mushrooms are used as a source of food and traditional medicines among the rural informants and could be used as a potential source of antibacterial and anticancer drugs in the future.


Asunto(s)
Agaricales , Ecosistema , Alimentos , Humanos , Conocimiento , Medicina Tradicional , Análisis de Componente Principal
16.
IMA Fungus ; 13(1): 14, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35996182

RESUMEN

Morels are highly prized edible fungi where sexual reproduction is essential for fruiting-body production. As a result, a comprehensive understanding of their sexual reproduction is of great interest. Central to this is the identification of the reproductive strategies used by morels. Sexual reproduction in fungi is controlled by mating-type (MAT) genes and morels are thought to be mainly heterothallic with two idiomorphs, MAT1-1 and MAT1-2. Genomic sequencing of black (Elata clade) and yellow (Esculenta clade) morel species has led to the development of PCR primers designed to amplify genes from the two idiomorphs for rapid genotyping of isolates from these two clades. To evaluate the design and theoretical performance of these primers we performed a thorough bioinformatic investigation, including the detection of the MAT region in publicly available Morchella genomes and in-silico PCR analyses. All examined genomes, including those used for primer design, appeared to be heterothallic. This indicates an inherent fault in the original primer design which utilized a single Morchella genome, as the use of two genomes with complementary mating types would be required to design accurate primers for both idiomorphs. Furthermore, potential off-targets were identified for some of the previously published primer sets, but verification was challenging due to lack of adequate genomic information and detailed methodologies for primer design. Examinations of the black morel specific primer pairs (MAT11L/R and MAT22L/R) indicated the MAT22 primers would correctly target and amplify the MAT1-2 idiomorph, but the MAT11 primers appear to be capable of amplifying incorrect off-targets within the genome. The yellow morel primer pairs (EMAT1-1 L/R and EMAT1-2 L/R) appear to have reporting errors, as the published primer sequences are dissimilar with reported amplicon sequences and the EMAT1-2 primers appear to amplify the RNA polymerase II subunit (RPB2) gene. The lack of the reference genome used in primer design and descriptive methodology made it challenging to fully assess the apparent issues with the primers for this clade. In conclusion, additional work is still required for the generation of reliable primers to investigate mating types in morels and to assess their performance on different clades and across multiple geographical regions.

17.
J Fungi (Basel) ; 8(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36294672

RESUMEN

True morels (Morchella, Pezizales) are world-renowned edible mushrooms (ascocarps) that are widely demanded in international markets. Morchella has been successfully artificially cultivated since 2012 in China and is rapidly becoming a new edible mushroom industry occupying up to 16,466 hectares in the 2021-2022 season. However, nearly 25% of the total cultivation area has annually suffered from fungal diseases. While a variety of morel pathogenic fungi have been reported their epidemic characteristics are unknown, particularly in regional or national scales. In this paper, ITS amplicon sequencing and microscopic examination were concurrently performed on the morel ascocarp lesions from 32 sites in 18 provinces across China. Results showed that Diploöspora longispora (75.48%), Clonostachys solani (5.04%), Mortierella gamsii (0.83%), Mortierella amoeboidea (0.37%) and Penicillium kongii (0.15%) were the putative pathogenic fungi. The long, oval, septate conidia of D. longispora was observed on all ascocarps. Oval asexual spores and sporogenic structures, such as those of Clonostachys, were also detected in C. solani infected samples with high ITS read abundance. Seven isolates of D. longispora were isolated from seven selected ascocarps lesions. The microscopic characteristics of pure cultures of these isolates were consistent with the morphological characteristics of ascocarps lesions. Diploöspora longispora had the highest amplification abundance in 93.75% of the samples, while C. solani had the highest amplification abundance in six biological samples (6.25%) of the remaining two sampling sites. The results demonstrate that D. longispora is a major culprit of morel fungal diseases. Other low-abundance non-host fungi appear to be saprophytic fungi infecting after D. longispora. This study provides data supporting the morphological and molecular identification and prevention of fungal diseases of morel ascocarps.

18.
Fungal Biol ; 125(4): 285-293, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33766307

RESUMEN

Morels, fungi from the genus Morchella, are popular edible mushrooms. However, little knowledge of their asexual reproduction and inaccessible pure mitospores hamper illumination of their life cycle. Herein, we successfully induced conidiation, conidial germination and chlamydospore formation in pure culture of Morchella sextelata. Conidiation proceeded via four morphologically distinct stages: development of the conidiophore stalk, stalk branching, phialide differentiation, and conidium production. Terminal and intercalary chlamydospores were formed on conidial hyphae. The development of conidiophores occurred earlier, with more conidia produced, in cross-mating cultures than in single-spore cultures. Mature conidia were spherical and 2.5-8 µm in diameter, with a vast majority (nearly 99%) 2.5-5 µm in diameter. Each conidium contained one to three nuclei (80.2% conidia contained one nucleus, 19.1% contained two nuclei, and 0.7% contained three nuclei). The conidial nucleus diameter was 1-2 µm. The nuclear mitosis in detached conidia that was observed may benefit their colony initiation. Additionally, morel conidia formed conidial anastomosis tubes. Conidia (mitospores) likely not only function as spermatia, but also as reproductive propagules in Morchella. Further research is imperative to elucidate the relationship between the conidia and chlamydospores, and their unique function in the morel life cycle.


Asunto(s)
Ascomicetos , Reproducción Asexuada , Hifa , Esporas Fúngicas
19.
Toxics ; 9(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809439

RESUMEN

Plants and mushrooms bioconcentrate metals/metalloids from soil and water such that high levels of potentially neurotoxic elements can occur in cultivated and wild species used for food. While the health effects of excessive exposure to metals/metalloids with neurotoxic potential are well established, overt neurological disease from prolonged ingestion of contaminated botanicals has not been recognized. However, the presence of metal elements may affect levels of botanical neurotoxins in certain plants and mushrooms that are established causes of acute and chronic neurological disease.

20.
J Neurol Sci ; 427: 117558, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34216974

RESUMEN

Between 1990 and 2018, 14 cases of amyotrophic lateral sclerosis (ALS) were diagnosed in residents of, and in visitors with second homes to, a mountainous hamlet in the French Alps. Systematic investigation revealed a socio-professional network that connected ALS cases. Genetic risk factors for ALS were excluded. Several known environmental factors were scrutinized and eliminated, notably lead and other chemical contaminants in soil, water or home-grown vegetation used for food, radon and electromagnetic fields. Some lifestyle-related behavioral risk factors were identified: Prior to clinical onset of motor neuron disease, some patients had a high degree of athleticism and smoked tobacco. Recent investigations on site, based on a new hypothesis, showed that all patients had ingested wild mushrooms, notably poisonous False Morels. Half of the ALS cohort reported acute illness following Gyromitra gigas mushroom consumption. This finding supports the hypothesis that genotoxins of fungal origin may induce motor neuron degeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Ascomicetos , Estudios de Cohortes , Daño del ADN , Hongos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA