Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.579
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(1): 62-78.e20, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38096822

RESUMEN

The microbiota influences intestinal health and physiology, yet the contributions of commensal protists to the gut environment have been largely overlooked. Here, we discover human- and rodent-associated parabasalid protists, revealing substantial diversity and prevalence in nonindustrialized human populations. Genomic and metabolomic analyses of murine parabasalids from the genus Tritrichomonas revealed species-level differences in excretion of the metabolite succinate, which results in distinct small intestinal immune responses. Metabolic differences between Tritrichomonas species also determine their ecological niche within the microbiota. By manipulating dietary fibers and developing in vitro protist culture, we show that different Tritrichomonas species prefer dietary polysaccharides or mucus glycans. These polysaccharide preferences drive trans-kingdom competition with specific commensal bacteria, which affects intestinal immunity in a diet-dependent manner. Our findings reveal unappreciated diversity in commensal parabasalids, elucidate differences in commensal protist metabolism, and suggest how dietary interventions could regulate their impact on gut health.


Asunto(s)
Microbioma Gastrointestinal , Parabasalidea , Polisacáridos , Animales , Humanos , Ratones , Fibras de la Dieta , Intestino Delgado/metabolismo , Polisacáridos/metabolismo , Parabasalidea/metabolismo , Carbohidratos de la Dieta/metabolismo , Biodiversidad
2.
Cell ; 185(20): 3705-3719.e14, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179667

RESUMEN

The intestinal microbiota is an important modulator of graft-versus-host disease (GVHD), which often complicates allogeneic hematopoietic stem cell transplantation (allo-HSCT). Broad-spectrum antibiotics such as carbapenems increase the risk for intestinal GVHD, but mechanisms are not well understood. In this study, we found that treatment with meropenem, a commonly used carbapenem, aggravates colonic GVHD in mice via the expansion of Bacteroides thetaiotaomicron (BT). BT has a broad ability to degrade dietary polysaccharides and host mucin glycans. BT in meropenem-treated allogeneic mice demonstrated upregulated expression of enzymes involved in the degradation of mucin glycans. These mice also had thinning of the colonic mucus layer and decreased levels of xylose in colonic luminal contents. Interestingly, oral xylose supplementation significantly prevented thinning of the colonic mucus layer in meropenem-treated mice. Specific nutritional supplementation strategies, including xylose supplementation, may combat antibiotic-mediated microbiome injury to reduce the risk for intestinal GVHD in allo-HSCT patients.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteroides , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Meropenem , Ratones , Mucinas/metabolismo , Moco/metabolismo , Polisacáridos/metabolismo , Xilosa
3.
Cell ; 185(22): 4190-4205.e25, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36243004

RESUMEN

Neuroepithelial crosstalk is critical for gut physiology. However, the mechanisms by which sensory neurons communicate with epithelial cells to mediate gut barrier protection at homeostasis and during inflammation are not well understood. Here, we find that Nav1.8+CGRP+ nociceptor neurons are juxtaposed with and signal to intestinal goblet cells to drive mucus secretion and gut protection. Nociceptor ablation led to decreased mucus thickness and dysbiosis, while chemogenetic nociceptor activation or capsaicin treatment induced mucus growth. Mouse and human goblet cells expressed Ramp1, receptor for the neuropeptide CGRP. Nociceptors signal via the CGRP-Ramp1 pathway to induce rapid goblet cell emptying and mucus secretion. Notably, commensal microbes activated nociceptors to control homeostatic CGRP release. In the absence of nociceptors or epithelial Ramp1, mice showed increased epithelial stress and susceptibility to colitis. Conversely, CGRP administration protected nociceptor-ablated mice against colitis. Our findings demonstrate a neuron-goblet cell axis that orchestrates gut mucosal barrier protection.


Asunto(s)
Colitis , Células Caliciformes , Ratones , Humanos , Animales , Células Caliciformes/metabolismo , Nociceptores/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Colitis/metabolismo , Moco/metabolismo , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo
4.
Cell ; 185(22): 4206-4215.e11, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36206754

RESUMEN

Mucus protects the epithelial cells of the digestive and respiratory tracts from pathogens and other hazards. Progress in determining the molecular mechanisms of mucus barrier function has been limited by the lack of high-resolution structural information on mucins, the giant, secreted, gel-forming glycoproteins that are the major constituents of mucus. Here, we report how mucin structures we determined enabled the discovery of an unanticipated protective role of mucus: managing the toxic transition metal copper. Using two juxtaposed copper binding sites, one for Cu2+ and the other for Cu1+, the intestinal mucin, MUC2, prevents copper toxicity by blocking futile redox cycling and the squandering of dietary antioxidants, while nevertheless permitting uptake of this important trace metal into cells. These findings emphasize the value of molecular structure in advancing mucosal biology, while introducing mucins, produced in massive quantities to guard extensive mucosal surfaces, as extracellular copper chaperones.


Asunto(s)
Cobre , Mucinas , Mucinas/metabolismo , Mucina 2 , Cobre/análisis , Cobre/metabolismo , Intestinos , Moco/metabolismo , Mucosa Intestinal/metabolismo
5.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35303419

RESUMEN

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Sialiltransferasas/genética , Animales , Homeostasis , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Moco/metabolismo , Sialiltransferasas/metabolismo , Simbiosis
6.
Annu Rev Biochem ; 89: 769-793, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32243763

RESUMEN

Generating the barriers that protect our inner surfaces from bacteria and other challenges requires large glycoproteins called mucins. These come in two types, gel-forming and transmembrane, all characterized by large, highly O-glycosylated mucin domains that are diversely decorated by Golgi glycosyltransferases to become extended rodlike structures. The general functions of mucins on internal epithelial surfaces are to wash away microorganisms and, even more importantly, to build protective barriers. The latter function is most evident in the large intestine, where the inner mucus layer separates the numerous commensal bacteria from the epithelial cells. The host's conversion of MUC2 to the outer mucus layer allows bacteria to degrade the mucin glycans and recover the energy content that is then shared with the host. The molecular nature of the mucins is complex, and how they construct the extracellular complex glycocalyx and mucus is poorly understood and a future biochemical challenge.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Glicocálix/química , Glicosiltransferasas/química , Células Caliciformes/química , Mucinas/química , Moco/química , Animales , Conformación de Carbohidratos , Secuencia de Carbohidratos , Expresión Génica , Glicocálix/metabolismo , Glicosilación , Glicosiltransferasas/clasificación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Células Caliciformes/metabolismo , Células Caliciformes/microbiología , Humanos , Mucinas/clasificación , Mucinas/genética , Mucinas/metabolismo , Moco/metabolismo , Moco/microbiología , Simbiosis/fisiología
7.
Cell ; 183(3): 717-729.e16, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33031746

RESUMEN

The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.


Asunto(s)
Biopolímeros/metabolismo , Mucinas/metabolismo , Factor de von Willebrand/metabolismo , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Disulfuros/metabolismo , Femenino , Glicosilación , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Modelos Moleculares , Mucinas/química , Mucinas/ultraestructura , Péptidos/química , Dominios Proteicos , Multimerización de Proteína , Factor de von Willebrand/química , Factor de von Willebrand/ultraestructura
8.
Annu Rev Cell Dev Biol ; 34: 189-215, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30296390

RESUMEN

We review what is currently understood about how the structure of the primary solid component of mucus, the glycoprotein mucin, gives rise to the mechanical and biochemical properties of mucus that are required for it to perform its diverse physiological roles. Macroscale processes such as lubrication require mucus of a certain stiffness and spinnability, which are set by structural features of the mucin network, including the identity and density of cross-links and the degree of glycosylation. At the microscale, these same features affect the mechanical environment experienced by small particles and play a crucial role in establishing an interaction-based filter. Finally, mucin glycans are critical for regulating microbial interactions, serving as receptor binding sites for adhesion, as nutrient sources, and as environmental signals. We conclude by discussing how these structural principles can be used in the design of synthetic mucin-mimetic materials and provide suggestions for directions of future work in this field.


Asunto(s)
Glicoproteínas/química , Mucina-1/química , Moco/química , Relación Estructura-Actividad , Animales , Glicoproteínas/genética , Glicosilación , Humanos , Mucina-1/genética , Moco/metabolismo , Permeabilidad , Reología
9.
Cell ; 167(5): 1339-1353.e21, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863247

RESUMEN

Despite the accepted health benefits of consuming dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic mouse model, in which animals were colonized with a synthetic human gut microbiota composed of fully sequenced commensal bacteria, we elucidated the functional interactions between dietary fiber, the gut microbiota, and the colonic mucus barrier, which serves as a primary defense against enteric pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation, together with a fiber-deprived, mucus-eroding microbiota, promotes greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium. Our work reveals intricate pathways linking diet, the gut microbiome, and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics.


Asunto(s)
Fibras de la Dieta/administración & dosificación , Microbioma Gastrointestinal , Mucosa Intestinal/microbiología , Animales , Citrobacter rodentium/fisiología , Colitis/microbiología , Colon/microbiología , Susceptibilidad a Enfermedades , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli , Femenino , Vida Libre de Gérmenes , Humanos , Masculino , Ratones , Mucina 2/genética
10.
Annu Rev Biochem ; 84: 947-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25534639

RESUMEN

Hagfishes thwart attacks by fish predators by producing liters of defensive slime. The slime is produced when slime gland exudate is released into the predator's mouth, where it deploys in a fraction of a second and clogs the gills. Slime exudate is composed mainly of secretory products from two cell types, gland mucous cells and gland thread cells, which produce the mucous and fibrous components of the slime, respectively. Here, we review what is known about the composition of the slime, morphology of the slime gland, and physiology of the cells that produce the slime. We also discuss several of the mechanisms involved in the deployment of both mucous and thread cells during the transition from thick glandular exudate to ultradilute material. We review biomechanical aspects of the slime, along with recent efforts to produce biomimetic slime thread analogs, and end with a discussion of how hagfish slime may have evolved.


Asunto(s)
Anguila Babosa/química , Anguila Babosa/fisiología , Moco/metabolismo , Animales , Biomimética , Glándulas Exocrinas/citología , Glándulas Exocrinas/metabolismo , Anguila Babosa/citología , Moco/química
11.
Physiol Rev ; 102(4): 1757-1836, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35001665

RESUMEN

The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.


Asunto(s)
Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Fibrosis Quística/metabolismo , Humanos , Pulmón/metabolismo , Depuración Mucociliar , Moco/metabolismo
12.
EMBO J ; 43(5): 695-718, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177501

RESUMEN

Intestinal goblet cells are secretory cells specialized in the production of mucins, and as such are challenged by the need for efficient protein folding. Goblet cells express Inositol-Requiring Enzyme-1ß (IRE1ß), a unique sensor in the unfolded protein response (UPR), which is part of an adaptive mechanism that regulates the demands of mucin production and secretion. However, how IRE1ß activity is tuned to mucus folding load remains unknown. We identified the disulfide isomerase and mucin chaperone AGR2 as a goblet cell-specific protein that crucially regulates IRE1ß-, but not IRE1α-mediated signaling. AGR2 binding to IRE1ß disrupts IRE1ß oligomerization, thereby blocking its downstream endonuclease activity. Depletion of endogenous AGR2 from goblet cells induces spontaneous IRE1ß activation, suggesting that alterations in AGR2 availability in the endoplasmic reticulum set the threshold for IRE1ß activation. We found that AGR2 mutants lacking their catalytic cysteine, or displaying the disease-associated mutation H117Y, were no longer able to dampen IRE1ß activity. Collectively, these results demonstrate that AGR2 is a central chaperone regulating the goblet cell UPR by acting as a rheostat of IRE1ß endonuclease activity.


Asunto(s)
Células Caliciformes , Chaperonas Moleculares , Mucinas , Endonucleasas , Células Caliciformes/metabolismo , Chaperonas Moleculares/genética , Mucinas/genética , Proteína Disulfuro Isomerasas , Humanos , Línea Celular Tumoral
13.
EMBO J ; 42(3): e111562, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36504455

RESUMEN

Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects nontoxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.


Asunto(s)
Bacteriófagos , Toxina del Cólera , Mucinas , Vibrio cholerae , Virulencia , Bacteriófagos/genética , Bacteriófagos/patogenicidad , Toxina del Cólera/genética , Toxina del Cólera/metabolismo , Mucinas/genética , Mucinas/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulencia/genética , Virulencia/fisiología , Polisacáridos/genética , Polisacáridos/metabolismo
14.
EMBO J ; 42(2): e111869, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36245281

RESUMEN

Mucus is made of enormous mucin glycoproteins that polymerize by disulfide crosslinking in the Golgi apparatus. QSOX1 is a catalyst of disulfide bond formation localized to the Golgi. Both QSOX1 and mucins are highly expressed in goblet cells of mucosal tissues, leading to the hypothesis that QSOX1 catalyzes disulfide-mediated mucin polymerization. We found that knockout mice lacking QSOX1 had impaired mucus barrier function due to production of defective mucus. However, an investigation on the molecular level revealed normal disulfide-mediated polymerization of mucins and related glycoproteins. Instead, we detected a drastic decrease in sialic acid in the gut mucus glycome of the QSOX1 knockout mice, leading to the discovery that QSOX1 forms regulatory disulfides in Golgi glycosyltransferases. Sialylation defects in the colon are known to cause colitis in humans. Here we show that QSOX1 redox control of sialylation is essential for maintaining mucosal function.


Asunto(s)
Glicosiltransferasas , Aparato de Golgi , Mucosa Intestinal , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Animales , Ratones , Colon/metabolismo , Disulfuros/metabolismo , Glicoproteínas , Glicosiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Mucinas/química , Mucinas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Mucosa Intestinal/metabolismo
15.
Semin Immunol ; 69: 101807, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37478802

RESUMEN

A complex mucus network made up of large polymers of the mucin-family glycoprotein MUC2 exists between the large intestinal microbial mass and epithelial and immune cells. This has long been understood as an innate immune defense barrier against the microbiota and other luminal threats that reinforces the barrier function of the epithelium and limits microbiota contact with the tissues. However, past and recent studies have provided new evidence of how critical the mucus network is to act as a 'liaison' between host and microbe to mediate anti-inflammatory, mutualistic interactions with the microbiota and protection from pathogens. This review summarizes historical and recent insights into the formation of the gut mucus network, how the microbes and immune system influence mucus, and in turn, how the mucus influences immune responses to the microbiota.


Asunto(s)
Mucosa Intestinal , Microbiota , Humanos , Mucina 2 , Moco , Mucinas
16.
Proc Natl Acad Sci U S A ; 120(28): e2301115120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399418

RESUMEN

Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host's intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host's intestinal mucosa.


Asunto(s)
Citrobacter rodentium , Infecciones por Enterobacteriaceae , Animales , Ratones , Bacterias , Citrobacter , Infecciones por Enterobacteriaceae/microbiología , Mucosa Intestinal/microbiología , Mamíferos , Monosacáridos , Ácido N-Acetilneuramínico
17.
J Biol Chem ; 300(3): 105675, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272223

RESUMEN

The O-glycoprotein Mucin-2 (MUC2) forms the protective colon mucus layer. While animal models have demonstrated the importance of Muc2, few studies have explored human MUC2 in similar depth. Recent studies have revealed that secreted MUC2 is bound to human feces. We hypothesized human fecal MUC2 (HF-MUC2) was accessible for purification and downstream structural and functional characterization. We tested this via histologic and quantitative imaging on human fecal sections; extraction from feces for proteomic and O-glycomic characterization; and functional studies via growth and metabolic assays in vitro. Quantitative imaging of solid fecal sections showed a continuous mucus layer of varying thickness along human fecal sections with barrier functions intact. Lectin profiling showed HF-MUC2 bound several lectins but was weak to absent for Ulex europaeus 1 (α1,2 fucose-binding) and Sambucus nigra agglutinin (α2,6 sialic acid-binding), and did not have obvious b1/b2 barrier layers. HF-MUC2 separated by electrophoresis showed high molecular weight glycoprotein bands (∼1-2 MDa). Proteomics and Western analysis confirmed the enrichment of MUC2 and potential MUC2-associated proteins in HF-MUC2 extracts. MUC2 O-glycomics revealed diverse fucosylation, moderate sialylation, and little sulfation versus porcine colonic MUC2 and murine fecal Muc2. O-glycans were functional and supported the growth of Bacteroides thetaiotaomicron (B. theta) and short-chain fatty acid (SCFA) production in vitro. MUC2 could be similarly analyzed from inflammatory bowel disease stools, which displayed an altered glycomic profile and differential growth and SCFA production by B. theta versus healthy samples. These studies describe a new non-invasive platform for human MUC2 characterization in health and disease.


Asunto(s)
Colon , Heces , Proteómica , Animales , Humanos , Ratones , Colon/metabolismo , Glicoproteínas/metabolismo , Mucosa Intestinal/metabolismo , Mucina 2/genética , Mucina 2/metabolismo , Moco/metabolismo , Porcinos , Masculino , Ratones Endogámicos C57BL , Microbioma Gastrointestinal
18.
Eur J Immunol ; 54(1): e2350558, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37855177

RESUMEN

Airway epithelial cells contribute to a variety of lung diseases including allergic asthma, where IL-4 and IL-13 promote activation of the transcription factor STAT6. This leads to goblet cell hyperplasia and the secretion of effector molecules by epithelial cells. However, the specific effect of activated STAT6 in lung epithelial cells is only partially understood. Here, we created a mouse strain to selectively investigate the role of constitutively active STAT6 in Club cells, a subpopulation of airway epithelial cells. CCSP-Cre_STAT6vt mice and bronchiolar organoids derived from these show an enhanced expression of the chitinase-like protein Chil4 (Ym2) and resistin-like molecules (Relm-α, -ß, -γ). In addition, goblet cells of these mice spontaneously secrete mucus into the bronchi. However, the activated epithelium resulted neither in impaired lung function nor conferred a protective effect against the migrating helminth Nippostrongylus brasiliensis. Moreover, CCSP-Cre_STAT6vt mice showed similar allergic airway inflammation induced by live conidia of the fungus Aspergillus fumigatus and similar recovery after influenza A virus infection compared to control mice. Together these results highlight that STAT6 signaling in Club cells induces the secretion of Relm proteins and mucus without impairing lung function, but this is not sufficient to confer protection against helminth or viral infections.


Asunto(s)
Asma , Resistina , Animales , Ratones , Asma/metabolismo , Células Epiteliales/metabolismo , Pulmón , Moco/metabolismo , Resistina/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo
19.
Exp Cell Res ; 434(1): 113871, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38049080

RESUMEN

Disrupted intestinal barrier homeostasis is fundamental to inflammatory bowel disease. Thymosin ß4 (Tß4) improves inflammation and has beneficial effects in dry-eye diseases, but its effects on the intestinal mucus barrier remain unknown. Therefore, this study evaluated the underlying regulatory mechanisms and effects of Tß4 by examining Tß4 expression in a mouse model with dextran sodium sulfate (DSS)-induced colitis and colonic barrier damage. Additionally, we intraperitoneally injected C57BL/6 mice with Tß4 to assess barrier function, microtubule-associated protein 1 light chain 3 (LC3II) protein expression, and autophagy. Finally, normal human colon tissue and colon carcinoma cells (Caco2) were cultured to verify Tß4-induced barrier function and autophagy changes. Mucin2 levels decreased, microbial infiltration increased, and Tß4 expression increased in the colitis mouse model versus the control mice, indicating mucus barrier damage. Moreover, Tß4-treated C57BL/6 mice had damaged intestinal mucus barriers and decreased LC3II levels. Tß4 also inhibited colonic mucin2 production, disrupted tight junctions, and downregulated autophagy; these results were confirmed in Caco2 cells and normal human colon tissue. In summary, Tß4 may be implicated in colitis by compromising the integrity of the intestinal mucus barrier and inhibiting autophagy. Thus, Tß4 could be a new diagnostic marker for intestinal barrier defects.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Timosina , Animales , Femenino , Humanos , Ratones , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Colitis/metabolismo , Colitis/patología , Colon/metabolismo , Colon/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Ratones Endogámicos C57BL , Sirolimus/administración & dosificación , Timosina/genética , Timosina/metabolismo , Regulación hacia Arriba
20.
Artículo en Inglés | MEDLINE | ID: mdl-38315959

RESUMEN

RATIONALE: Progressive lung function loss is recognized in COPD; however, no study concurrently evaluates how accelerated lung function decline relates to mucus properties and the microbiome in COPD. OBJECTIVE: Longitudinal assessment of mucus and microbiome changes accompanying accelerated lung function decline in COPD patients. METHODS: Prospective, longitudinal assessment of the London COPD cohort exhibiting the greatest FEV1 decline (n=30; "accelerated decline"; 156 mL/year FEV1 loss) and with no FEV1 decline (n=28; "non-decline"; 49 mL/year FEV1 gain) over time. Lung microbiomes from "paired" sputum (total 116 specimens) were assessed by shotgun metagenomics and corresponding mucus profiles evaluated for biochemical and biophysical properties. RESULTS: Biochemical and biophysical mucus properties are significantly altered in the accelerated decline group. Unsupervised principal component analysis showed clear separation, with mucus biochemistry associated with accelerated decline, while biophysical mucus characteristics contributed to inter-individual variability. When mucus and microbes are considered together, an accelerated decline mucus-microbiome association emerges, characterized by increased mucin (MUC5AC and MUC5B) concentration and the presence of Achromobacter and Klebsiella. As COPD progresses, mucus-microbiome shifts occur, initially characterized by low mucin concentration and transition from viscous to elastic dominance accompanied by the commensals Veillonella, Gemella, Rothia and Prevotella (GOLD A and B) before transition to increased mucus viscosity, mucins, and DNA concentration along with the emergence of pathogenic microorganisms including Haemophilus, Moraxella and Pseudomonas (GOLD E). CONCLUSION: Mucus-microbiome associations evolve over time with accelerated lung function decline, symptom progression and exacerbations affording fresh therapeutic opportunities for early intervention. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA