Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(1): 200-210, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38118446

RESUMEN

The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.


Asunto(s)
Proteínas de Unión al GTP , Microcefalia , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Animales , Humanos , Drosophila melanogaster/genética , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteínas de Drosophila/genética
2.
Brain ; 147(4): 1389-1398, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37831662

RESUMEN

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is an ultraorphan neurogenetic disease from the group of neurodegeneration with brain iron accumulation (NBIA) disorders. Here we report cross-sectional and longitudinal data to define the phenotype, to assess disease progression and to estimate sample sizes for clinical trials. We enrolled patients with genetically confirmed MPAN from the Treat Iron-Related Childhood-Onset Neurodegeneration (TIRCON) registry and cohort study, and from additional sites. Linear mixed-effect modelling (LMEM) was used to calculate annual progression rates for the Unified Parkinson's Disease Rating Scale (UPDRS), Barry-Albright Dystonia (BAD) scale, Schwab and England Activities of Daily Living (SE-ADL) scale and the Pediatric Quality of Life Inventory (PedsQL). We investigated 85 MPAN patients cross-sectionally, with functional outcome data collected in 45. Median age at onset was 9 years and the median diagnostic delay was 5 years. The most common findings were gait disturbance (99%), pyramidal involvement (95%), dysarthria (90%), vision disturbances (82%), with all but dysarthria presenting early in the disease course. After 16 years with the disease, 50% of patients were wheelchair dependent. LMEM showed an annual progression rate of 4.5 points in total UPDRS. The total BAD scale score showed no significant progression over time. The SE-ADL scale and the patient- and parent-reported PedsQL showed a decline of 3.9%, 2.14 and 2.05 points, respectively. No patient subpopulations were identified based on longitudinal trajectories. Our cross-sectional results define the order of onset and frequency of symptoms in MPAN, which will inform the diagnostic process, help to shorten diagnostic delay and aid in counselling patients, parents and caregivers. Our longitudinal findings define the natural history of MPAN, reveal the most responsive outcomes and highlight the need for an MPAN-specific rating approach. Our sample size estimations inform the design of upcoming clinical trials.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedades Neurodegenerativas , Niño , Humanos , Disartria , Estudios de Cohortes , Actividades Cotidianas , Estudios Transversales , Diagnóstico Tardío , Calidad de Vida , Mutación/genética , Enfermedades Neurodegenerativas/genética , Fenotipo , Proteínas de la Membrana/genética , Membranas Mitocondriales
3.
Mov Disord ; 39(2): 411-423, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947042

RESUMEN

BACKGROUND: The unique neurovascular structure of the retina has provided an opportunity to observe brain pathology in many neurological disorders. However, such studies on neurodegeneration with brain iron accumulation (NBIA) disorders are lacking. OBJECTIVES: To investigate NBIA's neurological and ophthalmological manifestations. METHODS: This cross-sectional study was conducted on genetically confirmed NBIA patients and an age-gender-matched control group. The thickness of retinal layers, central choroidal thickness (CCT), and capillary plexus densities were measured by spectral domain-optical coherence tomography (SD-OCT) and OCT angiography, respectively. The patients also underwent funduscopy, electroretinography (ERG), visual evoked potential (VEP), and neurological examination (Pantothenate-Kinase Associated Neurodegeneration-Disease Rating Scale [PKAN-DRS]). The generalized estimating equation model was used to consider inter-eye correlations. RESULTS: Seventy-four patients' and 80 controls' eyes were analyzed. Patients had significantly decreased visual acuity, reduced inner or outer sectors of almost all evaluated layers, increased CCT, and decreased vessel densities, with abnormal VEP and ERG in 32.4% and 45.9%, respectively. There were correlations between visual acuity and temporal peripapillary nerve fiber layer (positive) and between PKAN-DRS score and disease duration (negative), and scotopic b-wave amplitudes (positive). When considering only the PKAN eyes, ONL was among the significantly decreased retinal layers, with no differences in retinal vessel densities. Evidence of pachychoroid was only seen in patients with Kufor Rakeb syndrome. CONCLUSION: Observing pathologic structural and functional neurovascular changes in NBIA patients may provide an opportunity to elucidate the underlying mechanisms and differential retinal biomarkers in NBIA subtypes in further investigations. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedades Neurodegenerativas , Neurodegeneración Asociada a Pantotenato Quinasa , Humanos , Estudios Transversales , Potenciales Evocados Visuales , Retina/diagnóstico por imagen , Retina/patología , Encéfalo , Enfermedades Neurodegenerativas/patología , Tomografía de Coherencia Óptica , Hierro
4.
Neurol Sci ; 45(2): 647-654, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37651040

RESUMEN

BACKGROUND: Olfactory dysfunction has been suggested as a diagnostic and discriminative biomarker in some neurodegenerative disorders. However, there are few studies regarding the olfactory status in rare diseases including neurodegeneration with brain iron accumulation (NBIA) disorders. METHODS: Genetically-confirmed NBIA patients were enrolled. Neurological and cognitive examinations were conducted according to the Pantothenate Kinase-Associated Neurodegeneration-Disease Rating Scale (PKAN-DRS) and the Mini-Mental State Examination (MMSE) questionnaire, respectively. Olfaction was assessed in three domains of odor threshold (OT), odor discrimination (OD), odor identification (OI), and total sum (TDI) score by the Sniffin' Sticks test. The olfactory scores were compared to a control group and a normative data set. RESULTS: Thirty-seven patients, including 22 PKAN, 6 Kufor Rakeb syndrome, 4 Mitochondrial membrane Protein-Associated Neurodegeneration (MPAN), 5 cases of other 4 subtypes, and 37 controls were enrolled. The mean PKAN-DRS score was 51.83±24.93. Sixteen patients (55.2%) had normal cognition based on MMSE. NBIA patients had significantly lower olfactory scores compared to the controls in TDI and all three subtests, and 60% of them were hyposmic according to the normative data. Including only the cognitively-normal patients, still, OI and TDI scores were significantly lower compared to the controls. The phospholipase A2-Associated Neurodegeneration (PLAN) and MPAN patients had a significantly lower OI score compared to the cognitively-matched PKAN patients. CONCLUSION: Olfactory impairment as a common finding in various subtypes of NBIA disorder can potentially be considered a discriminative biomarker. Better OI in PKAN compared to PLAN and MPAN patients may be related to the different underlying pathologies.


Asunto(s)
Enfermedades Neurodegenerativas , Trastornos del Olfato , Neurodegeneración Asociada a Pantotenato Quinasa , Humanos , Olfato/fisiología , Neurodegeneración Asociada a Pantotenato Quinasa/complicaciones , Neurodegeneración Asociada a Pantotenato Quinasa/diagnóstico , Trastornos del Olfato/diagnóstico , Trastornos del Olfato/etiología , Encéfalo , Enfermedades Neurodegenerativas/complicaciones , Hierro , Biomarcadores
5.
Mov Disord ; 38(11): 2103-2115, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37605305

RESUMEN

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration (MPAN) is caused by mutations in the C19orf12 gene. MPAN typically appears in the first two decades of life and presents with progressive dystonia-parkinsonism, lower motor neuron signs, optic atrophy, and abnormal iron deposits predominantly in the basal ganglia. MPAN, initially considered as a strictly autosomal recessive disease (AR), turned out to be also dominantly inherited (AD). OBJECTIVES: Our aim was to better characterize the clinical, molecular, and functional spectra associated with such dominant pathogenic heterozygous C19orf12 variants. METHODS: We collected clinical, imaging, and molecular information of eight individuals from four AD-MPAN families and obtained brain neuropathology results for one. Functional studies, focused on energy and iron metabolism, were conducted on fibroblasts from AD-MPAN patients, AR-MPAN patients, and controls. RESULTS: We identified four heterozygous C19orf12 variants in eight AD-MPAN patients. Two of them carrying the familial variant in mosaic displayed an atypical late-onset phenotype. Fibroblasts from AD-MPAN showed more severe alterations of iron storage metabolism and autophagy compared to AR-MPAN cells. CONCLUSION: Our data add strong evidence of the realness of AD-MPAN with identification of novel monoallelic C19orf12 variants, including at the mosaic state. This has implications in diagnosis procedures. We also expand the phenotypic spectrum of MPAN to late onset atypical presentations. Finally, we demonstrate for the first time more drastic abnormalities of iron metabolism and autophagy in AD-MPAN than in AR-MPAN. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Mosaicismo , Trastornos del Movimiento , Humanos , Proteínas Mitocondriales/genética , Hierro/metabolismo , Mutación/genética , Proteínas de la Membrana/genética , Fenotipo
6.
BMC Neurol ; 23(1): 134, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004026

RESUMEN

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare and devastating disease caused by pathogenic mutations in C19orf12 gene. MPAN is characterized by pathological iron accumulation in the brain and fewer than 100 cases of MPAN have been described. Although the diagnosis of MPAN has achieved a great breakthrough with the application of the whole exome gene sequencing technology, the therapeutic effect of iron chelation therapy in MPAN remains controversial. CASE PRESENTATION: We reported that two sisters from the same family diagnosed with MPAN had dramatically different responses to deferiprone (DFP) treatment. The diagnosis of MPAN were established based on typical clinical manifestations, physical examination, brain magnetic resonance imaging (MRI), cerebrospinal fluid analysis (CSF) and gene sequencing results. The clinical presentations of the two sisters with MPAN due to novel gene locus mutations were similar to those previously reported. There is no other difference in basic information except that the proband had a later onset age and fertility history. Both the proband and his second sister were treated with deferiprone (DFP), but they had dramatically different responses to the treatment. The proband's condition deteriorated sharply after treatment with DFP including psychiatric symptoms and movement disorders. However, the second sister of the proband became relatively stable after receiving the DFP treatment. After four years of follow-up, the patient still denies any new symptoms of neurological deficits. CONCLUSION: The findings of this study enriched the MPAN gene database and indicated that DFP might ameliorate symptom progression in patients without severe autonomic neuropsychiatric impairment at the early stage of the disease.


Asunto(s)
Proteínas Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Deferiprona/uso terapéutico , Proteínas Mitocondriales/genética , Enfermedades Neurodegenerativas/genética , Mutación/genética , Proteínas de la Membrana/genética , Hierro
7.
Neurol Sci ; 44(12): 4359-4362, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37410270

RESUMEN

BACKGROUND: NBIA (neurodegeneration with brain iron accumulation) is a diverse collection of neurodegenerative illnesses defined by iron accumulation in the basal ganglia. The fatty acid hydroxylase-associated neurodegeneration, or FAHN, is one of the uncommon subtypes of NBIAs, associated with inherited autosomal recessive mutations in gene coding the membrane-bound fatty acid 2 hydroxylase (FA2H) enzyme. CASES: Here, we report two cases with FAHN from two unrelated families from Iran confirmed by whole exome sequencing. CONCLUSION: FAHN is an uncommon variant of NBIA that may manifest as spastic paraparesis without signs of iron buildup on brain imaging. As a result, it should be taken into account while making a differential diagnosis of the hereditary spastic paraplegia (HSP) syndrome, especially in individuals who lack iron deposits.


Asunto(s)
Trastornos Heredodegenerativos del Sistema Nervioso , Neurodegeneración Asociada a Pantotenato Quinasa , Paraplejía Espástica Hereditaria , Humanos , Encéfalo/diagnóstico por imagen , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Irán , Hierro , Mutación/genética , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/genética
8.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36983025

RESUMEN

Coenzyme A (CoA) is a vital and ubiquitous cofactor required in a vast number of enzymatic reactions and cellular processes. To date, four rare human inborn errors of CoA biosynthesis have been described. These disorders have distinct symptoms, although all stem from variants in genes that encode enzymes involved in the same metabolic process. The first and last enzymes catalyzing the CoA biosynthetic pathway are associated with two neurological conditions, namely pantothenate kinase-associated neurodegeneration (PKAN) and COASY protein-associated neurodegeneration (CoPAN), which belong to the heterogeneous group of neurodegenerations with brain iron accumulation (NBIA), while the second and third enzymes are linked to a rapidly fatal dilated cardiomyopathy. There is still limited information about the pathogenesis of these diseases, and the knowledge gaps need to be resolved in order to develop potential therapeutic approaches. This review aims to provide a summary of CoA metabolism and functions, and a comprehensive overview of what is currently known about disorders associated with its biosynthesis, including available preclinical models, proposed pathomechanisms, and potential therapeutic approaches.


Asunto(s)
Cardiomiopatía Dilatada , Neurodegeneración Asociada a Pantotenato Quinasa , Humanos , Hierro/metabolismo , Neurodegeneración Asociada a Pantotenato Quinasa/tratamiento farmacológico , Vías Biosintéticas/genética , Coenzima A/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
9.
Pak J Med Sci ; 39(1): 310-313, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36694760

RESUMEN

This report aimed to describe and review the clinical features, neuroimaging findings, and PLA2G6 mutations identified in a 34-month-old girl with regression of developmental milestones. A 34 months old girl came to Dr.Soetomo Hospital's outpatient clinic, Surabaya, with a developmental regression for six months, and got worse until she could not do any activity and was followed by recurrent seizures. She had a sibling who had similar problems and symptoms and then died at five years of age. The head MRI revealed brain atrophy, the possibility of an early sign of metabolic disorder, and a white matter lesion at the globuspallidus bilateral that supports the encephalopathy metabolic view. The genetic test revealed a positive homozygous such as a pathogenic variant in the PLA2G6 gene, which confirmed the diagnosis. PLA2G6-Associated with Neurodegeneration (PLAN) should be considered as a diagnosis in children with developmental regression.

10.
J Neurochem ; 160(3): 356-375, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837396

RESUMEN

Neurodegeneration with brain iron accumulation (NBIA) is a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by the abnormal accumulation of brain iron and the progressive degeneration of the nervous system. One of the recently identified subtypes of NBIA is ß-propeller protein-associated neurodegeneration (BPAN). BPAN is caused by de novo mutations in the WDR45/WIPI4 (WD repeat domain 45) gene. WDR45 is one of the four mammalian homologs of yeast Atg18, a regulator of autophagy. WDR45 deficiency in BPAN patients and animal models may result in defects in autophagic flux. However, how WDR45 deficiency leads to brain iron overload remains unclear. To elucidate the role of WDR45, we generated a WDR45-knockout (KO) SH-SY5Y neuroblastoma cell line using CRISPR-Cas9-mediated genome editing. Using these cells, we demonstrated that the non-TF (transferrin)-bound iron pathway dominantly mediated the accumulation of iron. Moreover, the loss of WDR45 led to defects in ferritinophagy, a form of autophagy that degrades the iron storage protein ferritin. We showed that impaired ferritinophagy contributes to iron accumulation in WDR45-KO cells. Iron accumulation was also detected in the mitochondria, which was accompanied by impaired mitochondrial respiration, elevated reactive oxygen species, and increased cell death. Thus, our study links WDR45 to specific iron acquisition pathways and ferritinophagy. Cover Image for this issue: https://doi.org/10.1111/jnc.15388.


Asunto(s)
Autofagia/genética , Proteínas Portadoras/genética , Sobrecarga de Hierro/genética , Enfermedades Neurodegenerativas/genética , Química Encefálica/genética , Muerte Celular , Línea Celular , Técnicas de Inactivación de Genes , Humanos , Hierro/metabolismo , Sobrecarga de Hierro/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Especies Reactivas de Oxígeno , Transferrina/metabolismo
11.
Neurobiol Dis ; 165: 105649, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35122944

RESUMEN

BACKGROUND: PLA2G6-Associated Neurodegeneration (PLAN) is a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the NBIA (Neurodegeneration with Brain Iron Accumulation) group. Although the pathogenesis of the disease remains largely unclear, lipid peroxidation seems to play a central role in the pathogenesis. Currently, there is no cure for the disease. OBJECTIVE: In this work, we examined the presence of lipid peroxidation, iron accumulation and mitochondrial dysfunction in two cellular models of PLAN, patients-derived fibroblasts and induced neurons, and assessed the effects of α-tocopherol (vitamin E) in correcting the pathophysiological alterations in PLAN cell cultures. METHODS: Pathophysiological alterations were examined in fibroblasts and induced neurons generated by direct reprograming. Iron and lipofuscin accumulation were assessed using light and electron microscopy, as well as biochemical analysis techniques. Reactive Oxygen species production, lipid peroxidation and mitochondrial dysfunction were measured using specific fluorescent probes analysed by fluorescence microscopy and flow cytometry. RESULTS: PLAN fibroblasts and induced neurons clearly showed increased lipid peroxidation, iron accumulation and altered mitochondrial membrane potential. All these pathological features were reverted with vitamin E treatment. CONCLUSIONS: PLAN fibroblasts and induced neurons reproduce the main pathological alterations of the disease and provide useful tools for disease modelling. The main pathological alterations were corrected by Vitamin E supplementation in both models, suggesting that blocking lipid peroxidation progression is a critical therapeutic target.


Asunto(s)
Distrofias Neuroaxonales , Enfermedades Neurodegenerativas , Fosfolipasas A2 Grupo VI/metabolismo , Humanos , Hierro/metabolismo , Peroxidación de Lípido , Mitocondrias/metabolismo , Distrofias Neuroaxonales/metabolismo , Distrofias Neuroaxonales/patología , Enfermedades Neurodegenerativas/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacología
12.
Mol Genet Metab ; 137(1-2): 26-32, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35878504

RESUMEN

BACKGROUND: Beta-propeller protein-associated neurodegeneration (BPAN) is a rare neurodegenerative disorder characterized by iron accumulation in the brain with spectrum of neurodevelopmental and movement phenotypes. In anticipation of future clinical trials and to inform clinical care, there is an unmet need to capture the phenotypic diversity of this rare disorder and better define disease subtypes. METHODS: A total of 27 individuals with BPAN were included in our natural history study, from which traditional outcome measures were obtained in 18 subjects. Demographic and diagnostic information, along with acquisition of basic developmental skills and overall neurologic severity were extracted from the medical records. Functional outcome measures were administered at the time of the evaluation or applied retrospectively at the last clinical encounter for patients who were not able to travel for in person. Based on age and functional level, the following assessments were administered: Leiter-3, Gross Motor Function Measure (GMFM)-66 Item Sets, Vineland-3, and Peabody-2. RESULTS: Overall, cognitive function was more impaired compared to gross motor function. Onset of symptoms of BPAN within the first 6 months of life was associated with decreased gain of ambulation and gain of spoken language (ambulation: log-rank test p = 0.0015; gain of first word: p = 0.0015). There was no difference in age at seizure onset by age at initial symptom onset (p = 0.8823). Collection of prospective outcome measures was limited by attention and behavior in our patient population, reinforcing the complexity of phenotype assessment and inadequacy of available standardized tests. Overall, gross motor and adaptive behavior assessments were better able to capture the dynamic range of function across the BPAN population than the fine motor and non-verbal cognitive tests. Floor effects were noted across outcome measures in a subset of individuals for cognitive and adaptive behavior tests. CONCLUSION: Our data suggest the distinct phenotypes of BPAN: a severe, early onset form and an attenuated form with higher cognitive capabilities. Early age at onset was a key factor in predicting future neurologic impairment.


Asunto(s)
Trastornos del Metabolismo del Hierro , Humanos , Trastornos del Metabolismo del Hierro/diagnóstico , Trastornos del Metabolismo del Hierro/genética , Psicometría , Estudios Prospectivos , Estudios Retrospectivos , Proteínas Portadoras/genética , Hierro/metabolismo , Evaluación de Resultado en la Atención de Salud
13.
Mov Disord ; 37(1): 148-161, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34622992

RESUMEN

BACKGROUND: Complex parkinsonism is the commonest phenotype in late-onset PLA2G6-associated neurodegeneration. OBJECTIVES: The aim of this study was to deeply characterize phenogenotypically PLA2G6-related parkinsonism in the largest cohort ever reported. METHODS: We report 14 new cases of PLA2G6-related parkinsonism and perform a systematic literature review. RESULTS: PLA2G6-related parkinsonism shows a fairly distinct phenotype based on 86 cases from 68 pedigrees. Young onset (median age, 23.0 years) with parkinsonism/dystonia, gait/balance, and/or psychiatric/cognitive symptoms were common presenting features. Dystonia occurred in 69.4%, pyramidal signs in 77.2%, myoclonus in 65.2%, and cerebellar signs in 44.6% of cases. Early bladder overactivity was present in 71.9% of cases. Cognitive impairment affected 76.1% of cases and psychiatric features 87.1%, the latter being an isolated presenting feature in 20.1%. Parkinsonism was levodopa responsive but complicated by early, often severe dyskinesias. Five patients benefited from deep brain stimulation. Brain magnetic resonance imaging findings included cerebral (49.3%) and/or cerebellar (43.2%) atrophy, but mineralization was evident in only 28.1%. Presynaptic dopaminergic terminal imaging was abnormal in all where performed. Fifty-four PLA2G6 mutations have hitherto been associated with parkinsonism, including four new variants reported in this article. These are mainly nontruncating, which may explain the phenotypic heterogeneity of childhood- and late-onset PLA2G6-associated neurodegeneration. In five deceased patients, median disease duration was 13.0 years. Brain pathology in three cases showed mixed Lewy and tau pathology. CONCLUSIONS: Biallelic PLA2G6 mutations cause early-onset parkinsonism associated with dystonia, pyramidal and cerebellar signs, myoclonus, and cognitive impairment. Early psychiatric manifestations and bladder overactivity are common. Cerebro/cerebellar atrophy are frequent magnetic resonance imaging features, whereas brain iron deposition is not. Early, severe dyskinesias are a tell-tale sign. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Parkinsonianos , Edad de Inicio , Atrofia , Distonía/genética , Genotipo , Fosfolipasas A2 Grupo VI/genética , Humanos , Mutación , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , Linaje , Fenotipo
14.
Neurocase ; 28(1): 37-41, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35188090

RESUMEN

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurological disease with childhood or adult onset. It is a subtype of clinically and genetically heterogeneous group of disorders, collectively known as neurodegeneration with brain iron accumulation . MPAN is generally associated with biallelic pathogenic variants in C19orf12. Herein, we describe genetic and clinical findings of two MPAN cases from Turkey. In the first case, we have identified the relatively common pathogenic variant of C19orf12 in the homozygous state, which causes late-onset MPAN. The second case was homozygous for an essential splice-site variation.


Asunto(s)
Membranas Mitocondriales , Proteínas Mitocondriales , Encéfalo/patología , Estudios de Seguimiento , Humanos , Proteínas Mitocondriales/genética , Mutación
15.
Can J Neurol Sci ; 49(3): 338-351, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34082843

RESUMEN

Neurodegeneration with brain iron accumulation (NBIA) is a term used for a group of hereditary neurological disorders with abnormal accumulation of iron in basal ganglia. It is clinically and genetically heterogeneous with symptoms such as dystonia, dysarthria, Parkinsonism, intellectual disability, and spasticity. The age at onset and rate of progression are variable among individuals. Current therapies are exclusively symptomatic and unable to hinder the disease progression. Approximately 16 genes have been identified and affiliated to such condition with different functions such as iron metabolism (only two genes: Ferritin Light Chain (FTL) Ceruloplasmin (CP)), lipid metabolism, lysosomal functions, and autophagy process, but some functions have remained unknown so far. Subgroups of NBIA are categorized based on the mutant genes. Although in the last 10 years, the development of whole-exome sequencing (WES) technology has promoted the identification of disease-causing genes, there seem to be some unknown genes and our knowledge about the molecular aspects and pathogenesis of NBIA is not complete yet. There is currently no comprehensive study about the NBIA in Iran; however, one of the latest discovered NBIA genes, GTP-binding protein 2 (GTPBP2), has been identified in an Iranian family, and there are some patients who have genetically remained unknown.


Asunto(s)
Trastornos del Metabolismo del Hierro , Ganglios Basales , Encéfalo/patología , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Humanos , Irán , Hierro/metabolismo , Trastornos del Metabolismo del Hierro/genética , Mutación
16.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36233161

RESUMEN

Our clinical series comprises 124 patients with movement disorders (MDs) and/or ataxia with cerebellar atrophy (CA), many of them showing signs of neurodegeneration with brain iron accumulation (NBIA). Ten NBIA genes are accepted, although isolated cases compatible with abnormal brain iron deposits are known. The patients were evaluated using standardised clinical assessments of ataxia and MDs. First, NBIA genes were analysed by Sanger sequencing and 59 patients achieved a diagnosis, including the detection of the founder mutation PANK2 p.T528M in Romani people. Then, we used a custom panel MovDisord and/or exome sequencing; 29 cases were solved with a great genetic heterogeneity (34 different mutations in 23 genes). Three patients presented brain iron deposits with Fe-sensitive MRI sequences and mutations in FBXO7, GLB1, and KIF1A, suggesting an NBIA-like phenotype. Eleven patients showed very early-onset ataxia and CA with cortical hyperintensities caused by mutations in ITPR1, KIF1A, SPTBN2, PLA2G6, PMPCA, and PRDX3. The novel variants were investigated by structural modelling, luciferase analysis, transcript/minigenes studies, or immunofluorescence assays. Our findings expand the phenotypes and the genetics of MDs and ataxias with early-onset CA and cortical hyperintensities and highlight that the abnormal brain iron accumulation or early cerebellar gliosis may resembling an NBIA phenotype.


Asunto(s)
Trastornos del Movimiento , Enfermedades Neurodegenerativas , Ataxia/genética , Encéfalo , Humanos , Hierro , Cinesinas , Mutación , Enfermedades Neurodegenerativas/genética , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
17.
Neuroimage ; 245: 118752, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34823024

RESUMEN

AIMS: Non-invasive measures of brain iron content would be of great benefit in neurodegeneration with brain iron accumulation (NBIA) to serve as a biomarker for disease progression and evaluation of iron chelation therapy. Although magnetic resonance imaging (MRI) provides several quantitative measures of brain iron content, none of these have been validated for patients with a severely increased cerebral iron burden. We aimed to validate R2* as a quantitative measure of brain iron content in aceruloplasminemia, the most severely iron-loaded NBIA phenotype. METHODS: Tissue samples from 50 gray- and white matter regions of a postmortem aceruloplasminemia brain and control subject were scanned at 1.5 T to obtain R2*, and biochemically analyzed with inductively coupled plasma mass spectrometry. For gray matter samples of the aceruloplasminemia brain, sample R2* values were compared with postmortem in situ MRI data that had been obtained from the same subject at 3 T - in situ R2*. Relationships between R2* and tissue iron concentration were determined by linear regression analyses. RESULTS: Median iron concentrations throughout the whole aceruloplasminemia brain were 10 to 15 times higher than in the control subject, and R2* was linearly associated with iron concentration. For gray matter samples of the aceruloplasminemia subject with an iron concentration up to 1000 mg/kg, 91% of variation in R2* could be explained by iron, and in situ R2* at 3 T and sample R2* at 1.5 T were highly correlated. For white matter regions of the aceruloplasminemia brain, 85% of variation in R2* could be explained by iron. CONCLUSIONS: R2* is highly sensitive to variations in iron concentration in the severely iron-loaded brain, and might be used as a non-invasive measure of brain iron content in aceruloplasminemia and potentially other NBIA disorders.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ceruloplasmina/deficiencia , Trastornos del Metabolismo del Hierro/diagnóstico por imagen , Trastornos del Metabolismo del Hierro/metabolismo , Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Autopsia , Ceruloplasmina/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , Fenotipo
18.
Neurogenetics ; 22(1): 95-101, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33394258

RESUMEN

C19orf12 gene biallelic mutations lead mainly to neurodegeneration with brain iron accumulation-4. A 15-year-old male and his 17-year-old sister complained of cramps and exercise intolerance. Clinical examination of the boy mainly showed distal amyotrophy and mild weakness, while the sister predominantly had a tetrapyramidal syndrome. Widespread chronic neurogenic signs and hypointense signals on the striatum were present in both patients. Clinical exome sequencing identified, on both patients, the compound heterozygous pathogenic mutations c.204_214del p.(Gly69ArgfsTer10) and c.32C>T p.(Thr11Met). The description of these rare SPG43 and ALS-like phenotypes in the same family contributes to improve genotype-phenotype correlation in C19orf12-related diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Heterocigoto , Proteínas Mitocondriales/genética , Mutación/genética , Adolescente , Esclerosis Amiotrófica Lateral/diagnóstico , Encéfalo/patología , Femenino , Humanos , Masculino , Fenotipo
19.
Neurogenetics ; 22(4): 347-351, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34387792

RESUMEN

PLA2G6 is the causative gene for a group of autosomal recessive neurodegenerative disorders known as PLA2G6-associated neurodegeneration (PLAN). We present a case with early-onset parkinsonism, ataxia, cognitive decline, cerebellar atrophy, and brain iron accumulation. Sequencing of PLA2G6 coding regions identified only a heterozygous nonsense variant, but mRNA analysis revealed the presence of an aberrant transcript isoform due to a novel deep intronic variant (c.2035-274G > A) leading to activation of an intronic pseudo-exon. These results expand the genotypic spectrum of PLAN, showing the paramount importance of detecting possible pathogenic variants in deep intronic regions in undiagnosed patients.


Asunto(s)
Encéfalo/patología , Fosfolipasas A2 Grupo VI/genética , Mutación/genética , Enfermedad de Parkinson/genética , Adulto , Edad de Inicio , Atrofia/patología , Femenino , Humanos , Malformaciones del Sistema Nervioso/genética , Distrofias Neuroaxonales/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/patología , Fenotipo
20.
Am J Hum Genet ; 102(2): 266-277, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395073

RESUMEN

Neurodegeneration with brain iron accumulation (NBIA) is a genetically heterogeneous condition characterized by progressive dystonia with iron accumulation in the basal ganglia. How NBIA-associated mutations trigger iron overload remains poorly understood. After studying fibroblast cell lines from subjects carrying both known and unreported biallelic mutations in CRAT and REPS1, we ascribe iron overload to the abnormal recycling of transferrin receptor (TfR1) and the reduction of TfR1 palmitoylation in NBIA. Moreover, we describe palmitoylation as a hitherto unreported level of post-translational TfR1 regulation. A widely used antimalarial agent, artesunate, rescued abnormal TfR1 palmitoylation in cultured fibroblasts of NBIA subjects. These observations suggest therapeutic strategies aimed at targeting impaired TfR1 recycling and palmitoylation in NBIA.


Asunto(s)
Encéfalo/patología , Endocitosis , Hierro/metabolismo , Lipoilación , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Receptores de Transferrina/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al Calcio , Proteínas Portadoras/genética , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Mutación/genética , Receptores de Transferrina/química , Receptores de Transferrina/genética , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA