Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 977
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Biol ; 22(1): 211, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294668

RESUMEN

BACKGROUND: Phosphorus-solubilizing bacteria (PSB) are vital in converting insoluble phosphorus into a soluble form that plants can readily absorb and utilize in soil. While previous studies have mainly focused on the extracellular secretion of microorganisms, few have explored the intricate intracellular metabolic processes involved in PSB-mediated phosphorus solubilization. RESULTS: Here, we uncovered that Ca3(PO4)2 could serve as a source of insoluble phosphorus for the PSB, Pseudomonas sp. NK2. High-performance liquid chromatography (HPLC) results indicated higher levels of organic acids released from insoluble phosphorus compared to a soluble phosphorus source (KH2PO4), with acetic acid released exclusively under insoluble phosphorus condition. Moreover, non-target metabolomics was employed to delve into the intracellular metabolic profile. It unveiled that insoluble phosphorus significantly enhanced the tricarboxylic acid cycle, glycolysis, glyoxylic acid metabolism, and other pathways, leading to the production of acetic acid, gluconic acid, oxalic acid, and citric acid for insoluble phosphorus solubilization. In our quest to identify suitable biochar carriers, we assessed seven types of biochar through the conjoint analysis of NBRIP medium culture and application to soil for 30 days, with cotton straw-immobilized NK2 emerging as the most potent phosphorus content provider. Lastly, NK2 after cotton straw immobilization demonstrated the ability to enhance biomass, plant height, and root development of Solanum lycopersicum L. cv. Micro Tom. CONCLUSIONS: Pseudomonas sp. NK2 with cotton straw biochar could enhance phosphorus availability and tomato growth. These findings bear significant implications for the practical application of phosphorus-solubilizing bacteria in agricultural production and the promotion of environmentally sustainable farming practices.


Asunto(s)
Carbón Orgánico , Fósforo , Pseudomonas , Solanum lycopersicum , Fósforo/metabolismo , Pseudomonas/metabolismo , Pseudomonas/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Carbón Orgánico/química , Microbiología del Suelo , Estrés Fisiológico , Solubilidad
2.
Insect Mol Biol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136392

RESUMEN

The western flower thrips, Frankliniella occidentalis, is a serious pest causing both direct feeding damage and indirect harm by transmitting the tomato spotted wilt virus. A spraying double-stranded RNA (dsRNA) targeted at the vacuolar-type ATPase (vATPase) gene was developed and demonstrated high insecticidal activity in the laboratory but less effective in field applications. To improve control efficacy under field conditions, three strategies were explored in this study. First, to identify a more efficient RNA interference (RNAi) target, dsRNA specific to the Snf7 gene was tested alongside dsRNA targeting vATPase, and both were found to be similarly effective in controlling the thrips. Second, to elucidate the factors contributing to dsRNA resistance, dsRNA-degrading enzymes were annotated and their physiological roles in diminishing RNAi efficacy were investigated. Third, to suppress the dsRNA degradation from the dsRNase activities and protect it in field conditions, the dsRNA was encapsulated with chitosan. This formulation enhanced the dsRNA's resistance to environmental stressors such as ultraviolet light and the digestive enzymes in the thrips' gut. Additionally, the chitosan formulation specifically increased the RNAi efficacy, likely by facilitating more efficient entry into the target cells, thus bolstering the insecticidal activity of the dsRNA. The formulated dsRNA was applied on F. occidentalis infesting the hot peppers in a greenhouse at a concentration of 500 ppm, demonstrating an 82.4% control efficacy compared with 59.2% control efficacy observed with the application of naked dsRNA. This study further demonstrated an enhancement in the spectrum of control by combining dsRNAs specific to three distinct thrips species, while the mixture showed no adverse effects on non-target insects, such as the lepidopteran Spodoptera exigua. Collectively, these findings reveal that the chitosan formulation of dsRNA not only improves control efficacy under field conditions but also broadens the control spectrum against three different thrips pests.

3.
Transgenic Res ; 33(3): 75-88, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578501

RESUMEN

Genetically engineered (GE) cotton event MON 88702, producing Mpp51Aa2 (previously mCry51Aa2) from Bacillus thuringiensis (Bt), controls sucking pests, such as Lygus spp. (Hemiptera: Miridae) and thrips (Thysanoptera). Ingesting high doses of the insecticidal protein resulted in adverse effects on life table parameters of beneficial, predatory Orius spp. (Hemiptera: Anthocoridae). This triggered laboratory studies with more realistic food treatments, including different combinations of prey types with and without Bt protein to further characterize risks to this important group of non-target organisms. In this work, exclusive feeding of frozen spider mites (Tetranychus urticae, Acari: Tetranychidae) from Bt cotton confirmed adverse effects on longevity and fecundity of O. majusculus adults. Alternate feeding of Bt protein-containing spider mites and Bt-free Ephestia kuehniella (Lepidoptera: Pyralidae) eggs mitigated effects on longevity, but not on fecundity. When living larvae of Spodoptera littoralis (Lepidoptera: Noctuidae) from Bt cotton were fed to the predators, however, no effects on longevity and reproduction of female O. majusculus were observed, despite the fact that Bt protein concentrations in larvae were almost as high as concentrations in spider mites. When a diverse mix of prey species with various Bt protein concentrations is consumed in the field, it is unlikely that exposure of Orius spp. to Mpp51Aa2 is high enough to exert adverse effects on predator populations. MON 88702 cotton may thus be a valuable tool for integrated management of sucking pests.


Asunto(s)
Bacillus thuringiensis , Gossypium , Longevidad , Control Biológico de Vectores , Plantas Modificadas Genéticamente , Reproducción , Animales , Gossypium/genética , Gossypium/parasitología , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/parasitología , Bacillus thuringiensis/genética , Reproducción/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conducta Predatoria , Fertilidad/genética , Spodoptera/crecimiento & desarrollo , Spodoptera/fisiología , Spodoptera/genética , Larva/crecimiento & desarrollo , Larva/genética , Toxinas de Bacillus thuringiensis/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Heterópteros/genética , Heterópteros/fisiología , Heterópteros/crecimiento & desarrollo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Tetranychidae/genética , Femenino
4.
Environ Sci Technol ; 58(9): 4104-4114, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373080

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are widely used in industrial production, causing potential health risks to the residents living around chemical industrial plants; however, the lack of data on population exposure and adverse effects impedes our understanding and ability to prevent risks. In this study, we performed screening and association analysis on exogenous PFAS pollutants and endogenous small-molecule metabolites in the serum of elderly residents living near industrial plants. Exposure levels of 11 legacy and novel PFASs were determined. PFOA and PFOS were major contributors, and PFNA, PFHxS, and 6:2 Cl-PFESA also showed high detection frequencies. Association analysis among PFASs and 287 metabolites identified via non-target screening was performed with adjustments of covariates and false discovery rate. Strongly associated metabolites were predominantly lipid and lipid-like molecules. Steroid hormone biosynthesis, primary bile acid biosynthesis, and fatty-acid-related pathways, including biosynthesis of unsaturated fatty acids, linoleic acid metabolism, α-linolenic acid metabolism, and fatty acid biosynthesis, were enriched as the metabolic pathways associated with mixed exposure to multiple PFASs, providing metabolic explanation and evidence for the potential mediating role of adverse health effects as a result of PFAS exposure. Our study achieved a comprehensive screening of PFAS exposure and associated metabolic profiling, demonstrating the promising application for integrated analysis of exposome and metabolome.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Humanos , Anciano , Fluorocarburos/análisis , Contaminantes Ambientales/análisis , Metabolómica , Ácidos Grasos
5.
Environ Sci Technol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319773

RESUMEN

Metformin has been widely detected in aquatic ecosystems, yet the knowledge of its impact on aquatic organisms, particularly at environmentally relevant concentrations, remains limited. In the present study, we characterized the developmental toxicity of metformin in zebrafish, utilizing a transcriptome-guided toxicological assessment framework. Transcriptomic analysis conducted at metformin concentrations within the µg/L range revealed significant disruptions in biological processes associated with nucleotide, hydrocarbon, and amino acid metabolism, suggesting a significant disturbance in energy homeostasis. This observation was corroborated by energy-targeted metabolomic analysis, wherein a considerable number of metabolites involved in purine metabolism, pyrimidine metabolism, and the citrate cycle displayed significant alterations. Notably, most intermediates in the citrate cycle such as acetyl-CoA exhibited remarkable decreases. Additionally, our study identified significant impediments in zebrafish embryonic development, including decreased yolk extension progress, spontaneous contraction and body length, and increased yolk sac area and yolk/while body lipid content ratio, at metformin concentrations as low as 0.12 µg/L. Furthermore, the disruption of energy homeostasis by metformin was observed to persist into adulthood even after a prolonged recovery period. The present findings highlighted the disruptive effects of metformin on energy homeostasis and embryonic development in teleost at environmentally relevant concentrations, thereby prompting a reevaluation of its environmental risk to nontarget aquatic organisms.

6.
Anal Bioanal Chem ; 416(3): 635-650, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37736840

RESUMEN

Human biomonitoring can add value to chemical risk assessment by reducing the assumptions regarding consumption rates, residue occurrence, and processing effects and by integrating exposures from different sources (diet, household use, environmental). However, the relationship between exposure and concentration in human matrices is unknown for most pesticides. Therefore, we conducted a pilot study to gain more insight into the qualitative and quantitative relationship between dietary intake of pesticides (external exposure) and urinary excretion (reflecting internal exposure). In this cross-sectional observational study, 35 healthy consumers aged 18-65 years from the region of Wageningen, Netherlands, collected an exact duplicate portion of their diets during 24 h. On the same day, they also collected all their urine. The duplicate diets were analyzed using target screening by GC- and LC-HRMS; each duplicate diet contained at least five, up to 21, pesticide residues. The 24 h urine samples were analyzed using LC-HRMS in a suspect screening workflow. Metabolites were tentatively detected in all 24 h urine samples, ranging from six metabolites corresponding to four pesticides up to 40 metabolites originating from 16 pesticides in a single urine sample. In total, 65 metabolites originating from 28 pesticides were tentatively detected. After prioritization and additional confirmation experiments, 28 metabolites originating from 10 pesticides were identified with confidence level 1 or 2b. Next, quantitative analysis was performed for a selection of pesticides in duplicate diets and their metabolites in 24 h urine to assess quantitative relationships. In the quantitative comparisons between duplicate diet and 24 h urine, it was found that some metabolites were already present in the duplicate diet, which may give an overestimation of exposure to the parent pesticide based on measurement of the metabolites in urine. Additionally, the quantitative comparisons suggest a background exposure through other exposure routes. We conclude that suspect screening of 24 h urine samples can disclose exposure to mixtures of pesticide on the same day in the general population. However, more research is needed to obtain quantitative relationships between dietary intake and exposure.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Humanos , Plaguicidas/análisis , Proyectos Piloto , Estudios Transversales , Dieta , Residuos de Plaguicidas/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
7.
Anal Bioanal Chem ; 416(9): 2125-2136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38300263

RESUMEN

This trend article provides an overview of recent advancements in Non-Target Screening (NTS) for water quality assessment, focusing on new methods in data evaluation, qualification, quantification, and quality assurance (QA/QC). It highlights the evolution in NTS data processing, where open-source platforms address challenges in result comparability and data complexity. Advanced chemometrics and machine learning (ML) are pivotal for trend identification and correlation analysis, with a growing emphasis on automated workflows and robust classification models. The article also discusses the rigorous QA/QC measures essential in NTS, such as internal standards, batch effect monitoring, and matrix effect assessment. It examines the progress in quantitative NTS (qNTS), noting advancements in ionization efficiency-based quantification and predictive modeling despite challenges in sample variability and analytical standards. Selected studies illustrate NTS's role in water analysis, combining high-resolution mass spectrometry with chromatographic techniques for enhanced chemical exposure assessment. The article addresses chemical identification and prioritization challenges, highlighting the integration of database searches and computational tools for efficiency. Finally, the article outlines the future research needs in NTS, including establishing comprehensive guidelines, improving QA/QC measures, and reporting results. It underscores the potential to integrate multivariate chemometrics, AI/ML tools, and multi-way methods into NTS workflows and combine various data sources to understand ecosystem health and protection comprehensively.

8.
Anal Bioanal Chem ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995405

RESUMEN

Feature detection plays a crucial role in non-target screening (NTS), requiring careful selection of algorithm parameters to minimize false positive (FP) features. In this study, a stochastic approach was employed to optimize the parameter settings of feature detection algorithms used in processing high-resolution mass spectrometry data. This approach was demonstrated using four open-source algorithms (OpenMS, SAFD, XCMS, and KPIC2) within the patRoon software platform for processing extracts from drinking water samples spiked with 46 per- and polyfluoroalkyl substances (PFAS). The designed method is based on a stochastic strategy involving random sampling from variable space and the use of Pearson correlation to assess the impact of each parameter on the number of detected suspect analytes. Using our approach, the optimized parameters led to improvement in the algorithm performance by increasing suspect hits in case of SAFD and XCMS, and reducing the total number of detected features (i.e., minimizing FP) for OpenMS. These improvements were further validated on three different drinking water samples as test dataset. The optimized parameters resulted in a lower false discovery rate (FDR%) compared to the default parameters, effectively increasing the detection of true positive features. This work also highlights the necessity of algorithm parameter optimization prior to starting the NTS to reduce the complexity of such datasets.

9.
Anal Bioanal Chem ; 416(2): 349-362, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030884

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a huge group of anthropogenic chemicals with unique properties that are used in countless products and applications. Due to the high stability of their C-F bonds, PFAS or their transformation products (TPs) are persistent in the environment, leading to ubiquitous detection in various samples worldwide. Since PFAS are industrial chemicals, the availability of authentic PFAS reference standards is limited, making non-target screening (NTS) approaches based on high-resolution mass spectrometry (HRMS) necessary for a more comprehensive characterization. NTS usually is a time-consuming process, since only a small fraction of the detected chemicals can be identified. Therefore, efficient prioritization of relevant HRMS signals is one of the most crucial steps. We developed PFΔScreen, a Python-based open-source tool with a simple graphical user interface (GUI) to perform efficient feature prioritization using several PFAS-specific techniques such as the highly promising MD/C-m/C approach, Kendrick mass defect analysis, diagnostic fragments (MS2), fragment mass differences (MS2), and suspect screening. Feature detection from vendor-independent MS raw data (mzML, data-dependent acquisition) is performed via pyOpenMS (or custom feature lists) with subsequent calculations for prioritization and identification of PFAS in both HPLC- and GC-HRMS data. The PFΔScreen workflow is presented on four PFAS-contaminated agricultural soil samples from south-western Germany. Over 15 classes of PFAS (more than 80 single compounds with several isomers) could be identified, including four novel classes, potentially TPs of the precursors fluorotelomer mercapto alkyl phosphates (FTMAPs). PFΔScreen can be used within the Python environment and is easily automatically installable and executable on Windows. Its source code is freely available on GitHub ( https://github.com/JonZwe/PFAScreen ).

10.
BMC Cardiovasc Disord ; 24(1): 499, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294556

RESUMEN

BACKGROUND: Rapid progression of non-target lesions (NTLs) leads to a high incidence of NTL related cardiac events post-PCI, which accounting half of the recurrent cardiac events. It is important to identify the risk factors and establish an accurate clinical prediction model for the rapid progression of NTLs post-PCI. PCSK9 inhibitors lower LDL-c levels significantly, also show the anti-inflammation effect, and may have the potential to reduce the rapid progression of NTLs post-PCI. We tried to test this hypothesis and explore the potential mechanisms. METHODS: This retrospective study included 1250 patients who underwent the first PCI and underwent repeat coronary angiography for recurrence of chest pain within 24 months. General characteristics, laboratory tests and inflammatory factors(IL-10, IL-6, IL-8, IL-1ß, sIL-2R, and TNF-α) were collected. Machine learning (LASSO regression) was mainly employed to select the important characteristic risk factors for the rapid progression of NTLs post-PCI and build prediction models. Finally, mediator analysis was employed to explore the potential mechanisms by which PCSK9 inhibitors reduce the rapid progression of NTLs post-PCI. RESULTS: There were more diabetes, less beta-blockers and PCSK9 inhibitors application, higher HbA1c, LDL-c, ApoB, TG, TC, uric acid, hs-CRP, TNF-α, IL-6, IL-8, and sIL-2R in NTL progressed group. LDL-c, hs-CRP, IL-8, and sIL-2R were characteristic risk factors for the rapid progression of NTLs post-PCI, combining LDL-c, hs-CRP, IL-8, and sIL-2R builds the optimal model for predicting the rapid progression of NTLs post-PCI (AUC = 0.632). LDL-c had a clear and incomplete mediating effect (95% CI, mediating effect: 51.56%) in the reduction of the progression of NTLs by PCSK9 inhibitors, and there was a possible mediating effect of IL-8 (90% CI), and sIL-2R (90% CI). CONCLUSIONS: LDL-c, hs-CRP, IL-8, and sIL-2R may be the key characteristic risk factors for the rapid progression of NTLs post-PCI, and combining these parameters might predict the rapid progression of NTLs post-PCI. The application of PCSK9 inhibitors had a negative correlation with the rapid progression of NTLs. In addition to the significant LDL-c-lowering, PCSK9 inhibitors may reduce the rapid progression of NTLs by reducing local inflammation of plaque. TRIAL REGISTRATION: ChiCTR2200058529; Date of registration: 2022-04-10.


Asunto(s)
Biomarcadores , LDL-Colesterol , Enfermedad de la Arteria Coronaria , Progresión de la Enfermedad , Mediadores de Inflamación , Inhibidores de PCSK9 , Intervención Coronaria Percutánea , Humanos , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Biomarcadores/sangre , Resultado del Tratamiento , Anciano , Factores de Tiempo , Factores de Riesgo , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/terapia , Intervención Coronaria Percutánea/efectos adversos , LDL-Colesterol/sangre , Medición de Riesgo , Mediadores de Inflamación/sangre , Dislipidemias/tratamiento farmacológico , Dislipidemias/sangre , Dislipidemias/diagnóstico , Angiografía Coronaria , Proproteína Convertasa 9
11.
J Chem Ecol ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095554

RESUMEN

Parasitoid biological control agents rely heavily on olfaction to locate their hosts. Chemical cues associated with hosts and non-hosts are known to influence the expression of host preferences and host-specificity. A better understanding of how and why parasitoids attack some species and not others, based on volatile organic compounds associated with potential hosts, can provide key information on the parasitoid's host preferences, which could be applied to pre-release risk assessments for classical biological control agents. Electrophysiological techniques such as electroantennography (EAG) and GC-EAD (gas chromatography coupled with electroantennographic detection) are widely used to identify bioactive semiochemicals. But the application of these techniques to understanding how chemical ecological cues mediate parasitoid host specificity has not been as thoroughly explored. We conducted GC-EAD and EAG studies to identify olfactory-active compounds associated with adult females of nine stink bug species from Aotearoa/New Zealand on the antennae of three closely related parasitoid species: Trissolcus japonicus Ashmead, a pre-emptively (= proactively) approved biocontrol agent against brown marmorated stink bug; T. basalis (Wollaston), a biocontrol agent introduced against Nezara viridula L. in 1949; and T. oenone Johnson, a native Australasian pentatomid parasitoid. Eight compounds associated with stink bugs elicited antennal responses from all three parasitoids, and we were able to identify seven of these. (E)-2-hexenal, (E)-4-oxo-2-hexenal, (E)-2-octenal and (E)-2-decenal generally elicited stronger responses in the three parasitoids, while n-tridecane, n-dodecane, and (E)-2-decenyl acetate elicited weaker responses. We discuss how and why the results from electrophysiological experiments can be applied to non-target risk assessments within biological control programmes.

12.
Environ Res ; 243: 117870, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38072111

RESUMEN

The class of insecticides known as neonicotinoid insecticides has gained extensive application worldwide. Two characteristics of neonicotinoid pesticides are excellent insecticidal activity and a wide insecticidal spectrum for problematic insects. Neonicotinoid pesticides can also successfully manage pest insects that have developed resistance to other insecticide classes. Due to its powerful insecticidal properties and rapid plant absorption and translocation, dinotefuran, the most recent generation of neonicotinoid insecticides, has been widely used against biting and sucking insects. Dinotefuran has a wide range of potential applications and is often used globally. However, there is growing evidence that they negatively impact the biodiversity of organisms in agricultural settings as well as non-target organisms. The objective of this review is to present an updated summary of current understanding regarding the non-target effects of dinotefuran; we also enumerated nano- and bio-based mitigation and management strategies to reduce the impact of dinotefuran on non-target organisms and to pinpoint knowledge gaps. Finally, future study directions are suggested based on the limitations of the existing studies, with the goal of providing a scientific basis for risk assessment and the prudent use of these insecticides.


Asunto(s)
Guanidinas , Insecticidas , Animales , Insecticidas/toxicidad , Ecosistema , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Insectos
13.
Environ Res ; 248: 118327, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286252

RESUMEN

Broflanilide is a newly-developed meta-diamide insecticide, proposed for the control of a wide variety of chewing pests on many crops. In view of the proposed use of broflanilide and its environmental fate, it may be exposed to consumers and non-target organisms, which adversely affect human and the environment. In this paper, a rapid, sensitive and valid UPLC-MS/MS method was established for simultaneous analysis of broflanilide and its two major metabolites, DM-8007 and S (PFP-OH)-8007, in cauliflower. Then, the dissipation behaviors and final residues of broflanilide and its two major metabolites in cauliflower from eight sites with different climatic conditions in China were studied via the described analytical method. In addition, the acute toxicity test of 9.5 % suspension concentrate of broflanilide, broflanilide standard, DM-8007 and S (PFP-OH)-8007 were conducted to non-target terrestrial organisms. Risk assessment for human and non-target terrestrial organisms in cauliflower production was evaluated based on the maximum annual application rates and intervals. The results showed that the highest residue of broflanilide detected in cauliflower samples was all lower than the corresponding MRLs (2 mg/kg) in Japan. Chronic food dietary risk estimates for broflanilide do not exceed 50 % for all the Chinese population groups. Moreover, broflanilide is of low acute toxicity to birds and earthworm, while broflanilide and its metabolites is classified as highly toxic to adult honeybees. Acute risks of broflanilide to birds and earthworms were deemed to be acceptable in a realistic worst-case scenario, while its risk to adult honeybees and ladybug was unacceptable. A protection statement for honeybees and ladybug is required to recognize the high toxicity of broflanilide on related product labels. The study will be conducive to provide guidance for the rational application of broflanilide in cauliflower production.


Asunto(s)
Benzamidas , Brassica , Fluorocarburos , Insecticidas , Residuos de Plaguicidas , Humanos , Animales , Abejas , Residuos de Plaguicidas/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Insecticidas/toxicidad , Medición de Riesgo
14.
Environ Res ; 245: 118006, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154568

RESUMEN

Solid waste is an inevitable consequence of urbanization. It can be safely managed in municipal landfills and processing plants for volume reduction or material reuse, including organic solid waste. However, solid waste can also be discarded in (un-)authorized dumping sites or inadvertently released into the environment. Legacy and emerging contaminants have the potential to leach from solid waste, making it a significant pathway to the environment. Non-target screening (NTS) and suspect screening analysis (SSA) have become helpful tools in environmental science for the simultaneous analysis of a wide range of chemical compounds. However, the application of these analytical approaches to environmental samples related to Raw or Processed Solid Waste (RPSW) has been largely neglected so far. This perspective review examines the potential and policy relevance of NTS and SSA applied to waste-related samples (liquid, gaseous and solid). It addresses the hurdles associated with the chemical safety of solid waste accumulation, processing, and reuse, and the need for landfill traceability, as well as effectiveness of leachate treatments. We reviewed the current applications of NTS and SSA to environmental samples of RPSW, as well as the potential adaptation of NTS and SSA techniques from related fields, such as oilfield and metabolomics, to the solid waste domain. Despite the ongoing technical challenges, this review highlights the significant potential for the implementation of NTS and SSA approaches in solid waste management and related scientific fields and provides support and guidance to the regulatory authorities.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Contaminantes Químicos del Agua , Residuos Sólidos/análisis , Eliminación de Residuos/métodos , Contaminantes Químicos del Agua/análisis , Instalaciones de Eliminación de Residuos
15.
Environ Res ; 244: 117934, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109957

RESUMEN

Florfenicol, as a replacement for chloramphenicol, can tightly bind to the A site of the 23S rRNA in the 50S subunit of the 70S ribosome, thereby inhibiting protein synthesis and bacterial proliferation. Due to the widespread use in aquaculture and veterinary medicine, florfenicol has been detected in the aquatic environment worldwide. Concerns over the effects and health risks of florfenicol on target and non-target organisms have been raised in recent years. Although the ecotoxicity of florfenicol has been widely reported in different species, no attempt has been made to review the current research progress of florfenicol toxicity, hormesis, and its health risks posed to biota. In this study, a comprehensive literature review was conducted to summarize the effects of florfenicol on various organisms including bacteria, algae, invertebrates, fishes, birds, and mammals. The generation of antibiotic resistant bacteria and spread antibiotic resistant genes, closely associated with hormesis, are pressing environmental health issues stemming from overuse or misuse of antibiotics including florfenicol. Exposure to florfenicol at µg/L-mg/L induced hormetic effects in several algal species, and chromoplasts might serve as a target for florfenicol-induced effects; however, the underlying molecular mechanisms are completely lacking. Exposure to high levels (mg/L) of florfenicol modified the xenobiotic metabolism, antioxidant systems, and energy metabolism, resulting in hepatotoxicity, renal toxicity, immunotoxicity, developmental toxicity, reproductive toxicity, obesogenic effects, and hormesis in different animal species. Mitochondria and the associated energy metabolism are suggested to be the primary targets for florfenicol toxicity in animals, albeit further in-depth investigations are warranted for revealing the long-term effects (e.g., whole-life-cycle impacts, multigenerational effects) of florfenicol, especially at environmental levels, and the underlying mechanisms. This will facilitate the evaluation of potential hormetic effects and construction of adverse outcome pathways for environmental risk assessment and regulation of florfenicol.


Asunto(s)
Antibacterianos , Tianfenicol , Tianfenicol/análogos & derivados , Animales , Antibacterianos/toxicidad , Tianfenicol/toxicidad , Cloranfenicol/farmacología , Bacterias , Mamíferos
16.
Environ Res ; 257: 119242, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38821457

RESUMEN

In an attempt to discover and characterize the plethora of xenobiotic substances, this study investigates chemical compounds released into the environment with wastewater effluents. A novel non-targeted screening methodology based on ultra-high resolution Orbitrap mass spectrometry and nanoflow ultra-high performance liquid chromatography together with a newly optimized data-processing pipeline were applied to effluent samples from two state-of-the-art and one small wastewater treatment facility. In total, 785 molecular structures were obtained, of which 38 were identified as single compounds, while 480 structures were identified at a putative level. Most of these substances were therapeutics and drugs, present as parent compounds and metabolites. Using R packages Phyloseq and MetacodeR, originally developed for bioinformatics, significant differences in xenobiotic presence in the wastewater effluents between the three sites were demonstrated.


Asunto(s)
Monitoreo del Ambiente , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Aguas Residuales/química , Aguas Residuales/análisis , Dinamarca , Cromatografía Líquida de Alta Presión , Eliminación de Residuos Líquidos , Espectrometría de Masas/métodos , Xenobióticos/análisis
17.
Environ Res ; 260: 119620, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39032619

RESUMEN

Over the last decades, the intensification of agriculture has resulted in an increasing use of pesticides, which has led to widespread contamination of non-target ecosystems in agricultural landscapes. Plants and arthropods inhabiting these systems are therefore chronically exposed to, at least, low levels of pesticides through direct pesticide drift, but also through the contamination of their nutrient sources (e.g. soil water or host/prey tissues). Pesticides (herbicides, acaricides/insecticides and fungicides) are chemical substances used to control pests, such as weeds, phytophagous arthropods and pathogenic microorganisms. These molecules are designed to disturb specific physiological mechanisms and induce mortality in targeted organisms. However, under sublethal exposure, pesticides also affect biological processes including metabolism, development, reproduction or inter-specific interactions even in organisms that do not possess the molecular target of the pesticide. Despite the broad current knowledge on sublethal effects of pesticides on organisms, their adverse effects on trophic interactions are less investigated, especially within terrestrial trophic networks. In this review, we provide an overview of the effects, both target and non-target, of sublethal exposures to pesticides on traits involved in trophic interactions between plants, phytophagous insects and their natural enemies. We also discuss how these effects may impact ecosystem functioning by analyzing studies investigating the responses of Plant-Phytophage-Natural enemy trophic networks to pesticides. Finally, we highlight the current challenges and research prospects in the understanding of the effects of pesticides on trophic interactions and networks in non-target terrestrial ecosystems.


Asunto(s)
Ecosistema , Cadena Alimentaria , Plaguicidas , Plaguicidas/toxicidad , Animales , Plantas/efectos de los fármacos , Artrópodos/efectos de los fármacos
18.
J Invertebr Pathol ; 203: 108069, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286329

RESUMEN

Pathogen spores have been recognized as prey with implications for resource dynamics, energy transfer and disease transmission. In aquatic ecosystems, filter-feeders are able to consume such motile forms of pathogens that can cause severe disease in susceptible hosts. The interactions between European crayfish and the crayfish plague pathogen Aphanomyces astaci are of particular conservation interest. In this study, we aim to evaluate the ecological interactions between Ap. astaci, its host Astacus astacus and individuals of the genus Daphnia, filter-feeding planktonic crustaceans. Our focus was on the consumption of the motile zoospores by Daphnia individuals, but we also considered the potential of Daphnia as non-target hosts. We conducted a series of infection and life-history experiments with Ap. astaci, three Daphnia species (D. magna, D. galeata, and D. pulex) and the noble crayfish As. astacus. We did not observe any lethal effects in the infection experiments involving Ap. astaci and Daphnia. Only D. pulex showed differences in some life-history traits. The feeding experiment using the motile zoospores of Ap. astaci as alternative food source or as supplement to different amounts of algal food revealed their nutritional value: D. magna individuals survived, grew, and reproduced on a zoospore diet alone. When zoospores were supplemented to the regular algal diet, all life-history parameters have been significantly improved. However, this successful consumption of zoospores did not result in a reduced mortality of the susceptible crayfish As. astacus during the infection experiment. Nevertheless, the pathogen load of Ap. astaci in the tissues of As. astacus was significantly reduced as a consequence of the feeding activity of Daphnia. Our results indicate that an abundant filter-feeding community can reduce the amount of infective zoospores in the water body and thus be beneficial to susceptible crayfish hosts, potentially acting as a general buffer against zoospore-transmitted diseases in lentic waters.


Asunto(s)
Aphanomyces , Astacoidea , Humanos , Animales , Ecosistema , Interacciones Huésped-Patógeno , Alimentos Marinos
19.
Ecotoxicol Environ Saf ; 282: 116707, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38996645

RESUMEN

CRISPR/Cas9, a potent genetic engineering tool widely adopted in agriculture, is capable of introducing new characteristics into plants on a large scale and without conventional breeding methods. Despite its remarkable efficiency, concerns have arisen regarding unintended consequences in uncontrolled environments. Our aim was to assess potential activity in organisms that could be exposed to genome editing in uncontrolled environments. We developed three scenarios, using irrigation, fumigation and fertilization as delivery methods, based on outdoor uses in agriculture, namely pest and disease control. Using publicly available software (Cas-OFFinder, NCBI Genome Data Viewer and STRING), off-target effects were predicted in multiple species commonly found in the agroecosystem, including humans (16 of 38 (42 %) sampled). Metabolic enrichment analysis (gene IDs), by connecting off-target genes into a physiological network, predicted effects on the development of nervous and respiratory systems. Our findings emphasize the importance of exercising caution when considering the use of this genome editing in uncontrolled environments. Unintended genomic alterations may occur in unintended organisms, underscoring the significance of understanding potential hazards and implementing safety measures to protect human health and the environment.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Humanos , Agricultura/métodos , Animales , Riego Agrícola/métodos
20.
Ecotoxicol Environ Saf ; 281: 116656, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945099

RESUMEN

Antidepressant drugs (ADDs) are one of the most extensively used pharmaceuticals globally. They act at particularly low therapeutic concentrations to modulate monoamine neurotransmission, which is one of the most evolutionary conserved pathways in both humans and animal species including invertebrates. As ADDs are widely detected in the aquatic environment at low concentrations (ng/L to low µg/L), their potential to exert drug-target mediated effects in aquatic species has raised serious concerns. Amitriptyline (AMI) is the most widely used tricyclic ADD, while monoamines, the target of ADDs, are major bioregulators of multiple key physiological processes including feeding, reproduction and behaviour in molluscs. However, the effects of AMI on feeding, reproduction and mating behaviour are unknown in molluscs despite their ecological importance, diversity and reported sensitivity to ADDs. To address this knowledge gap, we investigated the effects of environmentally relevant concentrations of AMI (0, 10, 100, 500 and 1000 ng/L) on feeding, reproduction and key locomotor behaviours, including mating, in the freshwater gastropod, Biomphalaria glabrata over a period of 28 days. To further provide insight into the sensitivity of molluscs to ADDs, AMI concentrations (exposure water and hemolymph) were determined using a novel extraction method. The Fish Plasma Model (FPM), a critical tool for prioritization assessment of pharmaceuticals with potential to cause drug target-mediated effects in fish, was then evaluated for its applicability to molluscs for the first time. Disruption of food intake (1000 ng/L) and reproductive output (500 and 1000 ng/L) were observed at particularly low hemolymph levels of AMI, whereas locomotor behaviours were unaffected. Importantly, the predicted hemolymph levels of AMI using the FPM agreed closely with the measured levels. The findings suggest that hemolymph levels of AMI may be a useful indicator of feeding and reproductive disruptions in wild population of freshwater gastropods, and confirm the applicability of the FPM to molluscs for comparative pharmaceutical hazard identification.


Asunto(s)
Amitriptilina , Antidepresivos Tricíclicos , Agua Dulce , Reproducción , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Amitriptilina/toxicidad , Antidepresivos Tricíclicos/toxicidad , Conducta Alimentaria/efectos de los fármacos , Conducta Sexual Animal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA