Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; : e0146624, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291985

RESUMEN

Many insects are obligatorily associated with and dependent on specific microbial species as essential mutualistic partners. In the host insects, such microbial mutualists are usually maintained in specialized cells or organs, called bacteriocytes or symbiotic organs. Hence, potentially exponential microbial growth cannot be realized but must be strongly constrained by spatial and resource limitations within the host cells or tissues. How such endosymbiotic bacteria grow, divide, and proliferate is important for understanding the interactions and dynamics underpinning intimate host-microbe symbiotic associations. Here we report that Blattabacterium, the ancient and essential endosymbiont of cockroaches, exhibits unexpectedly high rates of cell division (20%-58%) and, in addition, the cell division is asymmetric (average asymmetry index >1.5) when isolated from the German cockroach Blattella germanica. The asymmetric division of endosymbiont cells at high frequencies was observed irrespective of host tissues (fat bodies vs ovaries) or developmental stages (adults vs nymphs vs embryos) of B. germanica, and also observed in several different cockroach species. By contrast, such asymmetric and frequent cell division was observed neither in Buchnera, the obligatory bacterial endosymbiont of aphids, nor in Pantoea, the obligatory bacterial gut symbiont of stinkbugs. Comparative genomics of cell division-related genes uncovered that the Blattabacterium genome lacks the Min system genes that determine the cell division plane, which may be relevant to asymmetric cell division. These observations combined with comparative symbiont genomics provide insight into what processes and regulations may underpin the growth, division, and proliferation of such bacterial mutualists continuously constrained under within-host conditions.IMPORTANCEDiverse insects are dependent on specific bacterial mutualists for their survival and reproduction. Due to the long-lasting coevolutionary history, such symbiotic bacteria tend to exhibit degenerative genomes and suffer uncultivability. Because of their microbiological fastidiousness, the cell division patterns of such uncultivable symbiotic bacteria have been poorly described. Here, using fine microscopic and quantitative morphometric approaches, we report that, although bacterial cell division usually proceeds through symmetric binary fission, Blattabacterium, the ancient and essential endosymbiont of cockroaches, exhibits frequent and asymmetric cell division. Such peculiar cell division patterns were not observed with other uncultivable essential symbiotic bacteria of aphids and stinkbugs. Gene repertoire analysis revealed that the molecular machinery for regulating the bacterial cell division plane are lost in the Blattabacterium genome, suggesting the possibility that the general trend toward the reductive genome evolution of symbiotic bacteria may underpin their bizarre cytological/morphological traits.

2.
New Phytol ; 243(6): 2385-2400, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39031531

RESUMEN

Changes in the plant microbiota composition are intimately associated with the health of the plant, but factors controlling the microbial community in flowers are poorly understood. In this study, we used apple flowers and fire blight as a model system to investigate the effects of floral microbiota and microbial competition on disease development and suppression. To compare changes in microbial flora with the RNA expression patterns of plants, the flower samples were collected in three different flowering stages (Bud, Popcorn, and Full-bloom). Using advanced sequencing technology, we analyzed the data and conducted both in vitro and in vivo experiments to validate our findings. Our results show that the Erwinia amylovora use arabinogalactan, which is secreted on the flowers, for early colonization of apple flowers. Pantoea agglomerans was more competitive for arabinogalactan than E. amylovora. Additionally, P. agglomerans suppressed the expression of virulence factors of E. amylovora by using arabinose, which is a major component of arabinogalactan, which induces virulence gene expression. The present data provide new insights into developing control strategies for diverse plant diseases, including fire blight, by highlighting the importance of nutrients in disease development or suppression.


Asunto(s)
Erwinia amylovora , Flores , Galactanos , Malus , Microbiota , Enfermedades de las Plantas , Malus/microbiología , Erwinia amylovora/patogenicidad , Erwinia amylovora/fisiología , Enfermedades de las Plantas/microbiología , Flores/microbiología , Galactanos/metabolismo , Nutrientes/metabolismo , Pantoea/fisiología , Pantoea/genética , Pantoea/patogenicidad , Arabinosa/metabolismo , Factores de Virulencia/genética
3.
Microb Pathog ; 186: 106445, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37956936

RESUMEN

Foliar fungal blast and bacterial leaf blight have significant impacts on rice production, and their management through host resistance and agrochemicals has proven inadequate. To achieve their sustainable management, innovative approaches like leveraging the foliar microbiome, which collaborates with plants and competes against pathogens, are essential. In our study, we isolated three Pantoea strains (P. agglomerans Os-Ep-PPA-1b, P. vagans Os-Ep-PPA-3b, and P. deleyi Os-Ep-VPA-9a) from the rice phylloplane. These isolates exhibited antimicrobial action through their metabolome and volatilome, while also promoting rice growth. Our analysis, using Gas Chromatography-Mass Spectrometry (GC-MS), revealed the presence of various antimicrobial compounds such as esters and fatty acids produced by these Pantoea isolates. Inoculating rice seedlings with P. agglomerans and P. vagans led to increased root and shoot growth. Additionally, bacterized seedlings displayed enhanced immunocompetence, as evidenced by upregulated expressions of defense genes (OsEDS1, OsFLS2, OsPDF2.2, OsACO4, OsICS OsPR1a, OsNPR1.3, OsPAD4, OsCERK1.1), along with heightened activities of defense enzymes like Polyphenol Oxidase and Peroxidase. These plants also exhibited elevated levels of total phenols. In field trials, the Pantoea isolates contributed to improved plant growth, exemplified by increased flag-leaf length, panicle number, and grains per panicle, while simultaneously reducing the incidence of chaffy grains. Hypersensitivity assays performed on a model plant, tobacco, confirmed the non-pathogenic nature of these Pantoea isolates. In summary, our study underscores the potential of Pantoea bacteria in combatting rice foliar diseases. Coupled with their remarkable growth-promoting and biostimulant capabilities, these findings position Pantoea as promising agents for enhancing rice cultivation.


Asunto(s)
Antiinfecciosos , Oryza , Pantoea , Resiliencia Psicológica , Xanthomonas , Pantoea/genética , Plantas , Xanthomonas/genética , Plantones/microbiología , Antiinfecciosos/metabolismo , Enfermedades de las Plantas/microbiología
4.
Environ Res ; 243: 117846, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38065387

RESUMEN

As a major challenge to global food security, soil salinity is an important abiotic stress factor that seriously affects the crop growth and yield. In this study, the mechanism of salt resistance of Pantoea jilinensis D25 and its improving effect on salt tolerance of tomato were explored with salt resistance-related genes identified in strain D25 by genomic sequencing. The results showed that in comparison with the treatment of NaCl, strain D25 significantly increased the fresh weight, shoot length, root length, and chlorophyll content of tomato under salt stress by 46.7%, 20%, 42.4%, and 44.2%, respectively, with increased absorptions of various macronutrients and micronutrients and decreased accumulation of Na+. The activities of defense enzymes (peroxidase, catalase, superoxide dismutase, phenylalanine ammonia-lyase, and polyphenol oxidase) were enhanced, while the content of malondialdehyde was decreased. The results of quantitative real-time PCR analysis showed that the expressions of genes (SlSOS1, SlNHX1, SlHKT1.1, SlSOD1, SlAPX2, SlAOS, SlPin II, Solyc08g066270.1, Solyc03g083420.2 and SlGA20ox1) related to ion transporters, antioxidant machinery, key defense, serine/threonine protein kinase synthesis, and gibberellin (GA) signal protein were up-regulated and were the highest in the treatment of both NaCl and strain D25. The activities of enzymes (dehydrogenase, urease, invertase, and catalase activities) related to soil fertility were enhanced. The results of 16S rRNA sequencing showed that soil microbial diversity and the abundance of probiotics (e.g., Acidibacter, Limnobacter, and Romboutsia) were significantly increased. Our study provided strong experimental evidence to support the agricultural application of strain D25 in the promotion of growth in crops.


Asunto(s)
Pantoea , Solanum lycopersicum , Antioxidantes/metabolismo , Catalasa , Tolerancia a la Sal , Pantoea/metabolismo , Suelo/química , ARN Ribosómico 16S/genética , Cloruro de Sodio
5.
Artículo en Inglés | MEDLINE | ID: mdl-39242411

RESUMEN

BACKGROUND: Pantoea agglomerans is a gram negative, aerobic/facultative anaerobic, rod shaped bacilli commonly isolated from plants, soil, food and faeces.(1) It is a rare cause of opportunistic infections in humans acquired mainly via two major routes being, wound infection or hospital acquired. CASE REPORT: Here, we encountered a landmark, first of its kind, head and neck manifestation of a cervical soft tissue abscess with Pantoea agglomerans being the miscreant. The patient presented with complaints of a left sided neck swelling, which was radiologically suggestive of a cold abscess, however clinical suscpicion encouraged us to perform an incision and drainage, culture of which revealed this notorious phytogenic bacterium. DISCUSSION: Commonly encountered Pantoea infected cases documented in literature have shown a clinical picture of endophthalmitis, acute unilateral dacryocystitis, periostitis, endocarditis, osteomyelitis and a tumour like muscle cyst of the thigh with many of them eventually leading to septicemia while a few also resolved with targeted antibiotics.(2) Remarkably, no ENT or head and neck presentations have been reported in literature till date. History of trauma by brushing against a mango tree was confirmed retrospectively, which was found to be the missing piece of the puzzle.

6.
Plant Dis ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38595062

RESUMEN

Rice (Oryza sativa L.) is a crucial staple crop worldwide, and bacterial diseases are among the primary factors affecting rice yield. In late October 2022, bacterial leaf streak disease was observed on the leaves of the rice variety Meixiangzhan 2 across multiple fields (approximately 130 hm2) in Leizhou City, Guangdong Province, China. The incidence rate was up to 30% in each field. Infected rice leaves exhibited distinctive symptoms at the boundary between diseased and healthy tissue, featuring dark green to yellow-brown streaks, while most of the leaf margin exhibited symptoms of either leaf edge or sheath rot. Disease progression from the leaf tip inwards revealed gray-white or dehydrated lesions with a bluish-gray color. Some leaves exhibited wrinkling at the edges, and severe symptoms at the leaf tip resembled those of bacterial leaf blight in rice. Ten leaves were collected from 10 infected rice plants in three distinct fields, and leaf pieces at the border of diseased and healthy areas were surface disinfected with 75% anhydrous ethanol for 60 seconds, rinsed three times with sterile water, and then soaked in sterile water for 8 hours. The obtained bacterial suspension was diluted at a ratio of 1: 106, and 100 µL of the diluted samples were plated on Potato Dextrose Agar (PDA) plates. After incubation at 28°C for 48 hours, the yellow bacterial colonies that appeared, were purified on PDA plates. To confirm the bacterial species, the amplification of genes gyrB, leuS, rpoB, and 16S rDNA was performed on six randomly selected isolates from the three different fields using the primers 27F/1492R, gyrB-F/R, leuS-F/R and rpoB-F/R, as reported by Yu et al (2022), respectively. PCR products were sequenced. All six isolates had identical sequences for all genes sequenced.The gene sequences of 16S rDNA (960 bp), gyrB (953 bp), leuS (733 bp), and rpoB (877 bp) for LZ1, were deposited in the NCBI database under accession numbers PP048830 , PP068625 , PP068626, and PP068627, respectively. These sequences were subsequently compared using BLASTn tool against the NCBI nr/nt database. The 16S rDNA, gyrB, leuS, and rpoB of LZ1 showed similarities of 99.90%, 99.16%, 99.73%, and 99.89%, with the corresponding sequences of P. ananatis TZ39 (GenBank accession numbers MZ800600.1 for 16S rDNA, and CP081342.1 for gyrB, leuS and rpoB ). MLSA analysis using concatenated sequences of gyrB, leuS, and rpoB genes indicated that the isolated strain LZ1 belongs to P. ananatis. In the tillering stage of rice varieties Meixiangzhan 2 and Huahangyuzhan, P. ananatis LZ1 was inoculated at a concentration of 108 CFU/mL using the leaf-cutting method, with sterile water used as a control (Toh et al., 2019). After 14 days of bacterial inoculation, the inoculated leaves gradually became necrotic, changing from light green to brown showing identical symptoms as those in the field, while the control plants remained symptom-free. Subsequent 16S rDNA, gyrB, leuS and rpoB gene sequencing results further confirmed the identity of the pathogen as P. ananatis, thereby fulfilling Koch's postulates. Previous reports have already identified P. ananatis as the pathogen causing rice bacterial leaf streak (Kini et al., 2017; Arayaskul et al., 2019; Yu et al., 2022; Lu et al., 2022; Luna et al., 2023; Yuan et al., 2023). This is the first report of rice bacterial leaf streak caused by P. ananatis in Guangdong Province, China, laying the foundation for future research to establish strategies for the prevention and control of this disease.

7.
Plant Dis ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017585

RESUMEN

Wheat (Triticum aestivum) is an important crop worldwide, contributing to about one third of the global caloric intake. In June 2021, leaves with bacterial blight symptoms, including yellow and necrotic lesions running parallel to veins, were found in several fields across five counties in eastern Colorado (Weld, Morgan, Sedgwick, Baca, and Kit Carson). Plants exhibiting these symptoms were scattered throughout fields, but symptoms appeared consistent across counties. To determine the causal agent and complete Koch's postulates, a 1 cm2 symptomatic leaf area was excised and macerated in 0.5 mL of sterilized water from four field samples. The lysate was spread on yeast extract dextrose calcium carbonate medium (YDC agar, 1% yeast extract, 2% dextrose, 2% calcium carbonate, 1.5% agar) to isolate bacteria. Single colonies of yellow, mucoid morphology were selected and streaked on new YDC plates. Isolate genomic DNA was extracted (Zymo Research Quick-DNA Fungal/Bacterial Miniprep Kit, #D6005), and ~30 ng of gDNA was used to amplify the 16S rRNA, gyrB, and rpoB genes of all four isolates (Barret et al., 2015; Delétoile et al., 2009; Krawczyk et al., 2020; Ogier et al., 2019). Amplified PCR products were cleaned (Zymo DNA Clean & Concentrator kit, #D4033) and Sanger sequenced, and all sequences have been deposited in NCBI (16S rRNA: OR707336, OR707337, OR707338, OR707339), (gyrB: PP407951, PP407952, PP407953, PP407954), (rpoB: PP407955, PP407956, PP407957, PP407958). A BLAST search against whole genomes identified one isolate from Kit Carson county (CO314) and two isolates from Baca county (CO316 and CO317) as Pantoea agglomerans with 100% identity for the 16S rRNA, gyrB, and rpoB genes, and one isolate from Weld county (CO315) was 100% identical to Pantoea allii for all three genes. To complete Koch's postulates and confirm Pantoea sp. as the causal disease agents, isolates were grown as lawns on DifcoTM Nutrient Agar (NA) medium (48h, 28℃), suspended in 10 mM MgCl2 using a final optical density of 0.1 (~109 colony forming units per milliliter (CFU/mL)), and syringe-infiltrated into the entire leaf area of 10-day-old wheat seedling leaves (var. Hatcher). Treatments of 10mM MgCl2 and a field isolate that does not cause symptoms, identified as Pseudomonas synxantha by 16S rRNA and gyrB sequencing, were negative controls. Inoculated wheat plants were transferred to a growth chamber (22℃, 90% relative humidity). Symptoms developed 14 days post inoculation (dpi), with the most severe appearing 21 dpi. Each of the four Pantoea isolates were re-isolated from symptomatic leaves by grinding them in a Tissue Lyser II (Qiagen) with two metal beads and diluting with 0.4 mL of sterile water. A 20 µL sample of each isolate was plated on NA (24h, 28℃). The colonies appeared phenotypically identical to the original isolates, and Sanger sequencing confirmed the identities of the isolates. To our knowledge, this is the first report of P. agglomerans causing disease in wheat in the United States, and the first report of P. allii as a wheat disease-causing agent. This report is consistent with previous communications showing P. agglomerans causing wheat disease in China (Gao et al., 2023), and P. ananatis in Poland (Krawczyk et al., 2020). The growing numbers of reports of Pantoea spp. as pathogens in recent years suggests increasing novel disease emergence on cereals worldwide.

8.
Plant Dis ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320370

RESUMEN

Pantoea ananatis is a bacterium commonly found in various agronomic crops and agricultural pests. In this study, we present findings on a genome-reduced strain of P. ananatis, known as Lstr, which was initially isolated from Laodelphax striatellus (small brown rice planthopper, SBPH). We identified Lstr as a plant pathogen causing disease in rice using Koch's postulates. The pathogenicity of Lstr on rice is comparable to that of Xanthomonas oryzae pv. oryzae, the main causative agent of rice bacterial blight. Through a series of experiments involving live insects, molecular investigations, and microscopy, we find that Lstr can accumulate within SBPH. Subsequently, Lstr can be transmitted from SBPH to rice plants, resulting in leaf blight, and can also be transmitted to other SBPH individuals. Collectively, our results suggest that SBPH serves as a vector for P. ananatis Lstr in rice plants. P. ananatis may encounter susceptible insect populations and become endemic through horizontal transmission from these insects. This could also be valuable for predicting future occurrences of bacterial leaf blight in rice and other crops caused by P. ananatis.

9.
Genomics ; 115(2): 110579, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792019

RESUMEN

Heavy metal-tolerant plant growth-promoting bacteria (PGPB) have gained popularity in bioremediation in recent years. A genome-assisted study of a heavy metal-tolerant PGPB Pantoea eucrina OB49 isolated from the rhizosphere of wheat grown on a heavy metal-contaminated site is presented. Comparative pan-genome analysis indicated that OB49 acquired heavy metal resistance genes through horizontal gene transfer. On contigs S10 and S12, OB49 has two arsRBCH operons that give arsenic resistance. On the S12 contig, an arsRBCH operon was discovered in conjunction with the merRTPCADE operon, which provides mercury resistance. P. eucrina OB49 may be involved in an ecological alternative for heavy metal remediation and growth promotion of wheat grown in metal-polluted soils. Our results suggested the detection of mobile genetic elements that harbour the ars operon and the fluoride resistance genes adjacent to the mer operon.


Asunto(s)
Metales Pesados , Pantoea , Pantoea/genética , Biodegradación Ambiental , Secuencias Repetitivas Esparcidas , Genómica
10.
World J Microbiol Biotechnol ; 40(2): 73, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240926

RESUMEN

Due to the misuse and overuse of antibiotics, bacteria are now exposed to sub-minimum inhibitory concentrations (sub-MICs) of antibiotics in various environments. In recent years, exposure of bacteria to sub-MICs of antibiotics has led to the widespread emergence of antibiotic-resistant bacteria. In this study, three bacterial species from the Enterobacteriaceae family (Raoultella ornithinolytica, Pantoea agglomerans and Klebsiella quasivariicola) were isolated from water. The antibiotic susceptibility of these bacteria to 16 antibiotics was then investigated. The effects of sub-MICs of four selected antibiotics (kanamycin, chloramphenicol, meropenem, and ciprofloxacin) on the growth, biofilm formation, surface polysaccharide production, siderophore production, morphology, and expression of the translational/transcriptional regulatory transformer gene rfaH of these bacteria were analysed. The MICs of kanamycin, chloramphenicol, meropenem, and ciprofloxacin were determined to be 1, 2, 0.03 and 0.03 µg/mL for R. ornithinolytica; 0.6, 6, 0.03 and 0.05 µg/mL for P. agglomerans; and 2, 5, 0.04 and 0.2 µg/mL for K. quasivariicola. The growth kinetics and biofilm formation ability decreased for all three isolates at sub-MICs. The surface polysaccharides of R. ornithinolytica and P. agglomerans increased at sub-MICs. There was no significant change in the siderophore activities of the bacterial isolates, with the exception of MIC/2 meropenem in R. ornithinolytica and MIC/2 kanamycin in K. quasivariicola. It was observed that the sub-MICs of meropenem and ciprofloxacin caused significant changes in bacterial morphology. In addition, the expression of rfaH in R. ornithinolytica and K. quasivariicola increased with the sub-MICs of the selected antibiotics.


Asunto(s)
Antibacterianos , Enterobacteriaceae , Antibacterianos/farmacología , Meropenem/farmacología , Ciprofloxacina/farmacología , Bacterias , Kanamicina/farmacología , Cloranfenicol/farmacología , Sideróforos , Pruebas de Sensibilidad Microbiana
11.
Indian J Microbiol ; 64(3): 937-949, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39282177

RESUMEN

A Gram-negative, short-rod, non-motile, facultatively anaerobic, potassium-solubilizing bacterium MR1 (Mine Rhizosphere) was isolated from rhizospheric soil of an open-cast coal mine of Jharia, Jharkhand, India. Isolate MR1 can grow in a broad range of temperature, pH, and NaCl concentrations. The 16S rRNA gene sequence of the strain showed 99.24% similarity with Pantoea septica LMG 5345T. However, maximum-likelihood tree constructed using 16S rRNA gene sequence, multilocus sequence analysis using concatenated sequences of ten housekeeping genes, whole-genome based phylogenetic reconstruction, digital DNA-DNA hybridization, and average nucleotide identity (ANIm and ANIb) values indicated segregation of MR1 from its closest relatives. Fatty acid profile of MR1 also suggested the same, with clear variation in major and minor fatty acid contents, having C13:0 anteiso (10-Methyldodecanoic acid) as the unique one. Thus, considering all polyphasic data, strain MR1T (= MTCC 13265T, where 'T' stands for Type strain) is presented as a novel species of the genus Pantoea, for which the name Pantoea tagorei sp. nov. is proposed. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01147-9.

12.
Angew Chem Int Ed Engl ; 63(7): e202317262, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38141166

RESUMEN

Pantaphos is small molecule virulence factor made by the plant pathogen Pantoea ananatis. An 11 gene operon, designated hvr for high virulence, is required for production of this phosphonic acid natural product, but the metabolic steps used in its production have yet to be established. Herein, we determine the complete biosynthetic pathway using a combination of bioinformatics, in vitro biochemistry and in vivo heterologous expression. Only 6 of the 11 hvr genes are needed to produce pantaphos, while a seventh is likely to be required for export. Surprisingly, the pathway involves a series of O-methylated intermediates, which are then hydrolyzed to produce the final product. The methylated intermediates are produced by an irreversible S-adenosylmethione (SAM)-dependent methyltransferase that is required to drive a thermodynamically unfavorable dehydration in the preceding step, a function not previously attributed to members of this enzyme class. Methylation of pantaphos by the same enzyme is also likely to limit its toxicity in the producing organism. The pathway also involves a novel flavin-dependent monooxygenase that differs from homologous proteins due to its endogenous flavin-reductase activity. Heterologous production of pantaphos by Escherichia coli strains expressing the minimal gene set strongly supports the in vitro biochemical data.


Asunto(s)
Vías Biosintéticas , Metiltransferasas , Metiltransferasas/metabolismo , Metilación , Plantas/metabolismo , Flavinas/metabolismo
13.
Mol Plant Microbe Interact ; 36(2): 134-137, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36693088

RESUMEN

The phytopathogen Pantoea agglomerans belongs to the Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacterales, Erwiniaceae in species classification. It causes disease symptoms in many plants such as corn, banana, and walnut. This study aimed to report the complete genome of P. agglomerans CHTF15, which represents the first whole-genome sequence of an isolate from diseased walnut leaves. The total length of the assembled genome was 4,820,607 bp, with an average GC content of 55.3%, including a circular chromosome and three circular plasmids, two of which were previously unreported sequences and one was announced previously. The CHTF15 genome helps understand the pathogenic mechanism of this important plant pathogen and provides an important theoretical basis for disease epidemic and field control. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.


Asunto(s)
Juglans , Pantoea , Pantoea/genética , Juglans/genética , Plásmidos/genética
14.
Mol Plant Microbe Interact ; 36(3): 176-188, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36534063

RESUMEN

Onion center rot is caused by at least four species of genus Pantoea (P. ananatis, P. agglomerans, P. allii, and P. stewartii subsp. indologenes). Critical onion pathogenicity determinants for P. ananatis were recently described, but whether those determinants are common among other onion-pathogenic Pantoea species remains unknown. In this work, we report onion pathogenicity determinants in P. stewartii subsp. indologenes and P. allii. We identified two distinct secondary metabolite biosynthetic gene clusters present separately in different strains of onion-pathogenic P. stewartii subsp. indologenes. One cluster is similar to the previously described HiVir phosphonate biosynthetic cluster identified in P. ananatis and another is a novel putative phosphonate biosynthetic gene cluster, which we named Halophos. The Halophos gene cluster was also identified in P. allii strains. Both clusters are predicted to be phosphonate biosynthetic clusters based on the presence of a characteristic phosphoenolpyruvate phosphomutase (pepM) gene. The deletion of the pepM gene from either HiVir or Halophos clusters in P. stewartii subsp. indologenes caused loss of necrosis on onion leaves and red onion scales and resulted in significantly lower bacterial populations compared with the corresponding wild-type and complemented strains. Seven (halB to halH) of 11 genes (halA to halK) in the Halophos gene cluster are required for onion necrosis phenotypes. The onion nonpathogenic strain PNA15-2 (P. stewartii subsp. indologenes) gained the capacity to cause foliar necrosis on onion via exogenous expression of a minimal seven-gene Halophos cluster (genes halB to halH). Furthermore, cell-free culture filtrates of PNA14-12 expressing the intact Halophos gene cluster caused necrosis on onion leaves consistent with the presence of a secreted toxin. Based on the similarity of proteins to those with experimentally determined functions, we are able to predict most of the steps in Halophos biosynthesis. Together, these observations indicate that production of the toxin phosphonate seems sufficient to account for virulence of a variety of different Pantoea strains, although strains differ in possessing a single but distinct phosphonate biosynthetic cluster. Overall, this is the first report of onion pathogenicity determinants in P. stewartii subsp. indologenes and P. allii. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Organofosfonatos , Pantoea , Pantoea/genética , Cebollas/microbiología , Virulencia/genética , Enfermedades de las Plantas/microbiología , Familia de Multigenes
15.
Mol Plant Microbe Interact ; 36(6): 381-391, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36797073

RESUMEN

Pantoea ananatis is an unusual bacterial pathogen that lacks typical virulence determinants yet causes extensive necrosis in onion foliage and bulb tissues. The onion necrosis phenotype is dependent on the expression of the phosphonate toxin, pantaphos, which is synthesized by putative enzymes encoded by the HiVir (high virulence) gene cluster. The genetic contributions of individual hvr genes in HiVir-mediated onion necrosis remain largely unknown, except for the first gene, hvrA (phosphoenolpyruvate mutase, pepM), whose deletion resulted in the loss of onion pathogenicity. In this study, using gene-deletion mutation and complementation, we report that, of the ten remaining genes, hvrB to hvrF are also strictly required for the HiVir-mediated onion necrosis and in-planta bacterial growth, whereas hvrG to hvrJ partially contributed to these phenotypes. As the HiVir gene cluster is a common genetic feature shared among the onion-pathogenic P. ananatis strains that could serve as a useful diagnostic marker of onion pathogenicity, we sought to understand the genetic basis of HiVir-positive yet phenotypically deviant (non-pathogenic) strains. We identified and genetically characterized inactivating single nucleotide polymorphisms in the essential hvr genes of six phenotypically deviant P. ananatis strains. Finally, inoculation of cell-free spent medium of the isopropylthio-ß-galactoside (IPTG)-inducible promoter (Ptac)-driven HiVir strain caused P. ananatis-characteristic red onion scale necrosis as well as cell death symptoms in tobacco. Co-inoculation of the spent medium with essential hvr mutant strains restored in-planta populations of the strains to the wild-type level, suggesting that necrotic tissues are important for the proliferation of P. ananatis in onion. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Cebollas , Pantoea , Cebollas/microbiología , Enfermedades de las Plantas/microbiología , Plantas , Pantoea/genética , Necrosis
16.
Appl Environ Microbiol ; 89(12): e0092923, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37982620

RESUMEN

IMPORTANCE: Phage-derived bacteriocins (tailocins) are ribosomally synthesized structures produced by bacteria in order to provide advantages against competing strains under natural conditions. Tailocins are highly specific in their target range and have proven to be effective for the prevention and/or treatment of bacterial diseases under clinical and agricultural settings. We describe the discovery and characterization of a new tailocin locus encoded within genomes of Pantoea ananatis and Pantoea stewartii subsp. indologenes, which may enable the development of tailocins as preventative treatments against phytopathogenic infection by these species.


Asunto(s)
Bacteriocinas , Pantoea , Pantoea/genética , Enfermedades de las Plantas/microbiología
17.
Artículo en Inglés | MEDLINE | ID: mdl-37535055

RESUMEN

A facultative anaerobic, Gram-stain-negative rod-shaped bacterium, designated RT, was isolated from the faecal material of a rabbit (Sylvilagus floridanus). The strain could not be identified using an MALDI Biotyper sirius CA System. The closest matches based on the Bruker library were members of the genera Citrobacter and Pantoea. However, the score value was in the range of no organism identification possible. Based on pairwise of 16S rRNA gene sequence analysis, the isolate was found to be a member of the family Erwiniaceae. The highest sequence similarities were found to the sequences of Pantoea rodasii LMG 26273T (98.7 %), Leclercia adecarboxylata NBRC 102595T (98.5 %) and Enterobacter huaxiensis 090008T (98.4 %). Phylogenetic and whole genome analysis demonstrated that strain RT represents a novel species within the genus Pantoea. The predominant cellular fatty acids of strain RT were C16 : 0 and products present in summed feature 2 (C12 : 0) aldehyde, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). In silico genome analysis showed the presence of enzymes required for production of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine. The G+C content determined from the genome was 54.94 mol %. Based on biochemical, phylogenetic, genotypic and chemotaxonomic criteria, the isolate represents a novel species of the genus Pantoea for which the name Pantoea leporis sp. nov. is proposed. The type strain is strain RT (=CCUG 76269T=ATCC TSD-291T).


Asunto(s)
Ácidos Grasos , Pantoea , Animales , Conejos , Ácidos Grasos/química , Fosfolípidos/química , Pantoea/genética , Ubiquinona/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
18.
Microbiol Immunol ; 67(11): 480-489, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37740512

RESUMEN

Two Gram-negative facultative anaerobes were isolated from a sepsis patient with pancreatic cancer (strain PAGU 2156T ) and soil at the bottom of a pond (strain PAGU 2198T ), respectively. These two strains formed haloes around the colonies on chrome azurol S agar plates, indicating the production of siderophores. Two isolates assigned to the genus Pantoea based on the 16S rRNA gene were differentiated from established species by using polymorphic taxonomies. Phylogenetic analysis using four housekeeping genes (gyrB, rpoB, atpD, and infB) showed that strain PAGU 2156T is closely related to Pantoea cypripedii LMG 2657T (89.9%) or Pantoea septica LMG 5345T (95.7%). Meanwhile, strain PAGU 2198T formed a single clade with Pantoea rodasii DSM 26611T (93.6%) and Pantoea rwandensis DSM 105076T (93.3%). The average nucleotide identity values obtained from the draft genome assembly showed ≤90.2% between strain PAGU 2156T and closely related species and ≤81.5% between strain PAGU 2198T and closely related species. Based on various phenotypes, biochemical properties, and whole-cell fatty acid composition compared with related species, it was concluded that each strain should be classified as a new species of the genus Pantoea. In this manuscript, Pantoea ferrattrahens sp. nov. and Pantoea ferramans sp. nov. with strain PAGU 2156T (=NBRC 115930T = CCUG 76757T ) and strain PAGU 2198T (=NBRC 114265T = CCUG 75151T ) are proposed as each type strain.


Asunto(s)
Pantoea , Humanos , Pantoea/genética , Análisis de Secuencia de ADN , Sideróforos , Filogenia , ARN Ribosómico 16S/genética , Estanques , Suelo , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , ADN Bacteriano/genética , Hibridación de Ácido Nucleico
19.
J Appl Microbiol ; 134(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669894

RESUMEN

AIMS: The purpose of this study was to determine whether plant-associated bacteria (PAB) can reduce Salmonella enterica colonization and infection of alfalfa sprouts to reduce the risk of foodborne illness. METHODS: We isolated PAB from alfalfa seeds and sprouts. Monoclonal isolates of the bacteria were obtained and tested for their ability to inhibit Salmonella Typhimurium growth in alfalfa sprouts over 6 days. Genome sequencing and annotation were used to construct draft genomes of the bacteria isolated in this study using Illumina sequencing platform. RESULTS: We observed that a cocktail of five PAB could reduce Salmonella growth in alfalfa sprouts from ∼108 to ∼105 CFU g-1, demonstrating a protective role. Genome sequencing revealed that these bacteria were members of the Pseudomonas, Pantoea, and Priestia genus, and did not possess genes that were pathogenic to plants or animals. CONCLUSIONS: This work demonstrates that PAB can be utilized to reduce pathogen levels in fresh produce, which may be synergistic with other technologies to improve the safety of sprouts and other fresh produce.


Asunto(s)
Bacillaceae , Enfermedades Transmitidas por los Alimentos , Salmonella enterica , Animales , Salmonella enterica/genética , Medicago sativa , Salmonella typhimurium , Verduras
20.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37852677

RESUMEN

AIMS: To identify biocontrol agents to prevent the growth of Salmonella serotype Enterica on cantaloupe melons during the pre- and postharvest periods. METHODS AND RESULTS: We created a produce-associated bacterial library containing 8736 isolates and screened it using an in-vitro fluorescence inhibition assay to identify bacteria that inhibit the growth of S. Enterica. One isolate, Pantoea agglomerans ASB05, was able to grow, persist, and inhibit the growth of S. Enterica on intact cantaloupe melons under simulated pre- and postharvest conditions. We also demonstrated that the growth inhibition of S. Enterica by P. agglomerans ASB05 was due to the production of a phenazine type antibiotic. CONCLUSIONS: Pantoea agglomerans ASB05 is an effective biocontrol agent for the prevention of S. Enterica growth on intact cantaloupe melons in both the pre- and postharvest environments.


Asunto(s)
Cucumis melo , Cucurbitaceae , Pantoea , Salmonella enterica , Cucumis melo/microbiología , Serogrupo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA