Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.094
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 551-584, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941604

RESUMEN

Poxviruses have evolved a wide array of mechanisms to evade the immune response, and we provide an overview of the different immunomodulatory strategies. Poxviruses prevent the recognition of viral DNA that triggers the immune responses and inhibit signaling pathways within the infected cell. A unique feature of poxviruses is the production of secreted proteins that mimic cytokines and cytokine receptors, acting as decoy receptors to neutralize the activity of cytokines and chemokines. The capacity of these proteins to evade cellular immune responses by inhibiting cytokine activation is complemented by poxviruses' strategies to block natural killer cells and cytotoxic T cells, often through interfering with antigen presentation pathways. Mechanisms that target complement activation are also encoded by poxviruses. Virus-encoded proteins that target immune molecules and pathways play a major role in immune modulation, and their contribution to viral pathogenesis, facilitating virus replication or preventing immunopathology, is discussed.


Asunto(s)
Evasión Inmune , Infecciones por Poxviridae , Poxviridae , Humanos , Poxviridae/inmunología , Poxviridae/fisiología , Animales , Infecciones por Poxviridae/inmunología , Citocinas/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Proteínas Virales/inmunología , Presentación de Antígeno/inmunología , Interacciones Huésped-Patógeno/inmunología
2.
Annu Rev Immunol ; 41: 277-300, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36716750

RESUMEN

Emerging and re-emerging respiratory viral infections pose a tremendous threat to human society, as exemplified by the ongoing COVID-19 pandemic. Upon viral invasion of the respiratory tract, the host initiates coordinated innate and adaptive immune responses to defend against the virus and to promote repair of the damaged tissue. However, dysregulated host immunity can also cause acute morbidity, hamper lung regeneration, and/or lead to chronic tissue sequelae. Here, we review our current knowledge of the immune mechanisms regulating antiviral protection, host pathogenesis, inflammation resolution, and lung regeneration following respiratory viral infections, mainly using influenza virus and SARS-CoV-2 infections as examples. We hope that this review sheds light on future research directions to elucidate the cellular and molecular cross talk regulating host recovery and to pave the way to the development of pro-repair therapeutics to augment lung regeneration following viral injury.


Asunto(s)
COVID-19 , Humanos , Animales , Inmunidad Innata , Pandemias , SARS-CoV-2 , Inflamación/patología
3.
Annu Rev Immunol ; 40: 615-649, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35134315

RESUMEN

Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Interferón Tipo I , Infecciones por Alphavirus/patología , Animales , Humanos , Inmunidad , Tropismo
4.
Annu Rev Immunol ; 36: 603-638, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29490165

RESUMEN

Globally, about 36.7 million people were living with HIV infection at the end of 2015. The most frequent infection co-occurring with HIV-1 is Mycobacterium tuberculosis-374,000 deaths per annum are attributable to HIV-tuberculosis, 75% of those occurring in Africa. HIV-1 infection increases the risk of tuberculosis by a factor of up to 26 and alters its clinical presentation, complicates diagnosis and treatment, and worsens outcome. Although HIV-1-induced depletion of CD4+ T cells underlies all these effects, more widespread immune deficits also contribute to susceptibility and pathogenesis. These defects present a challenge to understand and ameliorate, but also an opportunity to learn and optimize mechanisms that normally protect people against tuberculosis. The most effective means to prevent and ameliorate tuberculosis in HIV-1-infected people is antiretroviral therapy, but this may be complicated by pathological immune deterioration that in turn requires more effective host-directed anti-inflammatory therapies to be derived.


Asunto(s)
Coinfección , Infecciones por VIH/inmunología , VIH-1/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Animales , Terapia Antirretroviral Altamente Activa , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Progresión de la Enfermedad , Variación Genética , Infecciones por VIH/diagnóstico , Infecciones por VIH/terapia , Infecciones por VIH/virología , VIH-1/genética , Humanos , Tuberculosis/diagnóstico , Tuberculosis/microbiología , Tuberculosis/terapia , Replicación Viral
5.
Annu Rev Immunol ; 36: 193-220, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29328787

RESUMEN

Retroviruses are genome invaders that have shared a long history of coevolution with vertebrates and their immune system. Found endogenously in genomes as traces of past invasions, retroviruses are also considerable threats to human health when they exist as exogenous viruses such as HIV. The immune response to retroviruses is engaged by germline-encoded sensors of innate immunity that recognize viral components and damage induced by the infection. This response develops with the induction of antiviral effectors and launching of the clonal adaptive immune response, which can contribute to protective immunity. However, retroviruses efficiently evade the immune response, owing to their rapid evolution. The failure of specialized immune cells to respond, a form of neglect, may also contribute to inadequate antiretroviral immune responses. Here, we discuss the mechanisms by which immune responses to retroviruses are mounted at the molecular, cellular, and organismal levels. We also discuss how intrinsic, innate, and adaptive immunity may cooperate or conflict during the generation of immune responses.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/virología , Retroviridae/inmunología , Inmunidad Adaptativa , Animales , Humanos , Evasión Inmune , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunidad Innata , Infecciones por Retroviridae/metabolismo
6.
Cell ; 187(2): 360-374.e19, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38176410

RESUMEN

The very-low-density lipoprotein receptor (VLDLR) comprises eight LDLR type A (LA) domains and supports entry of distantly related alphaviruses, including Eastern equine encephalitis virus (EEEV) and Semliki Forest virus (SFV). Here, by resolving multiple cryo-electron microscopy structures of EEEV-VLDLR complexes and performing mutagenesis and functional studies, we show that EEEV uses multiple sites (E1/E2 cleft and E2 A domain) to engage more than one LA domain simultaneously. However, no single LA domain is necessary or sufficient to support efficient EEEV infection. Whereas all EEEV strains show conservation of two VLDLR-binding sites, the EEEV PE-6 strain and a few other EEE complex members feature a single amino acid substitution that enables binding of LA domains to an additional site on the E2 B domain. These structural and functional analyses informed the design of a minimal VLDLR decoy receptor that neutralizes EEEV infection and protects mice from lethal challenge.


Asunto(s)
Microscopía por Crioelectrón , Virus de la Encefalitis Equina del Este , Encefalomielitis Equina , Receptores de LDL , Animales , Ratones , Alphavirus/fisiología , Virus de la Encefalitis Equina del Este/fisiología , Virus de la Encefalitis Equina del Este/ultraestructura , Encefalomielitis Equina/metabolismo , Caballos , Unión Proteica , Receptores de LDL/ultraestructura
7.
Cell ; 187(20): 5587-5603.e19, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39293445

RESUMEN

Filoviruses, including the Ebola and Marburg viruses, cause hemorrhagic fevers with up to 90% lethality. The viral nucleocapsid is assembled by polymerization of the nucleoprotein (NP) along the viral genome, together with the viral proteins VP24 and VP35. We employed cryo-electron tomography of cells transfected with viral proteins and infected with model Ebola virus to illuminate assembly intermediates, as well as a 9 Å map of the complete intracellular assembly. This structure reveals a previously unresolved third and outer layer of NP complexed with VP35. The intrinsically disordered region, together with the C-terminal domain of this outer layer of NP, provides the constant width between intracellular nucleocapsid bundles and likely functions as a flexible tether to the viral matrix protein in the virion. A comparison of intracellular nucleocapsids with prior in-virion nucleocapsid structures reveals that the nucleocapsid further condenses vertically in the virion. The interfaces responsible for nucleocapsid assembly are highly conserved and offer targets for broadly effective antivirals.


Asunto(s)
Ebolavirus , Tomografía con Microscopio Electrónico , Nucleocápside , Ensamble de Virus , Ebolavirus/ultraestructura , Ebolavirus/química , Ebolavirus/metabolismo , Ebolavirus/fisiología , Nucleocápside/metabolismo , Nucleocápside/ultraestructura , Nucleocápside/química , Humanos , Microscopía por Crioelectrón/métodos , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Proteínas de la Nucleocápside/ultraestructura , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Nucleoproteínas/ultraestructura , Animales , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/ultraestructura , Modelos Moleculares , Virión/ultraestructura , Virión/metabolismo , Fiebre Hemorrágica Ebola/virología , Chlorocebus aethiops
8.
Cell ; 186(22): 4818-4833.e25, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37804831

RESUMEN

MXRA8 is a receptor for chikungunya (CHIKV) and other arthritogenic alphaviruses with mammalian hosts. However, mammalian MXRA8 does not bind to alphaviruses that infect humans and have avian reservoirs. Here, we show that avian, but not mammalian, MXRA8 can act as a receptor for Sindbis, western equine encephalitis (WEEV), and related alphaviruses with avian reservoirs. Structural analysis of duck MXRA8 complexed with WEEV reveals an inverted binding mode compared with mammalian MXRA8 bound to CHIKV. Whereas both domains of mammalian MXRA8 bind CHIKV E1 and E2, only domain 1 of avian MXRA8 engages WEEV E1, and no appreciable contacts are made with WEEV E2. Using these results, we generated a chimeric avian-mammalian MXRA8 decoy-receptor that neutralizes infection of multiple alphaviruses from distinct antigenic groups in vitro and in vivo. Thus, different alphaviruses can bind MXRA8 encoded by different vertebrate classes with distinct engagement modes, which enables development of broad-spectrum inhibitors.


Asunto(s)
Alphavirus , Animales , Humanos , Fiebre Chikungunya , Virus Chikungunya/química , Mamíferos , Receptores Virales/metabolismo
9.
Cell ; 186(15): 3196-3207.e17, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37369204

RESUMEN

Pathogens produce diverse effector proteins to manipulate host cellular processes. However, how functional diversity is generated in an effector repertoire is poorly understood. Many effectors in the devastating plant pathogen Phytophthora contain tandem repeats of the "(L)WY" motif, which are structurally conserved but variable in sequences. Here, we discovered a functional module formed by a specific (L)WY-LWY combination in multiple Phytophthora effectors, which efficiently recruits the serine/threonine protein phosphatase 2A (PP2A) core enzyme in plant hosts. Crystal structure of an effector-PP2A complex shows that the (L)WY-LWY module enables hijacking of the host PP2A core enzyme to form functional holoenzymes. While sharing the PP2A-interacting module at the amino terminus, these effectors possess divergent C-terminal LWY units and regulate distinct sets of phosphoproteins in the host. Our results highlight the appropriation of an essential host phosphatase through molecular mimicry by pathogens and diversification promoted by protein modularity in an effector repertoire.


Asunto(s)
Monoéster Fosfórico Hidrolasas , Phytophthora , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas/metabolismo , Phytophthora/química , Phytophthora/metabolismo , Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Proteína Fosfatasa 2/metabolismo , Enfermedades de las Plantas
10.
Cell ; 185(9): 1572-1587.e11, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35452622

RESUMEN

The large number of spike substitutions in Omicron lineage variants (BA.1, BA.1.1., and BA.2) could jeopardize the efficacy of SARS-CoV-2 vaccines. We evaluated in mice the protective efficacy of the Moderna mRNA-1273 vaccine against BA.1 before or after boosting. Whereas two doses of mRNA-1273 vaccine induced high levels of neutralizing antibodies against historical WA1/2020 strains, lower levels against BA.1 were associated with breakthrough infection and inflammation in the lungs. A primary vaccination series with mRNA-1273.529, an Omicron-matched vaccine, potently neutralized BA.1 but inhibited historical or other SARS-CoV-2 variants less effectively. However, boosting with either mRNA-1273 or mRNA-1273.529 vaccines increased neutralizing titers and protection against BA.1 and BA.2 infection. Nonetheless, the neutralizing antibody titers were higher, and lung viral burden and cytokines were slightly lower in mice boosted with mRNA-1273.529 and challenged with BA.1. Thus, boosting with mRNA-1273 or mRNA-1273.529 enhances protection against Omicron infection with limited differences in efficacy measured.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ratones , SARS-CoV-2/genética , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
11.
Cell ; 185(6): 980-994.e15, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35303428

RESUMEN

The emergence of hypervirulent clade 2 Clostridioides difficile is associated with severe symptoms and accounts for >20% of global infections. TcdB is a dominant virulence factor of C. difficile, and clade 2 strains exclusively express two TcdB variants (TcdB2 and TcdB4) that use unknown receptors distinct from the classic TcdB. Here, we performed CRISPR/Cas9 screens for TcdB4 and identified tissue factor pathway inhibitor (TFPI) as its receptor. Using cryo-EM, we determined a complex structure of the full-length TcdB4 with TFPI, defining a common receptor-binding region for TcdB. Residue variations within this region divide major TcdB variants into 2 classes: one recognizes Frizzled (FZD), and the other recognizes TFPI. TFPI is highly expressed in the intestinal glands, and recombinant TFPI protects the colonic epithelium from TcdB2/4. These findings establish TFPI as a colonic crypt receptor for TcdB from clade 2 C. difficile and reveal new mechanisms for CDI pathogenesis.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Clostridioides difficile/genética , Lipoproteínas/genética
12.
Cell ; 184(13): 3410-3425.e17, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34062120

RESUMEN

To control viral infection, vertebrates rely on both inducible interferon responses and less well-characterized cell-intrinsic responses composed of "at the ready" antiviral effector proteins. Here, we show that E3 ubiquitin ligase TRIM7 is a cell-intrinsic antiviral effector that restricts multiple human enteroviruses by targeting viral 2BC, a membrane remodeling protein, for ubiquitination and proteasome-dependent degradation. Selective pressure exerted by TRIM7 results in emergence of a TRIM7-resistant coxsackievirus with a single point mutation in the viral 2C ATPase/helicase. In cultured cells, the mutation helps the virus evade TRIM7 but impairs optimal viral replication, and this correlates with a hyperactive and structurally plastic 2C ATPase. Unexpectedly, the TRIM7-resistant virus has a replication advantage in mice and causes lethal pancreatitis. These findings reveal a unique mechanism for targeting enterovirus replication and provide molecular insight into the benefits and trade-offs of viral evolution imposed by a host restriction factor.


Asunto(s)
Enterovirus/fisiología , Enterovirus/patogenicidad , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Replicación Viral/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Línea Celular , Femenino , Humanos , Inflamación/patología , Ratones Endogámicos C57BL , Mutación/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , ARN Viral/metabolismo , Ubiquitina/metabolismo , Proteínas Virales/genética
13.
Cell ; 184(17): 4414-4429.e19, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34416146

RESUMEN

Alphaviruses are emerging, mosquito-transmitted pathogens that cause musculoskeletal and neurological disease in humans. Although neutralizing antibodies that inhibit individual alphaviruses have been described, broadly reactive antibodies that protect against both arthritogenic and encephalitic alphaviruses have not been reported. Here, we identify DC2.112 and DC2.315, two pan-protective yet poorly neutralizing human monoclonal antibodies (mAbs) that avidly bind to viral antigen on the surface of cells infected with arthritogenic and encephalitic alphaviruses. These mAbs engage a conserved epitope in domain II of the E1 protein proximal to and within the fusion peptide. Treatment with DC2.112 or DC2.315 protects mice against infection by both arthritogenic (chikungunya and Mayaro) and encephalitic (Venezuelan, Eastern, and Western equine encephalitis) alphaviruses through multiple mechanisms, including inhibition of viral egress and monocyte-dependent Fc effector functions. These findings define a conserved epitope recognized by weakly neutralizing yet protective antibodies that could be targeted for pan-alphavirus immunotherapy and vaccine design.


Asunto(s)
Alphavirus/inmunología , Anticuerpos Antivirales/inmunología , Secuencia Conservada/inmunología , Epítopos/inmunología , Proteínas Virales/inmunología , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/virología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/virología , Virus Chikungunya/inmunología , Chlorocebus aethiops , Mapeo Epitopo , Epítopos/química , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Monocitos/metabolismo , Células Vero , Proteínas Virales/química , Liberación del Virus
14.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33278358

RESUMEN

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Asunto(s)
Antiinflamatorios/administración & dosificación , Azetidinas/administración & dosificación , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Macaca mulatta , Infiltración Neutrófila/efectos de los fármacos , Purinas/administración & dosificación , Pirazoles/administración & dosificación , Sulfonamidas/administración & dosificación , Animales , COVID-19/fisiopatología , Muerte Celular/efectos de los fármacos , Degranulación de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Quinasas Janus/antagonistas & inhibidores , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Activación de Linfocitos/efectos de los fármacos , Macrófagos Alveolares/inmunología , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Linfocitos T/inmunología , Replicación Viral/efectos de los fármacos
15.
Cell ; 184(5): 1214-1231.e16, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636133

RESUMEN

Although enteric helminth infections modulate immunity to mucosal pathogens, their effects on systemic microbes remain less established. Here, we observe increased mortality in mice coinfected with the enteric helminth Heligmosomoides polygyrus bakeri (Hpb) and West Nile virus (WNV). This enhanced susceptibility is associated with altered gut morphology and transit, translocation of commensal bacteria, impaired WNV-specific T cell responses, and increased virus infection in the gastrointestinal tract and central nervous system. These outcomes were due to type 2 immune skewing, because coinfection in Stat6-/- mice rescues mortality, treatment of helminth-free WNV-infected mice with interleukin (IL)-4 mirrors coinfection, and IL-4 receptor signaling in intestinal epithelial cells mediates the susceptibility phenotypes. Moreover, tuft cell-deficient mice show improved outcomes with coinfection, whereas treatment of helminth-free mice with tuft cell-derived cytokine IL-25 or ligand succinate worsens WNV disease. Thus, helminth activation of tuft cell-IL-4-receptor circuits in the gut exacerbates infection and disease of a neurotropic flavivirus.


Asunto(s)
Coinfección , Nematospiroides dubius/fisiología , Transducción de Señal , Infecciones por Strongylida/patología , Virus del Nilo Occidental/fisiología , Animales , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Mucosa Intestinal/parasitología , Mucosa Intestinal/virología , Ratones , Ratones Endogámicos C57BL , Neuronas/parasitología , Neuronas/virología , Receptores de Interleucina-4/metabolismo , Factor de Transcripción STAT6/genética , Índice de Severidad de la Enfermedad , Infecciones por Strongylida/parasitología
16.
Cell ; 184(7): 1804-1820.e16, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33691139

RESUMEN

SARS-CoV-2 has caused the global COVID-19 pandemic. Although passively delivered neutralizing antibodies against SARS-CoV-2 show promise in clinical trials, their mechanism of action in vivo is incompletely understood. Here, we define correlates of protection of neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals. Whereas Fc effector functions are dispensable when representative neutralizing mAbs are administered as prophylaxis, they are required for optimal protection as therapy. When given after infection, intact mAbs reduce SARS-CoV-2 burden and lung disease in mice and hamsters better than loss-of-function Fc variant mAbs. Fc engagement of neutralizing antibodies mitigates inflammation and improves respiratory mechanics, and transcriptional profiling suggests these phenotypes are associated with diminished innate immune signaling and preserved tissue repair. Immune cell depletions establish that neutralizing mAbs require monocytes and CD8+ T cells for optimal clinical and virological benefit. Thus, potently neutralizing mAbs utilize Fc effector functions during therapy to mitigate lung infection and disease.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19 , Fragmentos Fc de Inmunoglobulinas/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Células CHO , COVID-19/inmunología , COVID-19/terapia , Chlorocebus aethiops , Cricetulus , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , SARS-CoV-2/inmunología , Células Vero , Carga Viral
17.
Cell ; 182(3): 734-743.e5, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32643603

RESUMEN

COVID-19, caused by SARS-CoV-2, is a virulent pneumonia, with >4,000,000 confirmed cases worldwide and >290,000 deaths as of May 15, 2020. It is critical that vaccines and therapeutics be developed very rapidly. Mice, the ideal animal for assessing such interventions, are resistant to SARS-CoV-2. Here, we overcome this difficulty by exogenous delivery of human ACE2 with a replication-deficient adenovirus (Ad5-hACE2). Ad5-hACE2-sensitized mice developed pneumonia characterized by weight loss, severe pulmonary pathology, and high-titer virus replication in lungs. Type I interferon, T cells, and, most importantly, signal transducer and activator of transcription 1 (STAT1) are critical for virus clearance and disease resolution in these mice. Ad5-hACE2-transduced mice enabled rapid assessments of a vaccine candidate, of human convalescent plasma, and of two antiviral therapies (poly I:C and remdesivir). In summary, we describe a murine model of broad and immediate utility to investigate COVID-19 pathogenesis and to evaluate new therapies and vaccines.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Pandemias/prevención & control , Neumonía Viral/patología , Neumonía Viral/prevención & control , Vacunación , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , SARS-CoV-2 , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Organismos Libres de Patógenos Específicos , Transducción Genética , Células Vero , Carga Viral , Replicación Viral
18.
Cell ; 181(7): 1533-1546.e13, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32631492

RESUMEN

The gut microbiome is the resident microbial community of the gastrointestinal tract. This community is highly diverse, but how microbial diversity confers resistance or susceptibility to intestinal pathogens is poorly understood. Using transplantation of human microbiomes into several animal models of infection, we show that key microbiome species shape the chemical environment of the gut through the activity of the enzyme bile salt hydrolase. The activity of this enzyme reduced colonization by the major human diarrheal pathogen Vibrio cholerae by degrading the bile salt taurocholate that activates the expression of virulence genes. The absence of these functions and species permits increased infection loads on a personal microbiome-specific basis. These findings suggest new targets for individualized preventative strategies of V. cholerae infection through modulating the structure and function of the gut microbiome.


Asunto(s)
Cólera/metabolismo , Susceptibilidad a Enfermedades/microbiología , Microbioma Gastrointestinal/fisiología , Adulto , Animales , Ácidos y Sales Biliares , Cólera/microbiología , Modelos Animales de Enfermedad , Trasplante de Microbiota Fecal/métodos , Femenino , Interacciones Huésped-Patógeno/fisiología , Humanos , Hidrolasas/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota , Ácido Taurocólico/metabolismo , Vibrio cholerae/patogenicidad , Vibrio cholerae/fisiología , Virulencia
19.
Cell ; 182(4): 901-918.e18, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32668198

RESUMEN

Chikungunya virus (CHIKV), an emerging alphavirus, has infected millions of people. However, the factors modulating disease outcome remain poorly understood. Here, we show in germ-free mice or in oral antibiotic-treated conventionally housed mice with depleted intestinal microbiomes that greater CHIKV infection and spread occurs within 1 day of virus inoculation. Alteration of the microbiome alters TLR7-MyD88 signaling in plasmacytoid dendritic cells (pDCs) and blunts systemic production of type I interferon (IFN). Consequently, circulating monocytes express fewer IFN-stimulated genes and become permissive for CHIKV infection. Reconstitution with a single bacterial species, Clostridium scindens, or its derived metabolite, the secondary bile acid deoxycholic acid, can restore pDC- and MyD88-dependent type I IFN responses to restrict systemic CHIKV infection and transmission back to vector mosquitoes. Thus, symbiotic intestinal bacteria modulate antiviral immunity and levels of circulating alphaviruses within hours of infection through a bile acid-pDC-IFN signaling axis, which affects viremia, dissemination, and potentially transmission.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Fiebre Chikungunya/patología , Microbioma Gastrointestinal , Interferón Tipo I/metabolismo , Animales , Antibacterianos/farmacología , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/veterinaria , Virus Chikungunya/genética , Virus Chikungunya/aislamiento & purificación , Clostridiales/fisiología , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/citología , Monocitos/inmunología , Monocitos/metabolismo , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , ARN Viral/sangre , Factor de Transcripción STAT1/deficiencia , Transducción de Señal , Receptor Toll-Like 7/metabolismo
20.
Cell ; 183(1): 169-184.e13, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931734

RESUMEN

The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.


Asunto(s)
Infecciones por Coronavirus/inmunología , Inmunogenicidad Vacunal , Neumonía Viral/inmunología , Vacunas Virales/inmunología , Adenoviridae/genética , Administración Intranasal , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19 , Vacunas contra la COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Femenino , Células HEK293 , Humanos , Inyecciones Intramusculares , Ratones , Ratones Endogámicos BALB C , Pandemias , Neumonía Viral/patología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Vacunas Virales/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA