Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Integr Neurosci ; 23(1): 18, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38287841

RESUMEN

BACKGROUND: Affective computing has gained increasing attention in the area of the human-computer interface where electroencephalography (EEG)-based emotion recognition occupies an important position. Nevertheless, the diversity of emotions and the complexity of EEG signals result in unexplored relationships between emotion and multichannel EEG signal frequency, as well as spatial and temporal information. METHODS: Audio-video stimulus materials were used that elicited four types of emotions (sad, fearful, happy, neutral) in 32 male and female subjects (age 21-42 years) while collecting EEG signals. We developed a multidimensional analysis framework using a fusion of phase-locking value (PLV), microstates, and power spectral densities (PSDs) of EEG features to improve emotion recognition. RESULTS: An increasing trend of PSDs was observed as emotional valence increased, and connections in the prefrontal, temporal, and occipital lobes in high-frequency bands showed more differentiation between emotions. Transition probability between microstates was likely related to emotional valence. The average cross-subject classification accuracy of features fused by Discriminant Correlation Analysis achieved 64.69%, higher than that of single mode and direct-concatenated features, with an increase of more than 7%. CONCLUSIONS: Different types of EEG features have complementary properties in emotion recognition, and combining EEG data from three types of features in a correlated way, improves the performance of emotion classification.


Asunto(s)
Emociones , Miedo , Masculino , Humanos , Femenino , Adulto Joven , Adulto , Reconocimiento en Psicología , Electroencefalografía/métodos , Análisis Discriminante
2.
Epilepsy Res ; 201: 107333, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422800

RESUMEN

BACKGROUND: This study aimed to construct prediction models for the recognizing of anxiety disorders (AD) in patients with epilepsy (PWEs) by combining clinical features with quantitative electroencephalogram (qEEG) features and using machine learning (ML). METHODS: Nineteen clinical features and 20-min resting-state EEG were collected from 71 PWEs comorbid with AD and another 60 PWEs without AD who met the inclusion-exclusion criteria of this study. The EEG were preprocessed and 684 Phase Locking Value (PLV) and 76 Lempel-Ziv Complexity (LZC) features on four bands were extracted. The Fisher score method was used to rank all the derived features. We constructed four models for recognizing AD in PWEs, whether PWEs based on different combinations of features using eXtreme gradient boosting (XGboost) and evaluated these models using the five-fold cross-validation method. RESULTS: The prediction model constructed by combining the clinical, PLV, and LZC features showed the best performance, with an accuracy of 96.18%, precision of 94.29%, sensitivity of 98.33%, F1-score of 96.06%, and Area Under the Curve (AUC) of 0.96. The Fisher score ranking results displayed that the top ten features were depression, educational attainment, α_P3LZC, α_T6-PzPLV, α_F7LZC, ß_Fp2-O1PLV, θ_T4-CzPLV, θ_F7-PzPLV, α_Fp2LZC, and θ_T4-PzPLV. CONCLUSIONS: The model, constructed by combining the clinical and qEEG features PLV and LZC, efficiently identified the presence of AD comorbidity in PWEs and might have the potential to complement the clinical diagnosis. Our findings suggest that LZC features in the α band and PLV features in Fp2-O1 may be potential biomarkers for diagnosing AD in PWEs.


Asunto(s)
Ansiedad , Epilepsia , Humanos , Ansiedad/diagnóstico , Ansiedad/epidemiología , Trastornos de Ansiedad/diagnóstico , Trastornos de Ansiedad/epidemiología , Comorbilidad , Epilepsia/diagnóstico , Epilepsia/epidemiología , Electroencefalografía , Aprendizaje Automático
3.
Neural Netw ; 172: 106148, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309138

RESUMEN

Decoding emotional neural representations from the electroencephalographic (EEG)-based functional connectivity network (FCN) is of great scientific importance for uncovering emotional cognition mechanisms and developing harmonious human-computer interactions. However, existing methods mainly rely on phase-based FCN measures (e.g., phase locking value [PLV]) to capture dynamic interactions between brain oscillations in emotional states, which fail to reflect the energy fluctuation of cortical oscillations over time. In this study, we initially examined the efficacy of amplitude-based functional networks (e.g., amplitude envelope correlation [AEC]) in representing emotional states. Subsequently, we proposed an efficient phase-amplitude fusion framework (PAF) to fuse PLV and AEC and used common spatial pattern (CSP) to extract fused spatial topological features from PAF for multi-class emotion recognition. We conducted extensive experiments on the DEAP and MAHNOB-HCI datasets. The results showed that: (1) AEC-derived discriminative spatial network topological features possess the ability to characterize emotional states, and the differential network patterns of AEC reflect dynamic interactions in brain regions associated with emotional cognition. (2) The proposed fusion features outperformed other state-of-the-art methods in terms of classification accuracy for both datasets. Moreover, the spatial filter learned from PAF is separable and interpretable, enabling a description of affective activation patterns from both phase and amplitude perspectives.


Asunto(s)
Encéfalo , Emociones , Humanos , Emociones/fisiología , Encéfalo/fisiología , Electroencefalografía/métodos , Cognición , Reconocimiento en Psicología
4.
Clin Psychopharmacol Neurosci ; 22(2): 314-321, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38627078

RESUMEN

Objective: The current study aimed to identify distinctive functional brain connectivity characteristics that differentiate patients with restless legs syndrome (RLS) from those with primary insomnia. Methods: Quantitative electroencephalography (QEEG) was employed to analyze connectivity matrices using the phaselocking value technique. A total of 107 patients with RLS (RLS group) and 17 patients with insomnia without RLS (primary insomnia group) were included in the study. Demographic variables were compared using t tests and chi-square tests, while differences in connectivity were examined through multiple analyses of covariance. Correlation analysis was conducted to explore the relationship between connectivity and the severity of RLS. Results: The results indicated significant differences in the primary somatosensory cortex (F = 4.377, r = 0.039), primary visual cortex (F = 4.215, r = 0.042), and anterior prefrontal cortex (F = 5.439, r = 0.021) between the RLS and primary insomnia groups. Furthermore, the connectivity of the sensory cortex, including the primary somatosensory cortex (r = -0.247, p = 0.014), sensory association cortex (r = -0.238, p = 0.028), retrosplenial region (r = -0.302, p = 0.002), angular gyrus (r = -0.258, p = 0.008), supramarginal gyrus (r = -0.230, p = 0.020), primary visual cortex (r = -0.275, p = 0.005) and secondary visual cortex (r = -0.226, p = 0.025) exhibited an inverse association with RLS symptom severity. Conclusion: The prefrontal cortex, primary somatosensory cortex, and visual cortex showed potential as diagnostic biomarkers for distinguishing RLS from primary insomnia. These findings indicate that QEEG-based functional connectivity analysis shows promise as a valuable diagnostic tool for RLS and provides insights into its underlying mechanisms. Further research is needed to explore this aspect further.

5.
J Neural Eng ; 21(3)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38788706

RESUMEN

Objective.Identifying major depressive disorder (MDD) using objective physiological signals has become a pressing challenge.Approach.Hence, this paper proposes a graph convolutional transformer network (GCTNet) for accurate and reliable MDD detection using electroencephalogram (EEG) signals. The developed framework integrates a residual graph convolutional network block to capture spatial information and a Transformer block to extract global temporal dynamics. Additionally, we introduce the contrastive cross-entropy (CCE) loss that combines contrastive learning to enhance the stability and discriminability of the extracted features, thereby improving classification performance.Main results. The effectiveness of the GCTNet model and CCE loss was assessed using EEG data from 41 MDD patients and 44 normal controls, in addition to a publicly available dataset. Utilizing a subject-independent data partitioning method and 10-fold cross-validation, the proposed method demonstrated significant performance, achieving an average Area Under the Curve of 0.7693 and 0.9755 across both datasets, respectively. Comparative analyses demonstrated the superiority of the GCTNet framework with CCE loss over state-of-the-art algorithms in MDD detection tasks.Significance. The proposed method offers an objective and effective approach to MDD detection, providing valuable support for clinical-assisted diagnosis.


Asunto(s)
Trastorno Depresivo Mayor , Electroencefalografía , Redes Neurales de la Computación , Humanos , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/fisiopatología , Electroencefalografía/métodos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Algoritmos , Procesamiento de Señales Asistido por Computador , Adulto Joven
6.
Psychon Bull Rev ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227125

RESUMEN

The spontaneous speech-to-speech synchronization (SSS) test has been shown to be an effective behavioral method to estimate cortical speech auditory-motor coupling strength through phase-locking value (PLV) between auditory input and motor output. This study further investigated how amplitude envelope onset variations of the auditory speech signal may influence the speech auditory-motor synchronization. Sixty Mandarin-speaking adults listened to a stream of randomly presented syllables at an increasing speed while concurrently whispering in synchrony with the rhythm of the auditory stimuli whose onset consistency was manipulated, consisting of aspirated, unaspirated, and mixed conditions. The participants' PLVs for the three conditions in the SSS test were derived and compared. Results showed that syllable rise time affected the speech auditory-motor synchronization in a bifurcated fashion. Specifically, PLVs were significantly higher in the temporally more consistent conditions (aspirated or unaspirated) than those in the less consistent condition (mixed) for high synchronizers. In contrast, low synchronizers tended to be immune to the onset consistency. Overall, these results validated how syllable onset consistency in the rise time of amplitude envelope may modulate the strength of speech auditory-motor coupling. This study supports the application of the SSS test to examine individual differences in the integration of perception and production systems, which has implications for those with speech and language disorders that have difficulty with processing speech onset characteristics such as rise time.

7.
Physiol Behav ; 284: 114630, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971571

RESUMEN

Working memory (WM) is a cognitive system with limited capacity that can temporarily store and process information. The purpose of this study was to investigate functional connectivity based on phase synchronization during WM and its relationship with the behavioral response. In this regard, we recorded EEG/Eye tracking data of seventeen healthy subjects while performing a memory-guided saccade (MGS) task with two different positions (near eccentricity and far eccentricity). We computed saccade error as memory performance and measured functional connectivity using Phase Locking Value (PLV) in the alpha frequency band (8-12 Hz). The results showed that PLV is negatively correlated with saccade error. Our finding indicated that during the maintenance period, PLV between the frontal and visual area in trials with low saccade error increased significantly compared to trials with high saccade error. Furthermore, we observed a significant difference between PLV for near and far conditions in the delay period. The results suggest that PLV in memory maintenance, in addition to predicting saccade error as behavioral performance, can be related to the coding of spatial information in WM.


Asunto(s)
Ritmo alfa , Memoria a Corto Plazo , Movimientos Sacádicos , Humanos , Memoria a Corto Plazo/fisiología , Masculino , Femenino , Movimientos Sacádicos/fisiología , Ritmo alfa/fisiología , Adulto Joven , Adulto , Electroencefalografía , Tecnología de Seguimiento Ocular
8.
Front Neurosci ; 18: 1412591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055996

RESUMEN

Background: Major depressive disorder (MDD) is the leading cause of disability among all mental illnesses with increasing prevalence. The diagnosis of MDD is susceptible to interference by several factors, which has led to a trend of exploring objective biomarkers. Electroencephalography (EEG) is a non-invasive procedure that is being gradually applied to detect and diagnose MDD through some features such as functional connectivity (FC). Methods: In this research, we analyzed the resting-state EEG of patients with MDD and healthy controls (HCs) in both eyes-open (EO) and eyes-closed (EC) conditions. The phase locking value (PLV) method was utilized to explore the connection and synchronization of neuronal activities spatiotemporally between different brain regions. We compared the PLV between participants with MDD and HCs in five frequency bands (theta, 4-8 Hz; alpha, 8-12 Hz; beta1, 12-16 Hz; beta2, 16-24 Hz; and beta3, 24-40 Hz) and further analyzed the correlation between the PLV of connections with significant differences and the severity of depression (via the scores of 17-item Hamilton Depression Rating Scale, HDRS-17). Results: During the EO period, lower PLVs were found in the right temporal-left midline occipital cortex (RT-LMOC; theta, alpha, beta1, and beta2) and posterior parietal-right temporal cortex (PP-RT; beta1 and beta2) in the MDD group compared with the HC group, while PLVs were higher in the MDD group in LT-LMOC (beta2). During the EC period, for the MDD group, lower theta and beta (beta1, beta2, and beta3) PLVs were found in PP-RT, as well as lower theta, alpha, and beta (beta1, beta2, and beta3) PLVs in RT-LMOC. Additionally, in the left midline frontal cortex-right temporal cortex (LMFC-RT) and posterior parietal cortex-right temporal cortex (PP-RMOC), higher PLVs were observed in beta2. There were no significant correlations between PLVs and HDRS-17 scores when connections with significantly different PLVs (all p > 0.05) were checked. Conclusion: Our study confirmed the presence of differences in FC between patients with MDD and healthy individuals. Lower PLVs in the connection of the right temporal-left occipital cortex were mostly observed, whereas an increase in PLVs was observed in patients with MDD in the connections of the left temporal with occipital lobe (EO), the circuits of the frontal-temporal lobe, and the parietal-occipital lobe. The trends in FC involved in this study were not correlated with the level of depression. Limitations: The study was limited due to the lack of further analysis of confounding factors and follow-up data. Future studies with large-sampled and long-term designs are needed to further explore the distinguishable features of EEG FC in individuals with MDD.

9.
Proc Inst Mech Eng H ; 238(3): 358-371, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38366360

RESUMEN

Impairment in cognitive skill though set-in due to various diseases, its progress is based on neuronal degeneration. In general, cognitive impairment (CI) is divided into three stages: mild, moderate and severe. Quantification of CI is important for deciding/changing therapy. Attempted in this work is to quantify electroencephalograph (EEG) signal and group it into four classes (controls and three stages of CI). After acquiring resting state EEG signal from the participants, non-local and local synchrony measures are derived from phase amplitude coupling and phase locking value. This totals to 160 features per individual for each task. Two types of classification networks are constructed. The first one is an artificial neural network (ANN) that takes derived features and gives a maximum accuracy of 85.11%. The second network is convolutional neural network (CNN) for which topographical images constructed from EEG features becomes the input dataset. The network is trained with 60% of data and then tested with remaining 40% of data. This process is performed in 5-fold technique, which yields an average accuracy of 94.75% with only 30 numbers of inputs for every individual. The result of the study shows that CNN outperforms ANN with a relatively lesser number of inputs. From this it can be concluded that this method proposes a simple task for acquiring EEG (which can be done by CI subjects) and quantifies CI stages with no overlapping between control and test group, thus making it possible for identifying early symptoms of CI.


Asunto(s)
Disfunción Cognitiva , Electroencefalografía , Humanos , Electroencefalografía/métodos , Redes Neurales de la Computación , Disfunción Cognitiva/diagnóstico
10.
J Affect Disord ; 361: 356-366, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885847

RESUMEN

Pattern recognition based on network connections has recently been applied to the brain-computer interface (BCI) research, offering new ideas for emotion recognition using Electroencephalogram (EEG) signal. However unified standards are currently lacking for selecting emotional signals in emotion recognition research, and potential associations between activation differences in brain regions and network connectivity pattern are often being overlooked. To bridge this technical gap, a data-driven signal auto-segmentation and feature fusion algorithm (DASF) is proposed in this paper. First, the Phase Locking Value (PLV) method was used to construct the brain functional adjacency matrix of each subject, and the dynamic brain functional network across subjects was then constructed. Next, tucker decomposition was performed and the Grassmann distance of the connectivity submatrix was calculated. Subsequently, different brain network states were distinguished and signal segments under emotional states were automatically extract using data-driven methods. Then, tensor sparse representation was adopted on the intercepted EEG signals to effectively extract functional connections under different emotional states. Finally, power-distribution related features (differential entropy and energy feature) and brain functional connection features were effectively combined for classification using the support vector machines (SVM) classifier. The proposed method was validated on ERN and DEAP datasets. The single-feature emotion classification accuracy of 86.57 % and 87.74 % were achieved on valence and arousal dimensions, respectively. The accuracy of the proposed feature fusion method was achieved at 89.14 % and 89.65 %, accordingly, demonstrating an improvement in emotion recognition accuracy. The results demonstrated the superior classification performance of the proposed data-driven signal auto-segmentation and feature fusion algorithm in emotion recognition compared to state-of-the-art classification methods.


Asunto(s)
Electroencefalografía , Emociones , Máquina de Vectores de Soporte , Humanos , Emociones/fisiología , Encéfalo/fisiología , Adulto , Interfaces Cerebro-Computador , Algoritmos , Femenino , Masculino , Adulto Joven , Procesamiento de Señales Asistido por Computador
11.
Clin Neurophysiol ; 166: 74-86, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39128209

RESUMEN

OBJECTIVE: This study aimed to identify electroencephalogram correlates of dream enactment behaviors (DEBs) and elucidate their cortical dynamics in patients with isolated/idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD). METHODS: This cross-sectional study included 15 patients with iRBD. Two REM sleep periods in routine polysomnography were compared: the 60 s preceding the DEBs ("pre-representative behavior" [preR]), and the 60 s with the least submental electromyogram activity ("background" [BG]). Six EEG frequency bands and electrooculogram were analyzed; power spectra, coherence and phase-locking values in four 15-s periods were examined to assess trends. These indices were also compared between preR and BG. RESULTS: Compared with BG, significantly higher delta power in the F3 channel and gamma power in the F4 and O2 channels were observed during preR. For functional connectivity, the widespread beta-band connectivity was significantly increased during preR than BG. CONCLUSION: Before notable REM sleep behaviors, uneven distributed higher EEG spectral power in both very low and high frequencies, and increased wide-range beta band functional connectivity, were observed over 60 s, suggesting cortical correlates to subsequent DEBs. SIGNIFICANCE: This study may shed light on the pathological mechanisms underlies RBD through the routine vPSG analysis, leading to detection of DEBs.

12.
Front Neurogenom ; 2: 749009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38235241

RESUMEN

EEG hyperscanning during multiuser gaming offers opportunities to study brain characteristics of social interaction under various paradigms. In this study, we aimed to characterize neural signatures and phase-based functional connectivity patterns of gaming strategies during collaborative and competitive alpha neurofeedback games. Twenty pairs of participants with no close relationship took part in three sessions of collaborative or competitive multiuser neurofeedback (NF), with identical graphical user interface, using Relative Alpha (RA) power as a control signal. Collaborating dyads had to keep their RA within 5% of each other for the team to be awarded a point, while members of competitive dyads scored points if their RA was 10% above their opponent's. Interbrain synchrony existed only during gaming but not during baseline in either collaborative or competitive gaming. Spectral analysis and interbrain connectivity showed that in collaborative gaming, players with higher resting state alpha content were more active in regulating their RA to match those of their partner. Moreover, interconnectivity was the strongest between homologous brain structures of the dyad in theta and alpha bands, indicating a similar degree of planning and social exchange. Competitive gaming emphasized the difference between participants who were able to relax and, in this way, maintain RA, and those who had an unsuccessful approach. Analysis of interbrain connections shows engagement of frontal areas in losers, but not in winners, indicating the formers' attempt to mentalise and apply strategies that might be suitable for conventional gaming, but inappropriate for the alpha neurofeedback-based game. We show that in gaming based on multiplayer non-verbalized NF, the winning strategy is dependent on the rules of the game and on the behavior of the opponent. Mental strategies that characterize successful gaming in the physical world might not be adequate for NF-based gaming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA