Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.619
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 57(8): 1828-1847.e11, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002541

RESUMEN

Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.


Asunto(s)
Anafilaxia , Fibroblastos , Lisofosfolípidos , Mastocitos , Ratones Noqueados , Comunicación Paracrina , Hidrolasas Diéster Fosfóricas , Receptores del Ácido Lisofosfatídico , Transducción de Señal , Animales , Mastocitos/inmunología , Mastocitos/metabolismo , Anafilaxia/inmunología , Anafilaxia/metabolismo , Ratones , Fibroblastos/metabolismo , Lisofosfolípidos/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Prostaglandina D2/metabolismo , Vesículas Extracelulares/metabolismo , Interleucina-33/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/genética , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Diferenciación Celular , Ratones Endogámicos C57BL , Proteína 1 Similar al Receptor de Interleucina-1 , Lipocalinas
2.
Mol Cell ; 82(11): 1992-2005.e9, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35417664

RESUMEN

Phospholipase A2, group VII (PLA2G7) is widely recognized as a secreted, lipoprotein-associated PLA2 in plasma that converts phospholipid platelet-activating factor (PAF) to a biologically inactive product Lyso-PAF during inflammatory response. We report that intracellular PLA2G7 is selectively important for cell proliferation and tumor growth potential of melanoma cells expressing mutant NRAS, but not cells expressing BRAF V600E. Mechanistically, PLA2G7 signals through its product Lyso-PAF to contribute to RAF1 activation by mutant NRAS, which is bypassed by BRAF V600E. Intracellular Lyso-PAF promotes p21-activated kinase 2 (PAK2) activation by binding to its catalytic domain and altering ATP kinetics, while PAK2 significantly contributes to S338-phosphorylation of RAF1 in addition to PAK1. Furthermore, the PLA2G7-PAK2 axis is also required for full activation of RAF1 in cells stimulated by epidermal growth factor (EGF) or cancer cells expressing mutant KRAS. Thus, PLA2G7 and Lyso-PAF exhibit intracellular signaling functions as key elements of RAS-RAF1 signaling.


Asunto(s)
Fosfolípidos , Proteínas Proto-Oncogénicas B-raf , Fosfolipasas A2 , Factor de Activación Plaquetaria/análogos & derivados , Factor de Activación Plaquetaria/metabolismo
3.
Immunol Rev ; 317(1): 42-70, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37035998

RESUMEN

Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.


Asunto(s)
Fosfolipasas A2 Secretoras , Animales , Humanos , Ratones , Fosfolipasas A2 Secretoras/metabolismo , Ácidos Grasos , Ratones Transgénicos , Membrana Celular/metabolismo , Mamíferos/metabolismo
4.
J Biol Chem ; : 107758, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260696

RESUMEN

S. Typhi, the cause of typhoid fever, is a bacterial pathogen of substantial global importance. Typhoid toxin is a secreted AB-type toxin that is a key S. Typhi virulence factor encoded within a 5-gene genetic islet. Four genes in this islet have well-defined roles in typhoid toxin biology, however the function of the fifth gene is unknown. Here, we investigate the function of this gene, which we name ttaP. We show that ttaP is co-transcribed with the typhoid toxin subunit cdtB, and we perform genomic analyses that indicate that TtaP is very highly conserved in typhoid toxin islets found in diverse salmonellae. We show that TtaP is a distant homolog of group XIV secreted phospholipase A2 (PLA2) enzymes, and experimentally demonstrate that TtaP is a bona fide PLA2. Sequence and structural analyses indicate that TtaP differs substantially from characterized PLA2s, and thus represents a novel class of PLA2. Secretion assays revealed that TtaP is neither co-secreted with typhoid toxin, nor is it required for toxin secretion. Although TtaP is a phospholipase that remains associated with the S. Typhi cell, assays that probed for altered cell envelope integrity failed to identify any differences between wild-type S. Typhi and a ttaP deletion strain. Collectively, this study identifies a biochemical activity for the lone uncharacterized typhoid toxin islet gene and lays the groundwork for exploring how this gene factors into S. Typhi pathogenesis. This study further identifies a novel class of PLA2, enzymes that have a wide range of industrial applications.

5.
FASEB J ; 38(10): e23658, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38742809

RESUMEN

Phospholipase A2 is the most abundant venom gland enzyme, whose activity leads to the activation of the inflammatory response by accumulating lipid mediators. This study aimed to identify, classify, and investigate the properties of venom PLA2 isoforms. Then, the present findings were confirmed by chemically measuring the activity of PLA2. The sequences representing PLA2 annotation were extracted from the Androctonus crassicauda transcriptome dataset using BLAS searches against the local PLA2 database. We found several cDNA sequences of PLA2 classified and named by conducting multiple searches as platelet-activating factor acetylhydrolases, calcium-dependent PLA2s, calcium-independent PLA2s, and secreted PLA2s. The largest and smallest isoforms of these proteins range between approximately 70.34 kDa (iPLA2) and 17.75 kDa (cPLA2). Among sPLA2 isoforms, sPLA2GXIIA and sPLA2G3 with ORF encoding 169 and 299 amino acids are the smallest and largest secreted PLA2, respectively. These results collectively suggested that A. crassicauda venom has PLA2 activity, and the members of this protein family may have important biological roles in lipid metabolism. This study also revealed the interaction between members of PLA2s in the PPI network. The results of this study would greatly help with the classification, evolutionary relationships, and interactions between PLA2 family proteins in the gene network.


Asunto(s)
Fosfolipasas A2 , Transcriptoma , Animales , Fosfolipasas A2/genética , Fosfolipasas A2/metabolismo , Escorpiones/genética , Secuencia de Aminoácidos , Filogenia , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
6.
FASEB J ; 38(2): e23428, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38236184

RESUMEN

Asthma is a chronic inflammatory disease of the airways characterized by recurrent episodes of airway obstruction, hyperresponsiveness, remodeling, and eosinophilia. Phospholipase A2 s (PLA2 s), which release fatty acids and lysophospholipids from membrane phospholipids, have been implicated in exacerbating asthma by generating pro-asthmatic lipid mediators, but an understanding of the association between individual PLA2 subtypes and asthma is still incomplete. Here, we show that group III-secreted PLA2 (sPLA2 -III) plays an ameliorating, rather than aggravating, role in asthma pathology. In both mouse and human lungs, sPLA2 -III was expressed in bronchial epithelial cells and decreased during the asthmatic response. In an ovalbumin (OVA)-induced asthma model, Pla2g3-/- mice exhibited enhanced airway hyperresponsiveness, eosinophilia, OVA-specific IgE production, and type 2 cytokine expression as compared to Pla2g3+/+ mice. Lipidomics analysis showed that the pulmonary levels of several lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidic acid (LPA), were decreased in OVA-challenged Pla2g3-/- mice relative to Pla2g3+/+ mice. LPA receptor 2 (LPA2 ) agonists suppressed thymic stromal lymphopoietin (TSLP) expression in bronchial epithelial cells and reversed airway hyperresponsiveness and eosinophilia in Pla2g3-/- mice, suggesting that sPLA2 -III negatively regulates allergen-induced asthma at least by producing LPA. Thus, the activation of the sPLA2 -III-LPA pathway may be a new therapeutic target for allergic asthma.


Asunto(s)
Asma , Eosinofilia , Fosfolipasas A2 Secretoras , Hipersensibilidad Respiratoria , Humanos , Animales , Ratones , Lisofosfolípidos , Fosfolipasas A2 Secretoras/genética , Citocinas
7.
FASEB J ; 38(10): e23678, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38780199

RESUMEN

Melatonin (MLT), a conserved small indole compound, exhibits anti-inflammatory and antioxidant properties, contributing to its cardioprotective effects. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is associated with atherosclerosis disease risk, and is known as an atherosclerosis risk biomarker. This study aimed to investigate the impact of MLT on Lp-PLA2 expression in the atherosclerotic process and explore the underlying mechanisms involved. In vivo, ApoE-/- mice were fed a high-fat diet, with or without MLT administration, after which the plaque area and collagen content were assessed. Macrophages were pretreated with MLT combined with ox-LDL, and the levels of ferroptosis-related proteins, NRF2 activation, mitochondrial function, and oxidative stress were measured. MLT administration significantly attenuated atherosclerotic plaque progression, as evidenced by decreased plaque area and increased collagen. Compared with those in the high-fat diet (HD) group, the levels of glutathione peroxidase 4 (GPX4) and SLC7A11 (xCT, a cystine/glutamate transporter) in atherosclerotic root macrophages were significantly increased in the MLT group. In vitro, MLT activated the nuclear factor-E2-related Factor 2 (NRF2)/SLC7A11/GPX4 signaling pathway, enhancing antioxidant capacity while reducing lipid peroxidation and suppressing Lp-PLA2 expression in macrophages. Moreover, MLT reversed ox-LDL-induced ferroptosis, through the use of ferrostatin-1 (a ferroptosis inhibitor) and/or erastin (a ferroptosis activator). Furthermore, the protective effects of MLT on Lp-PLA2 expression, antioxidant capacity, lipid peroxidation, and ferroptosis were decreased in ML385 (a specific NRF2 inhibitor)-treated macrophages and in AAV-sh-NRF2 treated ApoE-/- mice. MLT suppresses Lp-PLA2 expression and atherosclerosis processes by inhibiting macrophage ferroptosis and partially activating the NRF2 pathway.


Asunto(s)
Aterosclerosis , Ferroptosis , Melatonina , Factor 2 Relacionado con NF-E2 , Animales , Ratones , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Antioxidantes/farmacología , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/patología , Dieta Alta en Grasa/efectos adversos , Ferroptosis/efectos de los fármacos , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Melatonina/farmacología , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Bioessays ; 45(3): e2200210, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36585363

RESUMEN

Fatty acids (FAs) are well known to serve as substrates for reactions that provide cells with membranes and energy. In contrast to these metabolic reactions, the physiological importance of FAs themselves known as free FAs (FFAs) in cells remains obscure. Since accumulation of FFAs in cells is toxic, cells must develop mechanisms to detoxify FFAs. One such mechanism is to sequester free polyunsaturated FAs (PUFAs) into a droplet-like structure assembled by Fas-Associated Factor 1 (FAF1), a cytosolic protein. This sequestration limits access of PUFAs to Fe2+ , thereby preventing Fe2+ -catalyzed PUFA peroxidation. Consequently, assembly of the FAF1-FFA complex is critical to protect cells from ferroptosis, a cell death pathway triggered by PUFA peroxidation. The observations that free PUFAs in cytosol are not randomly diffused but rather sequestered into a membraneless complex should open new directions to explore signaling pathways by which FFAs regulate cellular physiology.


Asunto(s)
Ácidos Grasos no Esterificados , Ácidos Grasos Insaturados , Ácidos Grasos Insaturados/metabolismo , Transducción de Señal , Muerte Celular , Ácidos Grasos
9.
Proc Natl Acad Sci U S A ; 119(48): e2209149119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36413498

RESUMEN

Intravacuolar pathogens need to gradually expand their surrounding vacuole to accommodate the growing number of bacterial offspring during intracellular replication. Here we found that Legionella pneumophila controls vacuole expansion by fine-tuning the generation of lysophospholipids within the vacuolar membrane. Upon allosteric activation by binding to host ubiquitin, the type IVB (Dot/Icm) effector VpdC converts phospholipids into lysophospholipids which, at moderate concentrations, are known to promote membrane fusion but block it at elevated levels by generating excessive positive membrane curvature. Consequently, L. pneumophila overproducing VpdC were prevented from adequately expanding their surrounding membrane, trapping the replicating bacteria within spatially confined vacuoles and reducing their capability to proliferate intracellularly. Quantitative lipidomics confirmed a VpdC-dependent increase in several types of lysophospholipids during infection, and VpdC production in transiently transfected cells caused tubulation of organelle membranes as well as mitochondria fragmentation, processes that can be phenocopied by supplying cells with exogenous lysophospholipids. Together, these results demonstrate an important role for bacterial phospholipases in vacuolar expansion.


Asunto(s)
Legionella , Enfermedad de los Legionarios , Humanos , Legionella/metabolismo , Vacuolas/metabolismo , Enfermedad de los Legionarios/microbiología , Fosfolipasas/metabolismo , Ubiquitina/metabolismo , Proteínas Bacterianas/metabolismo , Lisofosfolípidos/metabolismo
10.
Genomics ; 116(2): 110796, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38237745

RESUMEN

Phospholipase A2 receptor 1 (PLA2R1) plays a crucial role in various diseases, including membranous nephropathy. However, the precise implications of PLA2R1 deficiency remain poorly understood. In this study, we created PLA2R1 knockout rats to explore potential consequences resulting from the loss of the PLA2R1 gene. Unexpectedly, our PLA2R1 knockout rats exhibited symptoms resembling those of chronic kidney disease after an 8-week observation period. Notably, several rats developed persistent proteinuria, a hallmark of renal dysfunction. Immunohistochemical and immunofluorescence analyses revealed insignificant glomerular fibrosis, reduced podocyte count, and augmented glomerular expression of complement C3 (C3) compared to immunoglobin A (IgA) and immunoglobin G(IgG) in the rat model. These findings suggest that the loss of PLA2R1 may contribute to the pathogenesis of membranous nephropathy and related conditions. Our knockout rat model provides a valuable tool for investigating the underlying pathology of PLA2R1-associated diseases, and may facilitate the development of targeted therapies for membranous nephropathy and other related disorders.


Asunto(s)
Glomerulonefritis Membranosa , Receptores de Fosfolipasa A2 , Animales , Ratas , Autoanticuerpos , Glomerulonefritis Membranosa/genética , Glomerulonefritis Membranosa/diagnóstico , Glomerulonefritis Membranosa/metabolismo , Receptores de Fosfolipasa A2/genética , Receptores de Fosfolipasa A2/metabolismo
11.
J Lipid Res ; 65(7): 100574, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857781

RESUMEN

Bis(monoacylglycerol)phosphate (BMP) is an acidic glycerophospholipid localized to late endosomes and lysosomes. However, the metabolism of BMP is poorly understood. Because many drugs that cause phospholipidosis inhibit lysosomal phospholipase A2 (LPLA2, PLA2G15, LYPLA3) activity, we investigated whether this enzyme has a role in BMPcatabolism. The incubation of recombinant human LPLA2 (hLPLA2) and liposomes containing the naturally occurring BMP (sn-(2-oleoyl-3-hydroxy)-glycerol-1-phospho-sn-1'-(2'-oleoyl-3'-hydroxy)-glycerol (S,S-(2,2',C18:1)-BMP) resulted in the deacylation of this BMP isomer. The deacylation rate was 70 times lower than that of dioleoyl phosphatidylglycerol (DOPG), an isomer and precursor of BMP. The release rates of oleic acid from DOPG and four BMP stereoisomers by LPLA2 differed. The rank order of the rates of hydrolysis were DOPG>S,S-(3,3',C18:1)-BMP>R,S-(3,1',C18:1)-BMP>R,R-(1,1',C18:1)>S,S-(2,2')-BMP. The cationic amphiphilic drug amiodarone (AMD) inhibited the deacylation of DOPG and BMP isomers by hLPLA2 in a concentration-dependent manner. Under these experimental conditions, the IC50s of amiodarone-induced inhibition of the four BMP isomers and DOPG were less than 20 µM and approximately 30 µM, respectively. BMP accumulation was observed in AMD-treated RAW 264.7 cells. The accumulated BMP was significantly reduced by exogenous treatment of cells with active recombinant hLPLA2 but not with diisopropylfluorophosphate-inactivated recombinant hLPLA2. Finally, a series of cationic amphiphilic drugs known to cause phospholipidosis were screened for inhibition of LPLA2 activity as measured by either the transacylation or fatty acid hydrolysis of BMP or phosphatidylcholine as substrates. Fifteen compounds demonstrated significant inhibition with IC50s ranging from 6.8 to 63.3 µM. These results indicate that LPLA2 degrades BMP isomers with different substrate specificities under acidic conditions and may be the key enzyme associated with BMP accumulation in drug-induced phospholipidosis.


Asunto(s)
Lisofosfolípidos , Lisosomas , Monoglicéridos , Humanos , Lisosomas/metabolismo , Lisosomas/enzimología , Monoglicéridos/metabolismo , Lisofosfolípidos/metabolismo , Animales , Ratones , Fosfolipasas A2/metabolismo , Fosfolípidos/metabolismo , Liposomas/metabolismo , Lipidosis/metabolismo , Lipidosis/inducido químicamente , Lipidosis/enzimología
12.
J Physiol ; 602(15): 3693-3713, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970617

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel that is gated by the pungent constituent of red chili pepper, capsaicin, and by related chemicals from the group of vanilloids, in addition to noxious heat. It is expressed mostly in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Although TRPV1 is also found outside the sensory nervous system, its expression and function in the bladder detrusor smooth muscle (DSM) remain controversial. Here, by using Ca2+ imaging and patch clamp on isolated rat DSM cells, in addition to tensiometry on multicellular DSM strips, we show that TRPV1 is expressed functionally in only a fraction of DSM cells, in which it acts as an endoplasmic reticulum Ca2+-release channel responsible for the capsaicin-activated [Ca2+]i rise. Carbachol-stimulated contractions of multicellular DSM strips contain a TRPV1-dependent component, which is negligible in the circular DSM but reaches ≤50% in the longitudinal DSM. Activation of TRPV1 in rat DSM during muscarinic cholinergic stimulation is ensured by phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists. Immunofluorescence detection of TRPV1 protein in bladder sections and isolated DSM cells confirmed both its preferential expression in the longitudinal DSM sublayer and its targeting to the endoplasmic reticulum. We conclude that TRPV1 is an essential contributor to the cholinergic contraction of bladder longitudinal DSM, which might be important for producing spatial and/or temporal anisotropy of bladder wall deformation in different regions during parasympathetic stimulation. KEY POINTS: The transient receptor potential vanilloid 1 (TRPV1) heat/capsaicin receptor/channel is localized in the endoplasmic reticulum membrane of detrusor smooth muscle (DSM) cells of the rat bladder, operating as a calcium-release channel. Isolated DSM cells are separated into two nearly equal groups, within which the cells either show or do not show TRPV1-dependent [Ca2+]i rise. Carbachol-stimulated, muscarinic ACh receptor-mediated contractions of multicellular DSM strips contain a TRPV1-dependent component. This component is negligible in the circular DSM but reaches ≤50% in longitudinal DSM. Activation of TRPV1 in rat DSM during cholinergic stimulation involves phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists.


Asunto(s)
Contracción Muscular , Músculo Liso , Canales Catiónicos TRPV , Vejiga Urinaria , Animales , Canales Catiónicos TRPV/metabolismo , Vejiga Urinaria/fisiología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Contracción Muscular/fisiología , Músculo Liso/fisiología , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Ratas , Masculino , Carbacol/farmacología , Capsaicina/farmacología , Calcio/metabolismo , Ratas Sprague-Dawley , Ratas Wistar
13.
J Biol Chem ; 299(8): 105016, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414151

RESUMEN

The biosynthesis of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) in the parasitic protozoan Trypanosoma brucei involves fatty acid remodeling of the GPI precursor molecules before they are transferred to protein in the endoplasmic reticulum. The genes encoding the requisite phospholipase A2 and A1 activities for this remodeling have thus far been elusive. Here, we identify a gene, Tb927.7.6110, that encodes a protein that is both necessary and sufficient for GPI-phospholipase A2 (GPI-PLA2) activity in the procyclic form of the parasite. The predicted protein product belongs to the alkaline ceramidase, PAQR receptor, Per1, SID-1, and TMEM8 (CREST) superfamily of transmembrane hydrolase proteins and shows sequence similarity to Post-GPI-Attachment to Protein 6 (PGAP6), a GPI-PLA2 that acts after transfer of GPI precursors to protein in mammalian cells. We show the trypanosome Tb927.7.6110 GPI-PLA2 gene resides in a locus with two closely related genes Tb927.7.6150 and Tb927.7.6170, one of which (Tb927.7.6150) most likely encodes a catalytically inactive protein. The absence of GPI-PLA2 in the null mutant procyclic cells not only affected fatty acid remodeling but also reduced GPI anchor sidechain size on mature GPI-anchored procyclin glycoproteins. This reduction in GPI anchor sidechain size was reversed upon the re-addition of Tb927.7.6110 and of Tb927.7.6170, despite the latter not encoding GPI precursor GPI-PLA2 activity. Taken together, we conclude that Tb927.7.6110 encodes the GPI-PLA2 of GPI precursor fatty acid remodeling and that more work is required to assess the roles and essentiality of Tb927.7.6170 and the presumably enzymatically inactive Tb927.7.6150.


Asunto(s)
Glicosilfosfatidilinositoles , Trypanosoma brucei brucei , Animales , Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Proteínas de la Membrana/metabolismo , Fosfolipasas A2/metabolismo , Proteínas Ligadas a GPI/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Mamíferos/metabolismo
14.
Biochem Biophys Res Commun ; 712-713: 149955, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640737

RESUMEN

We previously demonstrated a positive relation of secretory phospholipase A2 group IIA (sPLA2-IIA) with circulating high-density lipoprotein cholesterol (HDL-C) in patients with coronary artery disease, and sPLA2-IIA increased cholesterol efflux in THP-1 cells through peroxisome proliferator-activated receptor-γ (PPAR-γ)/liver X receptor α/ATP-binding cassette transporter A1 (ABCA1) signaling pathway. The aim of the present study was to examine the role of sPLA2-IIA over-expression on lipid profile in a transgenic mouse model. Fifteen apoE-/- and C57BL/7 female mice received bone marrow transplantation from transgenic SPLA2-IIA mice, and treated with specific PPAR-γ inhibitor GW9662. High fat diet was given after one week of bone marrow transplantation, and animals were sacrificed after twelve weeks. Immunohistochemical staining showed over-expression of sPLA2-IIA protein in the lung and spleen. The circulating level of HDL-C, but not that of low-density lipoprotein cholesterol (LDL-C), total cholesterol, or total triglyceride, was increased by sPLA2-IIA over-expression, and was subsequently reversed by GW9662 treatment. Over-expression of sPLA2-IIA resulted in augmented expression of cholesterol transporter ABCA1 at mRNA level in the aortas, and at protein level in macrophages, co-localized with macrophage specific antigen CD68. GW9662 exerted potent inhibitory effects on sPLA2-IIA-induced ABCA1 expression. Conclusively, we demonstrated the effects of sPLA2-IIA on circulating HDL-C level and the expression of ABCA1, possibly through regulation of PPAR-γ signaling in transgenic mouse model, that is in concert with the conditions in patients with coronary artery disease.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Molécula CD68 , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Femenino , Ratones , Fosfolipasas A2 Grupo II/metabolismo , Fosfolipasas A2 Grupo II/genética , PPAR gamma/metabolismo , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Pulmón/metabolismo , Pulmón/patología , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Bazo/metabolismo , Trasplante de Médula Ósea , Humanos , Lípidos/sangre
15.
Exp Dermatol ; 33(4): e15068, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38610094

RESUMEN

Hybrid trials are a new trend in dermatological research that leverage mobile health technologies to decentralize a subset of clinical trial elements and thereby reduce the number of in-clinic visits. In a Phase I/IIa randomized controlled hybrid trial, the safety and efficacy of an anti-proliferative and anti-inflammatory drug inhibiting cytosolic phospholipase A2 (AVX001) was tested using 1%, 3% or vehicle gel in 60 patients with actinic keratosis (AK) and assessed in-clinic as well as remotely. Over the course of 12 weeks, patients were assessed in-clinic at baseline, end of treatment (EOT) and end of study (EOS), as well as 9 times remotely on a weekly to biweekly basis. Safety outcomes comprising local skin reactions (LSR; 0-5), adverse events (AE) and cosmesis, were graded in-clinic and remotely using patient-obtained smartphone photographs (PSPs) and questionnaires; efficacy was assessed in-clinic based on clinically visible clearance of AK target area of >50%. A total of 55 participants (91.7%) completed the treatment course. The average submission rate of PSPs was high (≥85%), of which 93% were of sufficient quality. No serious AE were reported and only two experienced temporary LSR >2 (scale 0-4) and cosmesis remained stable throughout the study. Based on the mild AE and LSR profile, daily application of AVX001 gel for 1 month appears safe, tolerable, and cosmetically acceptable for use in patients with AK. At EOT, AVX001 achieved a subtle treatment response with clearance of AK target area of >50% in 18% of patients. Remote and in-clinic assessments of LSRs were in high agreement, suggesting that the use of mobile health technologies in early-phase hybrid studies of AK does not compromise patient safety.


Asunto(s)
Queratosis Actínica , Telemedicina , Humanos , Proteínas Sanguíneas , Queratosis Actínica/tratamiento farmacológico , Piel
16.
Exp Eye Res ; 246: 110011, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053641

RESUMEN

This study aimed to identify and quantify free fatty acids (FFAs), secretory phospholipase A2 group IIa (sPLA2-IIa) and cytosolic phospholipase A2 (cPLA2) in serum of superior limbic keratoconjunctivitis (SLK) patients and explored the association between FFAs, sPLA2-IIa and cPLA2 variations and SLK. Targeted metabolomic analysis of FFAs in serum was performed by gas chromatography tandem mass spectrometry (GC-MS/MS) analysis on 16 SLK patients (43.88 ± 7.88 years; female: 62.50%) and 25 healthy controls (43.12 ± 7.88 years; female: 64.00%). Qualitative and absolute quantitative results of FFAs were obtained and classified according to gender and thyroid tests. Differential lipid metabolites, metabolomic pathways and biomarkers were further evaluated. The serum sPLA2-IIa and cPLA2 were determined by enzyme linked immunosorbent assay (ELISA). Among 40 FFAs identified, 6 FFAs showed significant changes (P < 0.05) in SLK patients, including 4 decreased and 2 increased. They were mainly related to unsaturated fatty acid biosynthesis, α-linolenic acid and linoleic acid metabolism, and fatty acid biosynthesis. When dividing the data by gender or abnormal thyroid tests, some comparable FFAs alterations displayed in SLK patients. The ROC analysis revealed that the AUC values of linoleic acid, γ-linolenic acid, cis-8,11,14-eicosatrienoic acid, stearic acid, and palmitic acid, were all greater than 0.8. The serum concentrations of sPLA2-IIa and cPLA2 in patients with SLK were significantly higher than that in healthy controls. Lipidomics disturbance might be the potential mechanism of SLK. Serum FFA biomarkers associated with SLK have potential for the diagnosis and treatment of the disease.


Asunto(s)
Biomarcadores , Ácidos Grasos no Esterificados , Lipidómica , Metabolómica , Humanos , Femenino , Masculino , Adulto , Ácidos Grasos no Esterificados/sangre , Lipidómica/métodos , Persona de Mediana Edad , Metabolómica/métodos , Biomarcadores/sangre , Cromatografía de Gases y Espectrometría de Masas , Queratoconjuntivitis/sangre , Queratoconjuntivitis/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Espectrometría de Masas en Tándem , Fosfolipasas A2 Grupo II/sangre
17.
Cerebrovasc Dis ; 53(5): 579-587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38113871

RESUMEN

BACKGROUND: The relationship between ischemic stroke (IS) and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity is still unclear, and there is a dearth of stratified research on the relationship between Lp-PLA2 activity and different IS subtypes. Therefore, Mendelian randomization (MR) was used in this study to examine the relationship between genetically proxied Lp-PLA2 activity and the risks of IS and its subtypes. METHODS: Based on information from a meta-analysis of genome-wide association studies, which included 13,664 European people, five single nucleotide polymorphisms related to Lp-PLA2 activity were chosen as instrumental variables. Summary statistics information about the MEGESTROKE consortium with the European group (40,585 cases and 406,111 controls) include any IS (AIS; n = 34,217), large-artery stroke (LAS; n = 4,373), cardioembolic stroke (CES; n = 7,193), and small-vessel stroke (SVS; n = 5,386). In order to determine the causal relationships between Lp-PLA2 activity and IS as well as its subtypes, the inverse-variance-weighted (IVW) approach was chosen as the primary analysis. Significant estimates were then tested by sensitivity analysis to rule out heterogeneity and pleiotropy. RESULTS: IVW showed that Lp-PLA2 activity was causally associated with LAS (odds ratio = 3.25, 95% confidence interval = 1.65-6.41, p = 0.0007) but not with other subtypes of stroke. Sensitivity analysis for causal estimates between Lp-PLA2 activity and LAS showed no significant heterogeneity or pleiotropy. CONCLUSIONS: These MR analyses support a causal effect of Lp-PLA2 activity on LAS but not on AIS, CES, or SVS, which suggests that serum Lp-PLA2 activity might be a biomarker for prediction of LAS.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Accidente Cerebrovascular Isquémico , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Humanos , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/sangre , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Isquémico/diagnóstico , Factores de Riesgo , Medición de Riesgo , Fenotipo , Estudios de Casos y Controles , Fosfolipasas A2 Grupo VI
18.
Bioorg Med Chem Lett ; 107: 129792, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38734389

RESUMEN

Ceramide 1-phosphate (C1P) is a lipid mediator that specifically binds and activates cytosolic phospholipase A2α (cPLA2α). To elucidate the structure-activity relationship of the affinity of C1P for cPLA2α in lipid environments, we prepared a series of C1P analogs containing structural modifications in the hydrophilic parts and subjected them to surface plasmon resonance (SPR). The results suggested the presence of a specific binding site for cPLA2α on the amide, 3-OH and phosphate groups in C1P structure. Especially, dihydro-C1P exhibited enhanced affinity for cPLA2α, suggesting the hydrogen bonding ability of 3-hydroxy group is important for interactions with cPLA2α. This study helps to understand the influence of specific structural moieties of C1P on the interaction with cPLA2α at the atomistic level and may lead to the design of drugs that regulate cPLA2α activation.


Asunto(s)
Ceramidas , Diseño de Fármacos , Resonancia por Plasmón de Superficie , Ceramidas/química , Ceramidas/síntesis química , Ceramidas/metabolismo , Relación Estructura-Actividad , Fosfolipasas A2 Grupo IV/metabolismo , Fosfolipasas A2 Grupo IV/antagonistas & inhibidores , Humanos , Estructura Molecular , Sitios de Unión
19.
Kidney Blood Press Res ; 49(1): 490-494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38865986

RESUMEN

INTRODUCTION: Patients with idiopathic membranous nephropathy (IMN) are particularly susceptible to thromboembolism (TE). The phospholipase A2 receptor (PLA2R) antibody (Ab) has been indicated to work as an independent risk predictor for venous TE in IMN. This study aimed to further explore the predictive value of PLA2R Ab for both venous and arterial TE in IMN patients. METHODS: A total of 91 IMN patients were retrospectively selected and divided into anti-PLA2R-positive or anti-PLA2R-negative groups according to the anti-PLA2R Ab titer (cutoff: 20 RU/mL). Serum PLA2R Abs were estimated using ELISA. Anti-PLA2R-positive IMN patients were further assigned into two groups based on the presence or absence of TE. RESULTS: Twelve (18.18%) IMN patients with anti-PLA2R positivity had TE, including both venous and arterial TE. No TE occurred in the anti-PLA2R-negative group. IMN patients in the anti-PLA2R-positive group had significantly higher levels of total cholesterol and low-density lipoprotein than those in the anti-PLA2R-negative group. No significant difference was observed in the anti-PLA2R Ab titer between patients with and without TE. Patients with TE were significantly older than those without TE. CONCLUSION: This study demonstrates that the positive status of anti-PLA2R Abs contributes to thrombosis formation in IMN.


Asunto(s)
Glomerulonefritis Membranosa , Receptores de Fosfolipasa A2 , Humanos , Glomerulonefritis Membranosa/sangre , Glomerulonefritis Membranosa/inmunología , Receptores de Fosfolipasa A2/inmunología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Autoanticuerpos/sangre , Adulto , Anciano , Tromboembolia/sangre , Tromboembolia/etiología
20.
Biol Pharm Bull ; 47(5): 1058-1065, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825533

RESUMEN

Nonalcoholic steatohepatitis (NASH) is characterized by hepatic inflammation and fibrosis due to excessive fat accumulation. Monocyte chemoattractant protein-1 (MCP-1) is a key chemokine that infiltrates inflammatory cells into the liver during the development of NASH. Our previous studies demonstrated that a systemic deficiency of group IVA phospholipase A2 (IVA-PLA2), an enzyme that contributes to the production of lipid inflammatory mediators, protects mice against high-fat diet-induced hepatic fibrosis and markedly suppresses the CCl4-induced expression of MCP-1 in the liver. However, it remains unclear which cell types harboring IVA-PLA2 are involved in the elevated production of MCP-1. Hence, the present study assessed the types of cells responsible for IVA-PLA2-mediated production of MCP-1 using cultured hepatic stellate cells, endothelial cells, macrophages, and hepatocytes, as well as cell-type specific IVA-PLA2 deficient mice fed a high-fat diet. A relatively specific inhibitor of IVA-PLA2 markedly suppressed the expression of MCP-1 mRNA in cultured hepatic stellate cells, but the suppression of MCP-1 expression was partial in endothelial cells and not observed in monocytes/macrophages or hepatocytes. In contrast, a deficiency of IVA-PLA2 in collagen-producing cells (hepatic stellate cells), but not in other types of cells, reduced the high-fat diet-induced expression of MCP-1 and inflammatory cell infiltration in the liver. Our results suggest that IVA-PLA2 in hepatic stellate cells is critical for hepatic inflammation in the high-fat diet-induced development of NASH. This supports a potential therapeutic approach for NASH using a IVA-PLA2 inhibitor targeting hepatic stellate cells.


Asunto(s)
Quimiocina CCL2 , Dieta Alta en Grasa , Fosfolipasas A2 Grupo IV , Células Estrelladas Hepáticas , Hígado , Enfermedad del Hígado Graso no Alcohólico , Regulación hacia Arriba , Animales , Ratones , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Colágeno/metabolismo , Colágeno/biosíntesis , Dieta Alta en Grasa/efectos adversos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Fosfolipasas A2 Grupo IV/genética , Fosfolipasas A2 Grupo IV/metabolismo , Fosfolipasas A2 Grupo IV/antagonistas & inhibidores , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Hígado/patología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA