Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(8): 3654-3664, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38318812

RESUMEN

How the plastisphere mediated by the residual microplastic film in farmlands affects microhabitat systems is unclear. Here, microbial structure, assembly, and biogeochemical cycling in the plastisphere and soil in 33 typical farmland sites were analyzed by amplicon sequencing of 16S rRNA genes and ITS and metagenome analysis. The results indicated that residual microplastic film was colonized by microbes, forming a unique niche called the plastisphere. Notable differences in the microbial community structure and function were observed between soil and plastisphere. Residual microplastic film altered the microbial symbiosis and assembly processes. Stochastic processes significantly dominated the assembly of the bacterial community in the plastisphere and soil but only in the plastisphere for the fungal community. Deterministic processes significantly dominated the assembly of fungal communities only in soil. Moreover, the plastisphere mediated by the residual microplastic film acted as a preferred vector for pathogens and microorganisms associated with plastic degradation and the nitrogen and sulfur cycle. The abundance of genes associated with denitrification and sulfate reduction activity in the plastisphere was pronouncedly higher than that of soil, which increase the potential risk of nitrogen and sulfur loss. The results will offer a scientific understanding of the harm caused by the residual microplastic film in farmlands.


Asunto(s)
Microbiota , Microplásticos , Granjas , Plásticos , ARN Ribosómico 16S/genética , Nitrógeno , Suelo , Azufre
2.
Environ Sci Technol ; 58(33): 14740-14752, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39103310

RESUMEN

Plastics are invading nearly all ecosystems on earth, acting as emerging repositories for toxic organic pollutants and thereby imposing substantial threats to ecological integrity. The colonization of plastics by microorganisms, forming the plastisphere, has garnered attention due to its potential influence on biogeochemical cycles. However, the capability of plastisphere microorganisms to attenuate organohalide pollutants remains to be evaluated. This study revealed that the plastisphere, collected from coastal ecosystems, harbors unique microbiomes, while the natural accumulation of organohalide pollutants on plastics may favor the proliferation of organohalide-respiring bacteria (OHRB). Laboratory tests further elucidated the high potential of plastisphere microbiota to reductively dehalogenate a variety of organohalide pollutants. Notably, over 70% tested plastisphere completely debrominated tetrabromobisphenol A (TBBPA) and polybrominated diphenyl ethers (PBDEs) to nonhalogenated products, whereas polychlorinated biphenyls (PCBs) were converted to lower congeners under anaerobic conditions. Dehalococcoides, Dehalogenimonas, and novel Dehalococcoidia populations might contribute to the observed dehalogenation based on their growth during incubation and positive correlations with the quantity of halogens removed. Intriguingly, large fractions of these OHRB populations were identified in a lack of the currently known TBBPA/PBDEs/PCBs reductive dehalogenase (RDase) genes, suggesting the presence of novel RDase genes. Microbial community analyses identified organohalides as a crucial factor in determining the composition, diversity, interaction, and assembly of microbes derived from the plastisphere. Collectively, this study underscores the overlooked roles of the plastisphere in the natural attenuation of persistent organohalide pollutants and sheds light on the unignorable impacts of organohalide compounds on the microbial ecology of the plastisphere.


Asunto(s)
Microbiota , Plásticos , Contaminantes Orgánicos Persistentes/metabolismo , Bacterias/metabolismo , Éteres Difenilos Halogenados/metabolismo , Biodegradación Ambiental
3.
Environ Res ; 246: 118172, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220083

RESUMEN

As the volume of plastic in the environment increases, so too does human interactions with plastic pollution. Similarly, domestic, feral, and wild animals are increasingly interacting with plastic pollution, highlighting the potential for contamination of plastic wastes with animal faeces, urine, saliva, and blood. Substantial evidence indicates that once in the environment, plastics rapidly become colonised by microbial biofilm (the so-called 'plastisphere), which often includes potentially harmful microbial pathogens (including pathogens that are zoonotic in nature). Climate change, increased urbanisation, and the intensification of agriculture, mean that the three-way interactions between humans, animals, and plastic pollution are becoming more frequent, which is significant as almost 60% of emerging human infectious diseases during the last century have been zoonotic. Here, we critically review the potential for contaminated environmental plastics to facilitate the evolution of novel pathogenic strains of microorganisms, and the subsequent role of plastic pollution in the cyclical dissemination of zoonotic pathogens. As the interactions between humans, animals, and plastic pollution continues to grow, and the volume of plastics entering the environment increases, there is clearly an urgent need to better understand the role of plastic waste in facilitating zoonotic pathogen evolution and dissemination, and the effect this can have on environmental and human health.


Asunto(s)
Contaminación Ambiental , Plásticos , Animales , Humanos , Zoonosis/epidemiología , Agricultura , Biopelículas
4.
Environ Res ; : 120064, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332793

RESUMEN

Soil microbiomes drive many soil processes and maintain the ecological functions of terrestrial ecosystems. Microplastics (MPs, size < 5 mm) are pervasive emerging contaminants worldwide. However, how MPs affect soil microbial activity has not been well elucidated. This review article first highlights the effects of MPs on overall soil microbial activities represented by three soil enzymes, i.e., catalase, dehydrogenase, and fluorescein diacetate hydrolase (FDAse), and explores the underlying mechanisms and influencing factors. Abundant evidence confirms that MPs can change soil microbial activities. However, existing results vary greatly from inhibition to promotion and non-significance, depending on polymer type, degradability, dose, size, shape, additive, and aging degree of the target MPs, soil physicochemical and biological properties, and exposure conditions, such as exposure time, temperature, and agricultural practices (e.g., planting, fertilization, soil amendment, and pesticide application). MPs can directly affect microbial activities by acting as carbon sources, releasing additives and pollutants, and shaping microbial communities via plastisphere effects. Smaller MPs (e.g., nanoplastics, 1 to < 1000 nm) can also damage microbial cells through penetration. Indirectly, MPs can change soil attributes, fertility, the toxicity of co-existing pollutants, and the performance of soil fauna and plants, thus regulating soil microbiomes and their activities. In conclusion, MPs can regulate soil microbial activities and consequently pose cascading consequences for ecosystem functioning.

5.
Environ Res ; 259: 119562, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38971360

RESUMEN

Elucidating the formation mechanism of plastisphere antibiotic resistance genes (ARGs) on different polymers is necessary to understand the ecological risks of plastisphere ARGs. Here, we explored the turnover and assembly mechanism of plastisphere ARGs on 8 different microplastic polymers (4 biodegradable (bMPs) and 4 non-biodegradable microplastics (nMPs)) by metagenomic sequencing. Our study revealed the presence of 479 ARGs with abundance ranging from 41.37 to 58.17 copies/16S rRNA gene in all plastispheres. These ARGs were predominantly multidrug resistance genes. The richness of plastisphere ARGs on different polymers had a significant correlation with the contribution of species turnover to plastisphere ARGs ß diversity. Furthermore, polymer type was the most critical factor affecting the composition of plastisphere ARGs. More opportunistic pathogens carrying diverse ARGs on BMPs (PBAT, PBS, and PHA) with higher horizontal gene transfer potential may further magnify the ecological risks and human health threats. For example, the opportunistic pathogens Riemerella anatipestifer, Vibrio campbellii, and Vibrio cholerae are closely related to human production and life, which were the important potential hosts of many plastisphere ARGs and mobile genetic elements on BMPs. Thus, we emphasize the urgency of developing the formation mechanism of plastisphere ARGs and the necessity of controlling BMPs and ARG pollution, especially BMPs, with ever-increasing usage in daily life.


Asunto(s)
Microplásticos , Microplásticos/toxicidad , Farmacorresistencia Microbiana/genética , Bacterias/genética , Bacterias/efectos de los fármacos , Genes Bacterianos
6.
Ecotoxicol Environ Saf ; 280: 116541, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38848637

RESUMEN

Although accumulating evidence indicates that endangered animals suffer from plastic pollution, this has been largely overlooked. Here, we explored the bacteria and eukaryotes living in the plastics gathered from the natural habitat of the highly endangered crocodile lizard. The results demonstrated that the bacterial and eukaryotic communities on plastics formed a unique ecosystem that exhibited lower diversity than those in the surrounding water and soil. However, microbes displayed a more complex and stable network on plastic than that in water or soil, implying unique mechanisms of stabilization. These mechanisms enhanced their resilience and contributed to the provision of stable ecological services. Eukaryotes formed a simpler and smaller network than bacteria, indicating different survival strategies. The bacteria residing on the plastics played a significant role in carbon transformation and sequestration, which likely impacted carbon cycling in the habitat. Furthermore, microbial exchange between plastics and the crocodile lizard was observed, suggesting that plastisphere serves as a mobile gene bank for the exchange of information, including potentially harmful substances. Overall, microbes on plastic appear to significantly impact the crocodile lizard and its natural habitat via various pathways. These results provided novel insights into risks evaluation of plastic pollution and valuable guidance for government efforts in plastic pollutant control in nature reserves.


Asunto(s)
Bacterias , Ecosistema , Especies en Peligro de Extinción , Lagartos , Plásticos , Animales , Monitoreo del Ambiente , Eucariontes , Fenotipo , Microbiología del Suelo
7.
Ecotoxicol Environ Saf ; 270: 115946, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194808

RESUMEN

With a growing number of research reports on microplastics (MPs), there is increasing concern regarding MPs-induced contamination in soil ecological systems. Notwithstanding, the interaction between the plastisphere and rhizosphere microbial hotspots in soil-plant systems, as well as the diversity and composition of plastisphere microbial communities in such systems, remain largely unexplored. This study evaluated the response of rhizosphere bacterial communities to MPs at three growth stages of pepper and examined the bacterial communities present on MPs (plastisphere). The 16 S rRNA revealed that, under the stress of MPs, the Chao1 and Shannon index of the pepper soil bacterial community decreased. Meanwhile the relative abundance of Actinobacteriota was decreased, and that of Proteobacteria was increased. Furthermore, the plastisphere serves as a unique microbial habitat (niche) that recruits the colonization of specific bacterial groups, including potential plastic-degrading bacteria and potential pathogens (e.g., Massilia and Pseudomonas). Simultaneously, the plastisphere recruits specific bacteria that may impact the rhizosphere soil bacterial communities, thus indirectly affecting plant growth. Functional prediction using PICRUSt2 revealed higher activity in the plastisphere for Metabolism of terpenoids and polyketides, Human diseases, and Xenobiotics biodegradation and metabolism. Notably, the human diseases metabolic pathway exhibited increased activity, suggesting potential ecological risks associated with pathogens. These results highlighted that the plastisphere serves as a unique microbial habitat (niche) in the soil ecological systems, recruiting specific bacteria and potentially interfering with the surrounding soil microbial community, thereby influencing the functional characteristics of the soil ecological systems.


Asunto(s)
Capsicum , Suelo , Humanos , Plásticos , Rizosfera , Microbiología del Suelo , Bacterias/genética , Microplásticos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38960926

RESUMEN

The plastisphere is the microbial communities that grow on the surface of plastic debris, often used interchangeably with plastic biofilm or biofouled plastics. It can affect the properties of the plastic debris in multiple ways. This review aims to present the effects of the plastisphere on the physicochemical properties of microplastics systematically. It highlights that the plastisphere modifies the buoyancy and movement of microplastics by increasing their density, causing them to sink and settle out. Smaller and film microplastics are likely to settle sooner because of larger surface areas and higher rates of biofouling. Biofouled microplastics may show an oscillating movement in waterbodies when settling due to diurnal and seasonal changes in the growth of the plastisphere until they come close to the bottom of the waterbodies and are entrapped by sediments. The plastisphere enhances the adsorption of microplastics for metals and organic pollutants and shifts the adsorption mechanism from intraparticle diffusion to film diffusion. The plastisphere also increases surface roughness, reduces the pore size, and alters the overall charge of microplastics. Charge alteration is primarily attributed to changes in the functional groups on microplastic surfaces. The plastisphere introduces carbonyl, amine, amide, hydroxyl, and phosphoryl groups to microplastics, causing an increase in their surface hydrophilicity, which could alter their adsorption behaviors for heavy metals. The plastisphere may act as a reactive barrier that enhances the leaching of polar additives. It may anchor bacteria that can break down plastic additives, resulting in decreased crystallinity of microplastics. This review contributes to a better understanding of how the plastisphere alters the fate, transport, and environmental impacts of microplastics. It points to the possibility of engineering the plastisphere to improve microplastic biodegradation.

9.
J Environ Manage ; 358: 120745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599094

RESUMEN

Pollution generated by plastic waste has brought an environmental problem characterized by the omnipresence of smaller pieces of this material known as microplastics (MP). This issue was addresses by collecting samples with 250 µm pore size nets in two marine-coastal sectors of Southwestern Caribbean Sea during two contrasting seasons. Higher concentrations were found in rainy season than in dry season, reaching respectively 1.72 MP/m3 and 0.22 MP/m3. Within each sector, there were differences caused firstly by localities of higher concentrations of semi-closed water bodies localities during rainy season (Ciénaga Grande de Santa Marta and La Caimanera marsh), and secondly by lower concentrations of localities with less influenced of flow rates during dry season (Salamanca and Isla Fuerte). Moreover, the lowest concentration in dry season corresponding to La Caimanera marsh reflects how the community environmental management might decrease MP pollution. In both sectors and seasons, the particles of 0.3 mm (0.3-1.4 mm) size class dominated over those of 1.4 mm (1.4-5.0 mm) (reaching each respectively 1.33 MP/m3 and 0.39 MP/m3), with a dominance of fibers, except in the rainy season in Magdalena, where they were films. Using the FTIR technique, polypropylene was identified as the most abundant polymer in both sectors. The composition of the assemblage of microorganisms attached to microplastics presented higher richness and differed from that of free-living planktonic microbes. The most abundant members of the plastisphere were proteobacteria whose major representation was the pathogenic genus Vibrio, while the cyanobacteria dominated in seawater samples.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Plásticos , Microplásticos/análisis , Región del Caribe , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Estaciones del Año
10.
Environ Monit Assess ; 196(10): 939, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287716

RESUMEN

Microplastics (MPs) are a potential threat to the marine environment and its associated ecosystem functions. Earlier investigations revealed that the microbiome plays a crucial role in deciding the fate of MPs in the environment. Further studies also highlighted the influences of environment and polymer types on the plastisphere microbiome. Nevertheless, the major factor that determines the plastisphere microbiome remains elusive. Thus, we examined the publicly available marine plastisphere data generated from polyethylene (PE), polypropylene (PP), and polystyrene (PS), collected from three different locations to identify the importance of environment and/or polymer types in shaping the microbiome. The beta diversity analyses showed a clear distinction between samples collected from different locations. The PERMANOVA results illustrated a significant influence of environment and sample type (control/PE/PP/PS) on the microbial communities. However, the influence of sample type on microbial diversity was not significant (P-value > 0.05) when the control samples were removed from the dataset but the environment remained a significant factor (P-value < 0.05). Further, the differential abundance analyses explicitly showed the abundance of many bacterial taxa to be significantly influenced (adjusted P-value < 0.05) by the locations rather than the polymer types. The validation analysis also supports the findings. Thus, this study suggests that both the surrounding environment and polymer types determine the microbial communities on marine MPs, but the role of the environment in shaping the microbial composition is greater than that of polymer types.


Asunto(s)
Monitoreo del Ambiente , Microbiota , ARN Ribosómico 16S , Monitoreo del Ambiente/métodos , ARN Ribosómico 16S/genética , Contaminantes Químicos del Agua/análisis , Microplásticos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Agua de Mar/microbiología , Polietileno , Polipropilenos , Poliestirenos , Microbiología del Agua
11.
Microb Ecol ; 85(4): 1202-1214, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35378620

RESUMEN

Plastics are accumulating in the world's oceans, while ocean waters are becoming acidified by increased CO2. We compared metagenome of biofilms on tethered plastic bottles in subtidal waters off Japan naturally enriched in CO2, compared to normal ambient CO2 levels. Extending from an earlier amplicon study of bacteria, we used metagenomics to provide direct insights into changes in the full range of functional genes and the entire taxonomic tree of life in the context of the changing plastisphere. We found changes in the taxonomic community composition of all branches of life. This included a large increase in diatom relative abundance across the treatments but a decrease in diatom diversity. Network complexity among families decreased with acidification, showing overall simplification of biofilm integration. With acidification, there was decreased prevalence of genes associated with cell-cell interactions and antibiotic resistance, decreased detoxification genes, and increased stress tolerance genes. There were few nutrient cycling gene changes, suggesting that the role of plastisphere biofilms in nutrient processes within an acidified ocean may not change greatly. Our results suggest that as ocean CO2 increases, the plastisphere will undergo broad-ranging changes in both functional and taxonomic composition, especially the ecologically important diatom group, with possible wider implications for ocean ecology.


Asunto(s)
Diatomeas , Agua de Mar , Humanos , Plásticos , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Dióxido de Carbono , Biopelículas , Diatomeas/genética
12.
Environ Sci Technol ; 57(33): 12137-12152, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37578142

RESUMEN

Microorganisms colonizing the surfaces of microplastics form a plastisphere in the environment, which captures miscellaneous substances. The plastisphere, owning to its inherently complex nature, may serve as a "Petri dish" for the development and dissemination of antibiotic resistance genes (ARGs), adding a layer of complexity in tackling the global challenge of both microplastics and ARGs. Increasing studies have drawn insights into the extent to which the proliferation of ARGs occurred in the presence of micro/nanoplastics, thereby increasing antimicrobial resistance (AMR). However, a comprehensive review is still lacking in consideration of the current increasingly scattered research focus and results. This review focuses on the spread of ARGs mediated by microplastics, especially on the challenges and perspectives on determining the contribution of microplastics to AMR. The plastisphere accumulates biotic and abiotic materials on the persistent surfaces, which, in turn, offers a preferred environment for gene exchange within and across the boundary of the plastisphere. Microplastics breaking down to smaller sizes, such as nanoscale, can possibly promote the horizontal gene transfer of ARGs as environmental stressors by inducing the overgeneration of reactive oxygen species. Additionally, we also discussed methods, especially quantitatively comparing ARG profiles among different environmental samples in this emerging field and the challenges that multidimensional parameters are in great necessity to systematically determine the antimicrobial dissemination risk in the plastisphere. Finally, based on the biological sequencing data, we offered a framework to assess the AMR risks of micro/nanoplastics and biocolonizable microparticles that leverage multidimensional AMR-associated messages, including the ARGs' abundance, mobility, and potential acquisition by pathogens.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Farmacorresistencia Bacteriana/genética , Microplásticos , Plásticos , Transferencia de Gen Horizontal
13.
Environ Sci Technol ; 57(17): 7009-7017, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37010423

RESUMEN

Discarded plastics and microplastics (MPs) in the environment are considered emerging contaminants and indicators of the Anthropocene epoch. This study reports the discovery of a new type of plastic material in the environment─plastic-rock complexes─formed when plastic debris irreversibly sorbs onto the parent rock after historical flooding events. These complexes consist of low-density polyethylene (LDPE) or polypropylene (PP) films stuck onto quartz-dominated mineral matrices. These plastic-rock complexes serve as hotspots for MP generation, as evidenced by laboratory wet-dry cycling tests. Over 1.03 × 108 and 1.28 × 108 items·m-2 MPs were generated in a zero-order mode from the LDPE- and PP-rock complexes, respectively, following 10 wet-dry cycles. The speed of MP generation was 4-5 orders of magnitude higher than that in landfills, 2-3 orders of magnitude higher than that in seawater, and >1 order of magnitude higher than that in marine sediment as compared with previously reported data. Results from this investigation provide strong direct evidence of anthropogenic waste entering geological cycles and inducing potential ecological risks that may be exacerbated by climate change conditions such as flooding events. Future research should evaluate this phenomenon regarding ecosystem fluxes, fate, and transport and impacts of plastic pollution.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Microplásticos , Polietileno/análisis , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Polipropilenos/análisis
14.
Environ Sci Technol ; 57(1): 5-24, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36534053

RESUMEN

Plastic debris is an established environmental menace affecting aquatic systems globally. Recently, microplastics (MP) and plastic leachates (PL) have been detected in vital human organs, the vascular system, and in vitro animal studies positing severe health hazards. MP and PL have been found in every conceivable aquatic ecosystem─from open oceans and deep sea floors to supposedly pristine glacier lakes and snow covered mountain catchment sites. Many studies have documented the MP and PL impacts on a variety of aquatic organisms, whereby some exclusively focus on aquatic microorganisms. Yet, the specific MP and PL impacts on primary producers have not been systematically analyzed. Therefore, this review focuses on the threats posed by MP, PL, and associated chemicals on phytoplankton, their comprehensive impacts at organismal, community, and ecosystem scales, and their endogenous amelioration. Studies on MP- and PL-impacted individual phytoplankton species reveal the production of reactive oxygen species, lipid peroxidation, physical damage of thylakoids, and other physiological and metabolic changes, followed by homo- and heteroaggregations, ultimately eventuating in decreased photosynthesis and primary productivity. Likewise, analyses of the microbial community in the plastisphere show a radically different profile compared to the surrounding planktonic diversity. The plastisphere also enriches multidrug-resistant bacteria, cyanotoxins, and pollutants, accelerating microbial succession, changing the microbiome, and thus, affecting phytoplankton diversity and evolution. These impacts on cellular and community scales manifest in changed ecosystem dynamics with widespread bottom-up and top-down effects on aquatic biodiversity and food web interactions. These adverse effects─through altered nutrient cycling─have "knock-on" impacts on biogeochemical cycles and greenhouse gases. Consequently, these impacts affect provisioning and regulating ecosystem services. Our citation network analyses (CNA) further demonstrate dire effects of MP and PL on all trophic levels, thereby unsettling ecosystem stability and services. CNA points to several emerging nodes indicating combined toxicity of MP, PL, and their associated hazards on phytoplankton. Taken together, our study shows that ecotoxicity of plastic particles and their leachates have placed primary producers and some aquatic ecosystems in peril.


Asunto(s)
Ecosistema , Plásticos , Animales , Humanos , Plásticos/análisis , Microplásticos/toxicidad , Fitoplancton , Organismos Acuáticos
15.
Environ Res ; 237(Pt 1): 116917, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37611784

RESUMEN

Due to poor management and the lack of environmental awareness, lots of masks (an emerging form of plastic pollution) are discarded into the environment during the COVID-19, thereby jeopardizing the health of humans and the environment. Our study introduces a novel perspective by examining the impact of physical damage on the microbial composition of masks in the water environment. We focus on the variations in biofilm formation on each layer of both damaged and undamaged masks, which allows us to understand more about the biofilm on each layer and the significant changes that occur when masks are physically damaged. Research has shown that the community structure of microorganisms on discarded masks can be altered in just ten days, showing an evolution from undifferentiated pioneer colonizing species ("non-picky") to adaptive dominant species ("picky"). Especially, considering that discarded masks were inevitably damaged, we found that the biomass on the damaged samples is 1.62-2.38 times higher than that of the undamaged samples, respectively. Moreover, the microbial community structure on it was also significantly different. Genes involved in biogeochemical cycles of nutrients are more enriched in damaged masks. When damaged, the colonization process and community structure in the middle layer significantly differ from those in the inner and outer layers and even enrich more pathogenic bacteria. Based on the above, it is evident that the environmental risk of masks cannot be assessed as a whole, and the middle layer carries a higher risk.

16.
Environ Res ; 239(Pt 2): 117394, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37838194

RESUMEN

Microplastics are found across the globe because of their size and ability to transport across environments. The effects of microplastics on the micro- and macro-organisms have brought out concern over the potential risk to human health and the need to regulate their distribution at the source. Control of microplastic pollution requires region-specific management and mitigation strategies which can be developed with the information on sources and their contributions. This review provides an overview of the sources, fate, and distribution of microplastics along with techniques to source-trace microplastics. Source-tracing approaches provide both qualitative and quantitive information. Since better outcomes have been produced by the integration of techniques like backward trajectory analysis with cluster analysis, the significance of integrated and multi-dimensional approaches has been emphasized. The scope of the plastisphere, heavy metal, and biofilm microbial community in tracing the sources of microplastics are also highlighted. The present review allows the researchers and policymakers to understand the recent trends in the source-tracing of microplastics which will help them to develop techniques and comprehensive action plans to limit the microplastic discharge at sources.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos , Biopelículas , Análisis por Conglomerados , Contaminación Ambiental
17.
Biofouling ; 39(4): 427-443, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37341323

RESUMEN

Complex microbial communities colonize plastic substrates over time, strongly influencing their fate and potential impacts on marine ecosystems. Among the first colonizers, diatoms play an important role in the development of this 'plastiphere'. We investigated 936 biofouling samples and the factors influencing diatom communities associated with plastic colonization. These factors included geographic location (up to 800 km apart), duration of substrate submersion (1 to 52 weeks), plastics (5 polymer types) and impact of artificial ageing with UV light. Diatom communities colonizing plastic debris were primarily determined by their geographic location and submersion time, with the strongest changes occurring within two weeks of submersion. Several taxa were identified as early colonizers (e.g. Cylindrotheca, Navicula and Nitzschia spp.) with known strong adhesion capabilities. To a lesser extent, plastic-type and UV-ageing significantly affected community composition, with 14 taxa showing substrate-specificity. This study highlights the role of plastics types-state for colonization in the ocean.


Asunto(s)
Diatomeas , Plásticos , Plásticos/química , Ecosistema , Biopelículas , Análisis Espacio-Temporal
18.
Glob Chang Biol ; 28(4): 1402-1413, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34773676

RESUMEN

A variety of organisms can colonize microplastic surfaces through biofouling processes. Heterotrophic bacteria tend to be the focus of plastisphere research; however, the presence of epiplastic microalgae within the biofilm has been repeatedly documented. Despite the relevance of biofouling in determining the fate and effects of microplastics in aquatic systems, data about this process are still scarce, especially for freshwater ecosystems. Here, our goal was to evaluate the biomass development and species composition of biofilms on different plastic polymers and to investigate whether plastic substrates exert a strong enough selection to drive species sorting, overcoming other niche-defining factors. We added microplastic pellets of high-density polyethylene (HDPE), polyethylene terephthalate (PET), and a mix of the two polymers in 15 lentic mesocosms in five different locations of the Iberian Peninsula, and after one month, we evaluated species composition and biomass of microalgae developed on plastic surfaces. Our results, based on 45 samples, showed that colonization of plastic surfaces occurred in a range of lentic ecosystems covering a wide geographical gradient and different environmental conditions (e.g., nutrient concentration, conductivity, macrophyte coverage). We highlighted that total biomass differed based on the polymer considered, with higher biomass developed on PET substrate compared to HDPE. Microplastics supported the growth of a rich and diversified community of microalgae (242 species), with some cosmopolite species. However, we did not observe species-specificity in the colonization of the different plastic polymers. Local species pool and nutrient concentration rather than polymeric composition seemed to be the determinant factor defying the community diversity. Regardless of specific environmental conditions, we showed that many species could coexist on the surface of relatively small plastic items, highlighting how microplastics may have considerable carrying capacity, with possible consequences on the wider ecological context.


Asunto(s)
Microalgas , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Microplásticos , Plásticos , Polímeros/química , Contaminantes Químicos del Agua/análisis
19.
Arch Microbiol ; 204(4): 216, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35316402

RESUMEN

Plastic pollution is a major concern in marine environment as it takes many years to degrade and is one of the greatest threats to marine life. Plastic surface, referred to as plastisphere, provides habitat for growth and proliferation of various microorganisms. The discovery of these microbes is necessary to identify significant genes, enzymes and bioactive compounds that could help in bioremediation and other commercial applications. Conventional culture techniques have been successful in identifying few microbes from these habitats, leaving majority of them yet to be explored. As such, to recognize the vivid genetic diversity of microbes residing in plastisphere, their structure and corresponding ecological roles within the ecosystem, an emerging technique, called metagenomics has been explored. The technique is expected to provide hitherto unknown information on microbes from the plastisphere. Metagenomics along with next generation sequencing provides comprehensive knowledge on microbes residing in plastisphere that identifies novel microbes for plastic bioremediation, bioactive compounds and other potential benefits. The following review summarizes the efficiency of metagenomics and next generation sequencing technology over conventionally used methods for culturing microbes. It attempts to illustrate the workflow mechanism of metagenomics to elucidate diverse microbial profiles. Further, importance of integrated multi-omics techniques has been highlighted in discovering microbial ecology residing on plastisphere for wider applications.


Asunto(s)
Ecosistema , Metagenómica , Biodegradación Ambiental , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica/métodos , Plásticos
20.
Artículo en Inglés | MEDLINE | ID: mdl-35482521

RESUMEN

Strain NGK65T, a novel hexadecane degrading, non-motile, Gram-positive, rod-to-coccus shaped, aerobic bacterium, was isolated from plastic polluted soil sampled at a landfill. Strain NGK65T hydrolysed casein, gelatin, urea and was catalase-positive. It optimally grew at 28 °C, in 0-1% NaCl and at pH 7.5-8.0. Glycerol, d-glucose, arbutin, aesculin, salicin, potassium 5-ketogluconate, sucrose, acetate, pyruvate and hexadecane were used as sole carbon sources. The predominant membrane fatty acids were iso-C16:0 followed by iso-C17:0 and C18:1 ω9c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and hydroxyphosphatidylinositol. The cell-wall peptidoglycan type was A3γ, with ll-diaminopimelic acid and glycine as the diagnostic amino acids. MK 8 (H4) was the predominant menaquinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK65T belongs to the genus Nocardioides (phylum Actinobacteria), appearing most closely related to Nocardioides daejeonensis MJ31T (98.6%) and Nocardioides dubius KSL-104T (98.3%). The genomic DNA G+C content of strain NGK65T was 68.2%. Strain NGK65T and the type strains of species involved in the analysis had average nucleotide identity values of 78.3-71.9% as well as digital DNA-DNA hybridization values between 22.5 and 19.7%, which clearly indicated that the isolate represents a novel species within the genus Nocardioides. Based on phenotypic and molecular characterization, strain NGK65T can clearly be differentiated from its phylogenetic neighbours to establish a novel species, for which the name Nocardioides alcanivorans sp. nov. is proposed. The type strain is NGK65T (=DSM 113112T=NCCB 100846T).


Asunto(s)
Actinomycetales , Nocardioides , Alcanos , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Filogenia , Plásticos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA