Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(38): 14417-14428, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37699564

RESUMEN

Improved stormwater treatment is needed to prevent toxic and mobile contaminant transport into receiving waters and allow beneficial use of stormwater runoff. In particular, safe capture of stormwater runoff to augment drinking water supplies is contingent upon removing dissolved trace organic contaminants (TrOCs) not captured by conventional stormwater control measures. This study builds upon a prior laboratory-based column study investigating biochar and regenerated activated carbon (RAC) amendment for removing hydrophilic trace organic contaminants (HiTrOCs) and poly- and perfluoroalkyl substances (PFASs) from stormwater runoff. A robust contaminant transport model framework incorporating time-dependent flow and influent concentration is developed and validated to predict HiTrOC and PFAS transport in biochar- and RAC-amended stormwater filters. Specifically, parameters fit using a sorption-retarded intraparticle pore diffusion transport model were validated using data further along the depth of the column and compared to equilibrium batch isotherms. The transport model and fitted parameters were then used to estimate the lifetime of a hypothetical stormwater filter in Seal Beach, CA, to be 35 ± 6 years for biochar- and 51 ± 17 years for RAC-amended filters, under ideal conditions with no filter clogging. This work offers insights on the kinetics of HiTrOC and PFAS transport within biochar and RAC filters and on the impact of filter design on contaminant removal performance and longevity.


Asunto(s)
Caniformia , Fluorocarburos , Phocidae , Purificación del Agua , Animales , Lluvia , Abastecimiento de Agua , Hollín
2.
Environ Res ; 219: 115145, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36566964

RESUMEN

Heavy metal contamination in water is a growing threat, endangering the environmental stability. Mercury (Hg) is one of the most lethal heavy metals damaging the immune and nervous system irreversibly. A novel synthetic route to prepare bismuth sulfide (Bi2S3) nanoparticles in presence of the surfactant Pluronic (P123) was illustrated in this work. The sorption of Hg (II) by the nanoparticles was investigated. The surfactant assisted nanoparticles showed enhanced surface area and potential compared to the unmodified ones. The effects of adsorbent dose, pH, initial concentration, and temperature were investigated. The maximum Hg (II) adsorption capacity for the surfactant enhanced Bi2S3 was 832 mg/g at 303 K and pH 5. The distribution coefficient (Kd) of the order ∼106 ml/g indicated high selectivity of the synthesized adsorbent toward mercury ions. Chemisorption was identified to be the dominant mechanism of adsorption. The adsorbent also showed excellent reusability (>95%) after 5 cycles. The transport parameters involved in the adsorption, the effective pore diffusivity (Dp: 7.36 × 10-12 m2/s) and the mass transfer coefficient (kf: 1.52 × 10-6 m/s) were estimated from a first principle-based model.


Asunto(s)
Mercurio , Metales Pesados , Nanopartículas , Contaminantes Químicos del Agua , Mercurio/análisis , Tensoactivos , Adsorción , Agua , Cinética , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
3.
Biotechnol Bioeng ; 119(7): 2004-2009, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35320583

RESUMEN

The development of an in vitro 3D model for the growth of the nasal mucosa cells can improve the therapy and the study of pathological states for subjects with chronic airway conditions. We have previously characterized a system consisting of a scaffold with an internal channel and a perfusion bioreactor with two independent flows provided by an external and an internal circuit, respectively. In this paper, this system was designed as a model of the nasal cavity, in which cells, grown on the inner surface of the scaffold channel, would be in contact at the same time with both culture medium, supplied by the external circuit, and air, provided with the internal flow. To ensure adequate nutrient supply to the cells in the scaffold channel, the radial diffusion of the culture medium through the porous matrix was evaluated first in qualitative and, then, in quantitative terms, demonstrating the capability of the system to control the value and direction of this flux. As a preliminary study, the culture of epithelial cells in the scaffold channel is also discussed in static, maintaining the air-liquid interface condition for up to 3 weeks. Despite minor abnormalities, such as a gap between cell layers and some detachments from the scaffold, the scaffold ensured cell survival and growth during the experimental time.


Asunto(s)
Reactores Biológicos , Mucosa Nasal , Recuento de Células , Difusión , Humanos , Porosidad
4.
Chemphyschem ; 18(15): 2094-2102, 2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-28524266

RESUMEN

We investigated single-molecule and ensemble diffusivities in a silica nanopore with a chemically modified surface by molecular dynamics simulations. Solutes with graded polarity (nonpolar ethylbenzene and moderately polar benzyl alcohol) were equilibrated with a 40:60 v/v water/acetonitrile solvent in a 10 nm pore, the surface of which was rendered hydrophobic by modification with alkyl chains. Simulations enable detailed sampling of spatially dependent solvent and solute mobilities, which originate from microheterogeneity induced by the surface modification. Acetonitrile is enriched near the ends of the alkyl chains and forms a high-mobility interface region between the (nonpolar) bonded phase at the surface and the (polar) bulk liquid in the center of the pore. Solvent and solute diffusivities calculated from the time average of a single molecule and from the ensemble average over all molecules, respectively, revealed excellent agreement, which implies validity of ergodicity. The molecular-simulation approach to investigate the time average of a single molecule, on the one hand, and the ensemble average over a larger number of molecules, on the other hand, is general and can be adapted for a variety of surfaces, solvents, and solute molecules by using pores with tailored geometries and surface modifications.

5.
Water Environ Res ; 96(1): e10966, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38226502

RESUMEN

Commercial micro-mesoporous carbonaceous material (MCM; 56.8% mesopores) was applied for investigating the removal phenomenon of naproxen drug in aqueous solutions through batch adsorption experiments. Results demonstrated that the adsorption capacity of MCM to naproxen was slightly affected by different pHeq (2.0-11) and ionic strength (0-1 M NaCl). Adsorption kinetics, isotherms, thermodynamics, and mechanisms were evaluated at pH 7.0. Adsorption kinetics indicated the rate constants for adsorption (0.2 × 10-3  L/(mg × min) and desorption (0.076/min) and the adsorption equilibrium constant (2.6 × 10-3  L/mg). Adsorption isotherm showed that MCM exhibited a high-affinity adsorption capacity to naproxen (even at low concentrations) and its Langmuir maximum adsorption capacity (Qmax ) was 252.7 mg/g at 25°C. Adsorption thermodynamics proved that the adsorption process was endothermic and physisorption (ΔH° = 9.66 kJ/mol). The analysis result of pore size distribution demonstrated that the internal pore structure of MCM was appropriate for adsorbing naproxen molecules. Pore-filing mechanism (pore diffusion phenomenon) was confirmed by a considerable decrease in BET-surface area (585 m2 /g) and total pore volume (0.417 cm3 /g) of MCM after adsorbing naproxen (~1000 mg/L and pH 7.0) at 5 min (341 and 0.256), 60 min (191 and 0.205), 120 min (183 and 0.193), 360 min (144 and 0.175), and 24 h (71.6 m2 /g and 0.123 cm3 /g, respectively). The pore diffusion occurred rapidly (even at the initial adsorption period of 5 min). The FTIR technique was applied to identify the existence of C-H···π and n-π interaction. π-π interaction (evaluated through ID /IG ratio and C=C band) played a minor contribution in adsorption mechanisms. The ID /IG ratio (determined by the Raman technique) of MCM before adsorption (1.195) was similar to that after adsorption (1.190), and the wavenumber (C=C band; its FTIR spectrum) slightly shifted from 1638 to 1634 cm-1 after adsorption. A decrease in the Qmax value of MCM from 249 to 217 (H2 O2 -oxidized MCM) or to 224 mg/g (HNO3 -oxidized MCM) confirmed the presence of π-π interaction. Electrostatic attraction was a minor contribution. MCM can serve as a promising material for removing naproxen from water environment through a pore-filling mechanism. PRACTITIONER POINTS: Pore-filling mechanism was proposed by comparing textural properties of MCM before and after adsorbing naproxen. C-H···π and n-π interactions were identified via FTIR technique. π-π interaction was observed by FTIR and Raman techniques. Oxidation of MCM with HNO3 or H2 O2 was a helpful method to explore π-π interaction. Electrostatic attraction was explained through studies: effects of pH and NaCl along with desorption.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Agua/química , Naproxeno , Cloruro de Sodio , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Termodinámica , Adsorción , Cinética
6.
Anal Sci ; 40(8): 1561-1567, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38727929

RESUMEN

We investigated the diffusion behavior of rhodamine 6G (Rh6G) within single octadecylsilyl-functionalized (ODS) silica particle in an acetonitrile (ACN)/water system using fluorescence correlation spectroscopy (FCS). FCS measurements were conducted at the center of the particle to exclusively determine the intraparticle diffusion coefficient (D). The obtained D values were analyzed based on a pore and surface diffusion model, the results of which indicate that surface diffusion primarily governs the intraparticle diffusion of Rh6G. Furthermore, an increase in the concentration of ACN (CACN) resulted in a corresponding increase in the surface diffusion coefficient (Ds), whereas the addition of NaCl did not significantly affect the Ds values. We attributed this dependence of Ds to the dielectric constant change in the interfacial liquid phase formed on the ODS layer. Specially, Ds values of (4.0 ± 0.5) × 10-7, (7.7 ± 1.1) × 10-7, (1.0 ± 0.3) × 10-6, and (1.1 ± 0.2) × 10-6 cm2 s-1 were obtained for CACN = 20, 30, 40, and 50 vol%, respectively. We anticipate that this approach will contribute to advancing research on intraparticle mass transfer mechanisms.

7.
Water Res ; 258: 121811, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38833811

RESUMEN

Urban stormwater runoff is considered a key component of future water supply portfolios for water-stressed cities. Beneficial use of runoff, such as capture for recharge of drinking water aquifers, relies on improved stormwater treatment. Many dissolved constituents, including metals and trace organic contaminants (TrOCs) such as hydrophilic pesticides and poly- and perfluoroalkyl substances (PFASs), are of concern due to their toxicity, persistence, prevalence in stormwater runoff, and poor removal in conventional stormwater control measures. This study explores the operational flow rate limitations of black carbon (BC)-amended engineered media filters for removal of a wide suite of dissolved metals and TrOCs and provides validation for a previously developed predictive TrOC transport model. Column experiments were conducted with face velocities of 40 and 60 cm h-1 to assess Douglas Fir-based biochar and regenerated activated carbon (RAC) filter performance in light of media-contaminant removal kinetic limitations. This study found that increasing the face velocity in BC-amended filters to 40 and 60 cm h-1, which are representative of field conditions, decreased the removal of total suspended solids, turbidity, dissolved hydrophilic TrOCs, and PFASs when expressed as volume treated relative to previous studies conducted at 20 cm h-1. Dissolved metals and hydrophobic TrOCs removal were not substantially affected by the increased flow rates. A predictive 1-d intraparticle pore diffusion-limited sorption model with sorption and effective tortuosity parameters determined previously from experiments conducted at 20 cm h-1 was validated for these higher flow rates. This work provides insights to the kinetic limitations of contaminant removal within biochar and RAC filters and implications for stormwater filter design and operation.


Asunto(s)
Filtración , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/química , Cinética , Purificación del Agua/métodos , Carbón Orgánico/química , Lluvia , Hollín/química , Carbono/química
8.
Biotechnol Prog ; 39(1): e3300, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36101005

RESUMEN

This work addresses the functional properties of the core-shell resins Capto Core 400 and 700 for a broad range of proteins spanning 66.5 to 660 kDa in molecular mass, including bovine serum albumin (BSA) in monomer and dimer form, fibronectin, thyroglobulin, and BSA conjugates with 10 and 30 kDa poly(ethylene glycol) chains. Negatively charged latex nanoparticles (NPs) with nominal diameters of 20, 40, and 100 nm are also studied as surrogates for bioparticles. Protein binding and its trends with respect to salt concentration depend on the protein size and are different for the two agarose-based multimodal resins. For the smaller proteins, the amount of protein bound over practical time scales is limited by the resin surface area and is larger for Capto Core 400 compared with Capto Core 700. For the larger proteins, diffusion is severely restricted in Capto Core 400, resulting in lower binding capacities than those observed for Capto Core 700 despite the larger surface area. Adding 500 mM NaCl reduces the local bound protein concentration and diffusional hindrance resulting in higher binding capacities for the large proteins in Capto Core 400 compared with low ionic strength conditions. The NPs are essentially completely excluded from the Capto Core 400 pores. However, 20 and 40 nm NPs bind significantly to Capto Core 700, further hindering protein diffusion. A model is provided to predict the dynamic binding capacities as a function of residence time.


Asunto(s)
Albúmina Sérica Bovina , Cloruro de Sodio , Cloruro de Sodio/química , Adsorción , Albúmina Sérica Bovina/química , Polímeros/química , Polietilenglicoles
9.
Membranes (Basel) ; 13(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37103808

RESUMEN

Environmental risks can arise from the existence of heavy metals in wastewater and their land disposal. To address this concern, a mathematical technique is introduced in this article that enables the anticipation of breakthrough curves and the imitation of copper and nickel ion separation onto nanocellulose in a fixed-bed system. The mathematical model is based on mass balances for copper and nickel and partial differential equations for pore diffusion in a fixed bed. The study evaluates the impact of experimental parameters such as bed height and initial concentration on the shape of the breakthrough curves. At 20 °C, the maximum adsorption capacities for copper and nickel ions on nanocellulose were 5.7 mg/g and 5 mg/g, respectively. The breakthrough point decreased with increasing solution concentration at higher bed heights, while at an initial concentration of 20 mg/L, the breakthrough point increased with bed height. The fixed-bed pore diffusion model showed excellent agreement with the experimental data. The use of this mathematical approach can help alleviate the environmental hazards that arise from the presence of heavy metals in wastewater. The study highlights the potential of nanocellulose as a material for membrane technology, which can effectively address these risks.

10.
J Chromatogr A ; 1673: 463058, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35468372

RESUMEN

Cycle stability is important for preparative chromatography resins. Up to 200 cycles have been reported for Protein A affinity resins when used under optimized operating conditions. Through engineered ligands, alkaline resistant Protein A resins are available that can withstand repeated cleaning-in-place cycles with even 1 M NaOH. This enables an increase of purification cycles through the reduction of fouling while maintaining high binding capacities. Previously, non-intuitive changes in dynamic binding capacity after alkaline treatment have been observed for these novel Protein A resins, where sharper breakthrough curves and increased capacities were reported. In this work, we have systematically investigated resins with both low and high alkaline stability and studied the changes in static and dynamic binding capacities and elution behavior. We propose that the observed mass transfer increases of up to 40% are due to a switch in diffusion mechanism, as shown by confocal laser scanning microscopy. Based on our results, only a small window of alkaline treatment conditions exists, where dynamic binding capacity can be increased. Our findings may help to explain previous findings and observations of others.


Asunto(s)
Proteína Estafilocócica A , Cromatografía de Afinidad/métodos , Difusión , Ligandos , Proteína Estafilocócica A/química
11.
J Chromatogr A ; 1676: 463264, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35752146

RESUMEN

Elucidation of intraparticle mass transfer mechanisms in protein chromatography is essential for process design. This study investigates the differences of adsorption and diffusion parameters of basic human fibroblast factor 2 (hFGF2) in a simple (purified) and a complex (clarified homogenate) feed solution on the grafted agarose-based strong cation exchanger Capto S. Microscopic investigations using confocal laser scanning microscopy revealed slower intraparticle diffusion of hFGF2 in the clarified homogenate compared to purified hFGF2. Diffusive adsorption fronts indicated a strong contribution of solid diffusion to the overall mass transfer flux. Protein adsorption methods such as batch uptake and shallow bed as well as breakthrough curve experiments confirmed a 40-fold reduction of the mass transfer flux for hFGF2 in the homogenate compared to pure hFGF2. The slower mass transfer was induced by components of the clarified homogenate. Essentially, the increased dynamic viscosity caused by a higher concentration of dsDNA and membrane lipids in the clarified homogenate contributed to this decrease in mass transfer. Moreover, binding capacity for hFGF2 was much lower in the clarified homogenate and substantially decreased the adsorbed phase driving force for mass transfer.


Asunto(s)
Proteínas , Adsorción , Cromatografía por Intercambio Iónico , Difusión , Humanos , Sefarosa/química
12.
J Hazard Mater ; 412: 125255, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33550128

RESUMEN

Adsorption of lead(II) using carbon-rich chars is an environmentally sustainable approach to remediate lead(II) pollution in industrial wastewater. We studied mechanisms for lead(II) adsorption from synthetic wastewater by biochars produced by microwave-assisted pyrolysis and hydrochars by hydrothermal carbonization at three temperatures using four feedstocks. Lead(II) adsorption was highest (165 mg g-1) for canola straw biochar produced at 500 °C. Except for chars derived from sawdust, biochars outperformed hydrochars for lead(II) adsorption due to changes in solution pH driven by char pH. As char production temperature increased, lead(II) adsorption decreased in hydrochar mainly due to interaction with aromatic carbon but increased in biochar due to precipitation as hydrocerussite and lead oxide phosphate. Lead(II) adsorption also occurred via surface complexation and cation-á´¨ interaction, as the data fitted well to Freundlich, Langmuir and Temkin models, and the pseudo-first and pseudo-second order kinetic models, depending on feedstock type and production temperature. More than 80% of lead(II) adsorption occurred in the first 3 h for both types of chars; with a few exceptions, adsorption continued for almost 24 h. We conclude that production method, production temperature and feedstock type are crucial factors to consider in designing chars as adsorbents for removing lead(II) from wastewater.


Asunto(s)
Plomo , Microondas , Adsorción , Carbón Orgánico , Temperatura
13.
J Chromatogr A ; 1646: 462125, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33894456

RESUMEN

3D printing has recently found application in chromatography as a means to create ordered stationary phases with improved separation efficiency. Currently, 3D printed stationary phases are limited by the lack of 3D printing materials suitable for chromatographic applications, and require a strict compromise in terms of desired resolution, model size and the associated print time. Modelling of mass transfer in 3D printed monoliths is also fundamental to understand and further optimise separation performance of 3D printed stationary phases. In this work, a novel 3D printing material was formulated and employed to fabricate monolithic cation exchangers (CEXs) with carboxyl functionalities. CEXs were printed with ligand densities of 0.7, 1.4, 2.1 and 2.8 mmol/g and used in batch adsorption experiments with lysozyme as model protein. All CEXs demonstrated high binding strength towards lysozyme, with maximum binding capacities of up to 108 mg/mL. The experimental results were described using mass transfer models based on lumped pore diffusion and lumped solid diffusion mechanisms adapted to reflect the complex geometry of the 3D printed monoliths. An exact 3D model as well as less computationally demanding 1D and 2D approximations were evaluated in terms of their quality to capture the experimental trend of batch adsorption kinetic data. Overall, the model results indicate that mass transfer in the fabricated CEXs is mostly controlled by pore diffusion at high protein concentrations in the mobile phase, with solid diffusion becoming important at low protein concentrations. Also, the kinetic data were approximated equally well by both the full 3D model as well as the 2D approximation, indicating leaner mathematical models of lower dimensionality can be employed to describe mass transfer in complex three dimensional geometries. We believe this work will help spur the development of 3D printable materials for separations and aid in the development of quantitative platforms to evaluate and optimise the performance of 3D printed monoliths.


Asunto(s)
Cationes , Modelos Teóricos , Impresión Tridimensional , Adsorción , Cromatografía , Difusión , Cinética
14.
J Chromatogr A ; 1653: 462412, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34320430

RESUMEN

Elucidation of protein transport mechanism in ion exchanges is essential to model separation performance. In this work we simulate intraparticle adsorption profiles during batch adsorption assuming typical process conditions for pore, solid and parallel diffusion. Artificial confocal laser scanning microscopy images are created to identify apparent differences between the different transport mechanisms. Typical sharp fronts for pore diffusion are characteristic for Langmuir equilibrium constants of KL ≥1. Only at KL = 0.1 and lower, the profiles are smooth and practically indistinguishable from a solid diffusion mechanism. During hold and wash steps, at which the interstitial buffer is removed or exchanged, continuation of diffusion of protein molecules is significant for solid diffusion due to the adsorbed phase concentration driving force. For pore diffusion, protein mobility is considerable at low and moderate binding strength. Only when pore diffusion if completely dominant, and the binding strength is very high, protein mobility is low enough to restrict diffusion out of the particles. Simulation of column operation reveals substantial protein loss when operating conditions are not adjusted appropriately.


Asunto(s)
Cromatografía por Intercambio Iónico , Proteínas , Adsorción , Difusión , Cinética , Microscopía Confocal , Proteínas/química
15.
J Hazard Mater ; 403: 123624, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264856

RESUMEN

In this study, the metal organic framework (MOF) ZIF-8 was investigated as potential adsorbent for heavy metal ions. The MOF powder was used further to prepare mixed matrix beads (MMBs) using polysulfone as the base material. Both the MOF powder and the MMBs were characterized using Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller (BET) analyzer and zetasizer. Adsorption capacity of the MMBs were 164-220 mg/g for Pb and 92-161 mg/g for Cd. A fundamental pore diffusion-adsorption model was used to predict the batch kinetics for both single and multicomponent cases and effective pore diffusivities and mass transfer coefficients were determined. Mutual interactions among heavy metals were quantified using interaction parameters. ZIF-8, incorporated in the PSF matrix, plays the predominant role in capturing the metal ions through surface complexation with the NH and metal-OH groups. A first principle-based model involving convection, diffusion and adsorption was used to quantify the breakthrough behavior for the continuous fixed bed column using the MMBs. The column performance was tested with battery industry effluent. The saturated beads were suitably regenerated using 0.1(M) HCl solution. Finally, the model parameters were used for scaling up of the columns.

16.
Chemosphere ; 247: 125811, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31945720

RESUMEN

Microcystin-LR (MC-LR) is the most common cyanotoxin released from algal-blooms. The study investigated the MC-LR adsorption mechanisms by comparing adsorption performance of protonated mesoporous carbon/silica (MC-H, MS-H) and their amino-functionalized forms (MC-NH2 and MS-NH2) considering surface chemistry and pore characteristics. The maximum MC-LR adsorption capacity (Langmuir model) of MC-H (37.87 mg/g) was the highest followed by MC-NH2 (29.25 mg/g) and MS-NH2 (23.03 mg/g), because pore structure is partly damaged during amino-functionalization. However, MC-NH2 (k2 = 0.042 g/mg/min) reacted faster with MC-LR than MC-H during early-stage adsorption due to enhancing electrostatic interactions. Intra-particle diffusion model fit indicated Kp,1 of MC-H (2.11 mg/g/min1/2) was greater than MC-NH2 due to its greater surface area and pore volume. Also, large mesopore diameters are favorable to MC-LR adsorption by pore diffusion. The effect of adsorbate molecular size on adsorption trend against MC-H, MC-NH2 and MS-NH2 was determined by kinetic experiments using two dyes, reactive blue and acid orange: MS-NH2 achieved the highest adsorption for both dyes due to the large number of amino groups on its surface (41.2 NH2/nm2). Overall, it was demonstrated that adsorption of MC-LR on mesoporous materials is governed by (meso-)pore diffusion and π - π (and hydrophobic) interactions induced by carbon materials; in addition, positively-charged grafted amino groups enhance initial MC-LR adsorption rate.


Asunto(s)
Adsorción , Carbono/química , Microcistinas/química , Dióxido de Silicio/química , Aminas/química , Difusión , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Toxinas Marinas , Porosidad , Electricidad Estática , Propiedades de Superficie
17.
Membranes (Basel) ; 10(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138163

RESUMEN

Hemoconcentration membranes used in cardiopulmonary bypass require a pore structure design with high pure water permeability, which does not allow excessive protein adsorption and useful protein loss. However, studies on hemoconcentration membranes have not been conducted yet. The purpose of this study was to analyze three-dimensional pore structures and protein fouling before and after blood contact with capillary membranes using the tortuous pore diffusion model and a scanning probe microscope system. We examined two commercially available capillary membranes of similar polymer composition that are successfully used in hemoconcentration clinically. Assuming the conditions of actual use in cardiopulmonary bypass, bovine blood was perfused inside the lumens of these membranes. Pure water permeability before and after bovine blood perfusion was measured using dead-end filtration. The scanning probe microscopy system was used for analysis. High-resolution three-dimensional pore structures on the inner surface of the membranes were observed before blood contact. On the other hand, many pore structures after blood contact could not be observed due to protein fouling. The pore diameters calculated by the tortuous pore diffusion model and scanning probe microscopy were mostly similar and could be validated reciprocally. Achievable pure water permeabilities showed no difference, despite protein fouling on the pore inlets (membrane surface). In addition, low values of albumin sieving coefficient are attributable to protein fouling that occurs on the membrane surface. Therefore, it is essential to design the membrane structure that provides the appropriate control of fouling. The characteristics of the hemoconcentration membranes examined in this study are suitable for clinical use.

18.
Water Res ; 161: 108-118, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31181446

RESUMEN

Sequestration of anthropogenic antibiotics by biochars from waters may be a promising strategy to minimize environmental and human health risks of antibiotic resistance. This study investigated the long-term sequestration of lincomycin by 17 slow-pyrolysis biochars using batch sorption experiments during 365 days. Sorption kinetics were well fitted to the Weber-Morris intraparticle diffusion model for all tested biochars with the intraparticle diffusion rate constant (kid) of 25.3-166 µg g-1 day-0.5 and intercept constant (Cid) of 39.0-339 µg g-1, suggesting that the sorption kinetics were controlled by fast initial sorption and slow pore diffusion. The quasi-equilibrium sorption isotherms became more nonlinear with increasing equilibration time at 1, 7, 30, and 365 days, likely due to increasing abundance of heterogeneous sorption sites in biochars over time. Intriguingly, low-temperature (300 °C) and high-temperature (600 °C) biochars had faster sorption kinetics than intermediate-temperature (400-500 °C) biochars at the long term, which was attributed to greater specific surface area and pore volume of high-temperature biochars and the substantial and continuous release of dissolved organic carbon (DOC) from low-temperature biochars, respectively. DOC release enhanced lincomycin sorption by decreasing biochar particle size and/or increasing the accessibility of sorption sites and pores initially blocked by DOC. Additionally, a large fraction (>75%) of sorbed lincomycin in biochars after a 240-day equilibration could not be extracted by the acetonitrile/methanol extractant. The strong sorption and low extraction recovery demonstrated the great potential of biochars as soil amendments for long-term sequestration of antibiotics in-situ.


Asunto(s)
Carbono , Lincomicina , Adsorción , Carbón Orgánico
19.
Water Res ; 162: 518-527, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31277934

RESUMEN

Hydrophilic organic micropollutants are commonly detected in source water used for drinking water production. Effective technologies to remove these micropollutants from water include adsorption onto granular activated carbon in fixed-bed filters. The rate-determining step in adsorption using activated carbon is usually the adsorbate diffusion inside the porous adsorbent. The presence of mesopores can facilitate diffusion, resulting in higher adsorption rates. We used two different types of granular activated carbon, with and without mesopores, to study the adsorption rate of hydrophilic micropollutants. Furthermore, equilibrium studies were performed to determine the affinity of the selected micropollutants for the activated carbons. A pore diffusion model was applied to the kinetic data to obtain pore diffusion coefficients. We observed that the adsorption rate is influenced by the molecular size of the micropollutant as well as the granular activated carbon pore size.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Difusión , Cinética
20.
Chemosphere ; 215: 827-834, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30359952

RESUMEN

Black carbon such as biochar has been shown to support microbial redox transformation by accepting and/or donating electrons. Electron storage capacity (ESC) is an important property that determines the capacity of a biochar to mediate redox processes in natural and engineered systems. However, it remained unclear whether a biochar's ESC is constant and reversible and if so to what extent, over what redox potential range ESC is distributed, and what fraction of the ESC is microbially accessible. In this study, we developed chemical methods that employed combinations of reductants and oxidants of different potentials - Ti(III) citrate, ferricyanide, dithionite, and dissolved O2 - to measure the ESC of Soil Reef biochar, a wood-derived biochar that can serve as an electron donor or acceptor for Geobacter metallireducens. For a given oxidant-reductant pair, the ESC obtained over multiple redox cycles was constant and fully reversible, though lower than that of the virgin biochar. Pore diffusion within biochar particles was rate-limiting and controlled the timescale for redox equilibrium. Results suggest that redox-facile functional groups in biochar were distributed over a broad range of potentials. The ESC measured using dithionite indicates approximately 22% of the biochar's reversible ESC was accessible to G. metallireducens. We propose that reversible ESC may be regarded as a constant and quantifiable property of black carbon.


Asunto(s)
Carbón Orgánico/química , Electrones , Geobacter/química , Suelo/química , Madera/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA