RESUMEN
In this study, a new potentiometric sensor was developed for the determination of the local anesthetic drug procaine in pharmaceutical samples. Procaine (Pr)-Tetraphenlyborate (TPB) ion-pair was synthesized and used as a sensor material. Potentiometric sensors using the synthesized ion pair (Pr-TPB), poly(vinyl chloride) (PVC) and o-nitrophenyloctyl ether (o-NPOE) in different proportions were prepared and their performance properties were tested. Among the prepared sensors, the best potentiometric response characteristics were obtained with the sensor composition Pr-TPB:PVC:o-NPOE in the ratio of 6.0:32.0:62.0 (w/w %). The new procaine sensor developed in the present study had a near-Nernstian behavior of 54.1 ± 3.3 mV/per decade and a low detection limit of 3.18 × 10-5 mol L-1 in the concentration range of 1.0 × 10-1-1.0 × 10-4 mol L-1. Additionally, the sensor had a response time of less than 10 s and could work in a wide pH range for two different concentration values without being affected by pH changes. Finally, the new procaine potentiometric sensor was used to detect procaine in injection samples and successfully determined procaine concentrations with high recoveries.
Asunto(s)
Anestésicos Locales , Cloruro de Polivinilo , Potenciometría , Procaína , Procaína/análisis , Potenciometría/métodos , Anestésicos Locales/análisis , Cloruro de Polivinilo/química , Tetrafenilborato/química , Concentración de Iones de Hidrógeno , Límite de Detección , ÉteresRESUMEN
Ionic liquids (ILs) are organic chemical compounds that are composed only of ions, a large organic cation and a smaller inorganic or organic anion. These are salts whose melting point is lower than the boiling point of water. ILs have many interesting properties, thanks to which they find great practical applications in analytics, electrochemistry, separation techniques, catalysis and others. One of the many areas of application of ionic liquids is sensors especially electrochemical sensors including ion-selective electrodes. In this case, the properties of ILs that are particularly useful include very good electrical conductivity, high electrochemical stability, good extraction properties, hydrophobic character and compatibility with other materials, e. g. polyvinyl chloride plasticizers or carbon nanomaterials. ILs were used as components of ion-selective membranes, both polymeric ones based on PVC and membranes in carbon paste electrodes. ILs performed various functions in these membranes, including lipophilic ionic additive, ionophore/ion exchanger, plasticizer, transducer media and matrix. They were also used as a component of the intermediate layer in solid contact ISEs. The last chapter presents examples of the use of ILs in reference electrodes. This review discusses the use of ionic liquids in ion-selective electrodes (ISEs) and reference electrodes over the last ten years.
RESUMEN
The electron accepting capacity (EAC) of soil plays a pivotal role in the biogeochemical cycling of nutrients and transformation of redox-labile contaminants. Prior EAC studies of soils and soil constituents utilized different methods, reductants, and mediators, making cross-study comparison difficult. This study was conducted to quantify and compare the EACs of two soil constituents (hematite and Leonardite humic acid) and 12 soils of diverse composition, using chemical redox titration (CRT) with dithionite as the reductant and mediated electrochemical reduction (MER) with diquat as the mediator. The EACs of hematite and humic acid measured by CRT (EACCRT) and MER (EACMER) are similar and close to the theoretical/reported values. For soils, EACCRT and EACMER increased with iron and organic carbon (TOC) contents, suggesting iron and carbon were the main contributors to soil EAC. EACCRT > EACMER for all soils, and their difference (ΔEAC = EACCRT - EACMER) increased with TOC, presumably due to the longer contact time in CRT and thus more complete reduction of carbonaceous redox moieties. We propose an equation that relates EACCRT to EACMER (ΔEAC = 1796fTOC + 32) and another that predicts EACCRT from dithionite-reducible Fe and TOC (EACCRT = 2705 µmol e-/g C × fTOC + 17907 µmol e-/g Fe × fFedithionite-reducible). Our results suggest that at least 10-15% of soil organic carbon contributed to EACCRT.
Asunto(s)
Sustancias Húmicas , Oxidación-Reducción , Suelo , Suelo/química , Electrones , Compuestos Férricos/química , Técnicas Electroquímicas , Silicatos de Aluminio/química , Carbono/química , MineralesRESUMEN
The recently introduced unified pH ([Formula: see text]) concept enables rigorous pH measurements in non-aqueous and mixed media while at the same time maintaining comparability to the conventional aqueous pH scale. However, its practical application is hindered by a shortage of reference [Formula: see text] values. In order to improve this situation, the European Metrology Research Project (EMPIR) UnipHied ("Realisation of a UnipHied pH scale") launched an interlaboratory comparison among highly experienced electrochemistry expert laboratories to assign the first such reference [Formula: see text] values by adopting an extensive statistical treatment of the reported measurement data: to phosphate buffer in water-ethanol mixture (50 wt% of ethanol) and ammonium formate buffer in pure ethanol. Two different measurement setups - one capable of being easily adopted in industrial applications - have been used to demonstrate the robustness of [Formula: see text] measurement. This is an important step towards wider adoption of the [Formula: see text] concept in practice, like liquid chromatography, biofuels analysis and electrocatalysis.
RESUMEN
PdRuO2/PVP nanomaterial was synthesized using a straightforward method and characterized using advanced analytical methods such as TEM, XRD, XPS, elemental mapping and SEM. The synthesized PdRuO2/PVP nanomaterial was used as an ionophore in potentiometric sensor electrodes and successfully adapted to Cr3+ ion detection in a large number of aqueous samples. Several experimental parameters of the PdRuO2/PVP sensor such as potentiometric behavior, selectivity, repeatability, response time, pH, titration, and recovery in real samples were investigated. Potentiometric behavioral characteristics were performed in the concentration range 1 × 10-6-1.0 × 10-1 M. The repeated experiments performed six times showed that there was no deviation in the measurements. The limit of detection of the PdRuO2/PVP potentiometric sensor was very low with a value of 8.6 × 10-8 M. The potentiometric measurements showed that the synthesized PdRuO2/PVP ionophore was highly effective in detecting Cr3+ in a wide pH range of 2.0-8.0 and was found to have a shelf life of over 1 year. As a result, the synthesized PdRuO2/PVP electrode material was found to be highly selective, stable, and applicable for Cr3+ detection.
RESUMEN
All-solid-state ion selective electrodes (ASS-ISEs) are easy to miniaturize and array, meeting the needs of home sensing devices. However, ASS-ISEs still faces challenges in accuracy and stability due to basic potential changes caused by non-specific adsorption of charged background compositions and the complex electrode preparation steps. To this end, our group successfully subtracted the background signal by integrating a self-calibrating channel in the sensing array and simplified the electrode preparation steps by preparing multi-functional PS-Au nanocomposites. However, the uniformity and gold content of PS-Au nanocomposites are difficult to control, so Au@PS nanocomposites are prepared as sensor materials in this paper to further reduce the differences between batches of electrodes. K+ Au@PS sensing array can be obtained by directly dropping Au@PS nanocomposites on the screen-printed carbon electrodes (SPCEs), which shows a near Nernstian behavior in the range 1.0 × 10-3 M to 0.3 M and good reproducibility in real sample testing. The detection results by K+ Au@PS sensing array for K+ in human morning urine agreed well with that tested by ICP-AES, which make the K+-ASS-ISE suitable for home health monitoring.
RESUMEN
This work aims to serve as a comprehensive guide to properly characterize solid-contact ion-selective electrodes (SC-ISEs) for long-term use as they advance toward calibration-free sensors. The lack of well-defined SC-ISE performance criteria limits the ability to compare results and track progress in the field. Laser-induced graphene (LIG) is a rapid and scalable method that, by adjusting the CO2 laser parameters, can create LIG substrates with tunable surface properties, including wettability, surface chemistry, and morphology. Herein, we fabricate laser-induced graphene (LIG) solid-contact electrodes using different laser settings and subsequently convert them into ion-selective sensors using a potassium-selective membrane. We measure the aforementioned tunable surface properties and correlate them with resultant low-frequency capacitance and water layer formation in an effort to pinpoint their effects on the sensitivity (Nernstian response), reproducibility (E°' variation), and potential stability of the LIG-based SC-ISEs. More specifically, we demonstrate that the surface wettability of the LIG substrate, which can be tuned by controlling the lasing parameters, can be modified to exhibit hydrophobic (contact angle > 90°) and even highly hydrophobic surfaces (contact angle ≈ 130°) to help reduce sensor drift. Recommendations are also provided to ensure proper and robust characterization of SC-ISEs for long-term and continuous measurements. Ultimately, we believe that a comprehensive understanding of the correlation between LIG tunable surface properties and SC-ISE performance can be used to improve the electrochemical behavior and stability of SC-ISEs designed with a wide range of materials beyond LIG.
RESUMEN
This study focused on developing an advanced bitterness sensor designed to minimize interference from common anions such as nitrate (NO3-) and iodide (I-) by incorporating partially dissociated amine compounds into the sensor membrane. The conventional bitter sensor (C00) uses fully dissociated quaternary ammonium salt tetradecyl ammonium bromide (TDAB), which typically exhibits high responses to these anions, leading to inaccurate bitterness assessments. To address this issue, we explored the use of three partially dissociated amines-oleylamine (OAm), dioctadecylamine (DODA), and tridodecylamine (TDA)-as lipids in the membrane components. We fabricated sensor membranes and tested their ion selectivity, interference resistance to anion, and sensitivity to iso-alpha acids (IAAs), representative bitter compounds in beer. The results showed that the membranes with partially dissociated amines significantly reduced anion interference. Notably, the sensitivity of the TDA membrane to IAAs was 80.4 mV/dec in concentration, exceeding the 68.5 mV/dec of the TDAB membrane. This enhanced sensitivity, coupled with reduced anion interference, reveals a novel property of partially dissociated lipids in taste sensors, distinguishing them from fully dissociated lipids. These findings pave the way for the development of sensors that can accurately assess a bitter taste and have potential applications in the food and beverage industry.
RESUMEN
Solid-contact ion-selective electrodes (SC-ISEs) have the advantages of easy miniaturization, even chip integration, easy carrying, strong stability, and more favorable detection in complex environments. They have been widely used in conjunction with portable, wearable, and intelligent detection devices, as well as in on-site analysis and timely monitoring in the fields of environment, industry, and medicine. This article provides a comprehensive review of the composition of sensors based on redox capacitive and double-layer capacitive SC-ISEs, as well as the ion-electron transduction mechanisms in the solid-contact (SC) layer, particularly focusing on strategies proposed in the past three years (since 2021) for optimizing the performance of SC-ISEs. These strategies include the construction of ion-selective membranes, SC layer, and conductive substrates. Finally, the future research direction and possibilities in this field are discussed and prospected.
RESUMEN
Carbon nanomaterials were introduced into this research as modifiers for polymeric membranes for single-piece electrodes, and their properties were studied for the case of nitrate-selective sensors. The use of graphene, carbon black and carbon nanotubes is shown to significantly improve the potentiometric response, while no redox response was observed. The use of carbon nanomaterials results in a near-Nernstian response (54 mV/pNO3-) towards nitrate ions over a wide linear range (from 10-1 to 10-6 M NO3-). The results obtained by chronopotentiometry and electrochemical impedance spectroscopy reveal little resistance, and the capacitance parameter is as high as 0.9 mF (for graphene-based sensor). The high electrical capacity of electrodes results in the good stability of the potentiometric response and a low potential drift (0.065 mV/h). Introducing carbon nanomaterials into the polymetric membrane, instead of using them as separate layers, allows for the simplification of the sensors' preparation procedure. With single-piece electrodes, one step of the procedure could be omitted, in comparison to the procedure for the preparation of solid-contact electrodes.
RESUMEN
Copper(II), nickel(II) and zinc(II) complexes of various peptide fragments of tau protein were studied by potentiometric and spectroscopic techniques. All peptides contained one histidyl residue and represented the sequences of tau(91-97) (Ac-AQPHTEI-NH2), tau(385-390) (Ac-KTDHGA-NH2) and tau(404-409) (Ac-SPRHLS-NH2). Imidazole-N donors of histidine were the primary metal binding sites for all peptides and all metal ions, but in the case of copper(II) and nickel(II), the deprotonated amide groups were also involved in metal binding by increasing pH. The most stable complexes were formed with copper(II) ions, but the presence of prolyl residues resulted in significant changes in the thermodynamic stability and speciation of the systems. It was also demonstrated that nickel(II) and especially zinc(II) complexes have relatively low thermodynamic stability with these peptides. The copper(II)-catalyzed oxidation of the peptides was also studied. In the presence of H2O2, the fragmentation of peptides was detected in all cases. In the simultaneous presence of H2O2 and ascorbic acid, the fragmentation of the peptide is less preferred, and the formation of 2-oxo-histidine also occurs.
Asunto(s)
Complejos de Coordinación , Cobre , Níquel , Fragmentos de Péptidos , Zinc , Proteínas tau , Níquel/química , Cobre/química , Zinc/química , Proteínas tau/química , Complejos de Coordinación/química , Fragmentos de Péptidos/química , Oxidación-Reducción , Histidina/química , Concentración de Iones de Hidrógeno , Peróxido de Hidrógeno/química , TermodinámicaRESUMEN
A series of novel Ga(III)-pyridine carboxylates ([Ga(Pic)3]·H2O (GaPic; HPic = picolinic acid), H3O[Ga(Dpic)2]·H2O (GaDpic; H2Dpic = dipicolinic acid), [Ga(Chel)(H2O)(OH)]2·4H2O (GaChel; H2Chel = chelidamic acid) and [Ga(Cldpic)(H2O)(OH)]2 (GaCldpic; H2Cldpic = 4-chlorodipicolinic acid)) have been synthesized by simple one-step procedure. Vibrational spectroscopy (mid-IR), elemental analysis, thermogravimetric analysis and X-ray diffraction confirmed complexes molecular structure, inter and intramolecular interactions and their influence to spectral and thermal properties. Moreover, complex species speciation was described in Ga(III)-HPic and Ga(III)-H2Dpic systems by potentiometry and 1H NMR spectroscopy and mononuclear complex species were determined; [Ga(Pic)2]+ (logß021 = 16.23(6)), [Ga(Pic)3] (logß031 = 20.86(2)), [Ga(Dpic)2]- (logß021 = 15.42(9)) and [Ga(Dpic)2(OH)]2- (logß-121 = 11.08(4)). To confirm the complexes stability in 1% DMSO (primary solvent for biological testing), timescale 1H NMR spectra were measured (immediately after dissolution up to 96 h). Antimicrobial activity evaluated by IC50 (0.05 mM) is significant for GaDpic and GaCldpic against difficult to treat and multi-resistant P. aeruginosa. On the other hand, the GaPic complex is most effective against Jurkat, MDA-MB-231 and A2058 cancer cell lines and significantly also decreases the HepG2 cancer cells viability at 75 and 100 µM concentrations in a relatively short time (up to 48 h). In addition, fluorescence measurements have been used to elucidate bovine serum albumin binding activity between ligands, Ga(III) complexes and bovine serum albumin.
Asunto(s)
Complejos de Coordinación , Neoplasias , Humanos , Albúmina Sérica Bovina/metabolismo , Piridinas/farmacología , Estructura Molecular , Línea Celular , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , LigandosRESUMEN
The weakly basic antibiotic and anti-inflammatory drug, clofazimine (CFZ), was first described in 1957. It has been used therapeutically, most notably in the treatment of leprosy. However, the compound is extremely insoluble in aqueous media, and, indeed, there is poor consensus about what its intrinsic solubility is since the reported values range from 0.04 to 11 ng/mL. To understand the speciation and solubilization of CFZ as a function of pH, it is of paramount importance to know the true aqueous pKa. However, there is also poor consensus about the value of the pKa (reported measured values range from 6.08 to 9.11). In the present study, we report the determination of the CFZ ionization constant using two independent techniques. A state-of-the-art potentiometric analysis was performed, drawing on titration data in methanol-water solutions (46-75 wt % MeOH) of CFZ, using the bias-reducing consensus of two different procedures of extrapolating the apparent psKa values to zero cosolvent to approximate the true aqueous pKa as 9.43 ± 0.12 (25 °C, I = 0.15 M reference ionic strength). In parallel, spectrophotometric UV/vis titration data were acquired (250-600 nm at different pH) in 10 mM HEPES buffer solutions containing up to 54 wt % MeOH. The alternating least squares (ALS) method was used in the analysis of the absorbance-pH spectra. Uncharacteristically, the cosolvent UV/vis data in our study showed reverse cosolvent dependence (apparent pKa values increased with increasing cosolvent) which could be explained by a dimerization of the free base. The analysis of UV/vis data obtained from 54 wt % MeOH-water solution containing 20 µM CFZ yielded the apparent pKa 9.51 ± 0.17 (I ≈ 0.005 M). To assess whether self-assembly of CFZ was energetically feasible, density functional theory (DFT) calculations were used to study the putative CFZ dimers in aqueous and methanol media. The DFT-optimized geometries and infrared spectra of CFZ dimers using water and methanol as solvents were calculated and analyzed. Based on the lack of negative frequencies in calculated infrared spectra, it was confirmed that optimized geometries correspond to the true energetic minima. Visual analysis of optimized structures indicates the presence of stacking interactions between two CFZ molecules. The protonation site (the imine nitrogen atom) was determined by 1H NMR spectroscopy.
Asunto(s)
Clofazimina , Metanol , Potenciometría/métodos , Concentración de Iones de Hidrógeno , Agua/química , Espectrofotometría/métodosRESUMEN
The occurrence of antibiotic residues in diverse water sources has long been acknowledged as a potential health concern due to the emergence and spread of antibiotic-resistant bacteria and genes. However, there have been limited studies into the presence of antibiotic-metal complexes (AMCs) in real-time wastewater matrices, and their impact on wastewater microbial communities. The present work, in this regard, investigated the stability of Imipenem-metal complexes (Me = Mg (II), Ca (II), Fe (II), Cu (II), and Al (III)) with computational studies, stoichiometry with potentiometric measurements, and their antibacterial activity towards wastewater model microorganisms- Bacillus subtilis (B. subtilis) and Escherichia coli (E. Coli) by Colony Forming Unit (CFU) method. The lower energy of Imipenem-metal complexes than the parent antibiotic- Imipenem, during energy optimization using density functional (DFT) methods, revealed that metal interactions of Imipenem stabilize the drug by minimizing its energy. Further, CFU studies indicated that these complexes display higher antimicrobial activity than parent antibiotics. The electron delocalization over the entire chelated system (AMCs) reduces polarity and increases the lipophilicity of the complexes, thereby facilitating stronger interaction between AMCs and the bacterial cell membrane. Results indicate increased antibacterial activity of Imipenem-metal complexes for both E. coli and B. subtilis. The antibacterial activity, was however, more pronounced in B. subtilis, with >97% growth inhibition for metal complexes of Imipenem (at a Minimum Inhibitory Concentration of 20 nM or 6 ppb (i.e., MIC90)), for both the stoichiometric ratios (metal to ligand) ratios (M: L 1: 1 and 2: 1). All around, with increased stability and toxicity, AMCs are emerging as contaminants of concern and demand immediate attention to devise methods for their removal.
Asunto(s)
Complejos de Coordinación , Imipenem , Imipenem/toxicidad , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , Aguas Residuales/toxicidad , Escherichia coli , Antibacterianos/toxicidad , Antibacterianos/química , Metales/química , Bacterias/metabolismo , Pruebas de Sensibilidad MicrobianaRESUMEN
Heme-copper respiratory oxidases are highly efficient molecular machines. These membrane enzymes catalyze the final step of cellular respiration in eukaryotes and many prokaryotes: the transfer of electrons from cytochromes or quinols to molecular oxygen and oxygen reduction to water. The free energy released in this redox reaction is converted by heme-copper respiratory oxidases into the transmembrane gradient of the electrochemical potential of hydrogen ions H+). Heme-copper respiratory oxidases have a unique mechanism for generating H+, namely, a redox-coupled proton pump. A combination of direct electrometric method for measuring the kinetics of membrane potential generation with the methods of prestationary kinetics and site-directed mutagenesis in the studies of heme-copper oxidases allows to obtain a unique information on the translocation of protons inside the proteins in real time. The review summarizes the data of studies employing time-resolved electrometry to decipher the mechanisms of functioning of these important bioenergetic enzymes.
Asunto(s)
Complejo IV de Transporte de Electrones , Hemo , Complejo IV de Transporte de Electrones/metabolismo , Hemo/química , Potenciales de la Membrana , Oxidorreductasas/metabolismo , Oxidación-Reducción , Protones , Ceruloplasmina/metabolismo , Oxígeno/metabolismoRESUMEN
Nitrite is an important food additive for cured meats; however, high nitrite levels pose adverse health effects to humans. Hence, monitoring nitrite concentration is critical to comply with limits imposed by regulatory agencies. Laser-induced graphene (LIG) has proven to be a scalable manufacturing alternative to produce high-performance electrochemical transducers for sensors. Herein, we expand upon initial LIG studies by fabricating hydrophilic and hydrophobic LIG that are subsequently converted into ion-selective sensors to monitor nitrite in food samples with comparable performance to the standard photometric method (Griess method). The hydrophobic LIG resulted in an ion-selective electrode with improved potential stability due partly to a decrease in the water layer between the electrode and the nitrite poly(vinyl) chloride-based ion-selective membrane. These resultant nitrite ion-selective sensors displayed Nernstian response behavior with a sensitivity of 59.5 mV dec-1, a detection limit of 0.3 ± 0.1 mg L-1 (mean ± standard deviation), and a broad linear sensing range from 10-5 to 10-1 M, which was significantly larger than currently published nitrite methods. Nitrite levels were determined directly in food extract samples of sausage, ham, and bacon for 5 min. These sensor metrics are significant as regulatory agencies limit nitrite levels up to 200 mg L-1 in finished products to reduce the potential formation of nitrosamine (carcinogenic compound). These results demonstrate the versatility of LIG as a platform for ion-selective-LIG sensors and simple, efficient, and scalable electrochemical sensing in general while demonstrating a promising alternative to monitor nitrite levels in food products ensuring regulatory compliance.
Asunto(s)
Grafito , Electrodos de Iones Selectos , Humanos , Grafito/química , Nitritos , Agua , Rayos LáserRESUMEN
Gustatory and olfactory receptors receive multiple chemical substances of different types simultaneously, but they can barely discriminate one chemical species from others. In this article, we describe a device used to measure taste, i.e., taste sensors. Toko and colleagues developed a taste sensor equipped with multiarray electrodes using a lipid/polymer membrane as the transducer in 1989. This sensor has a concept of global selectivity to decompose the characteristics of a chemical substance into taste qualities and to quantify them. The use of taste sensors has spread around the world. More than 600 examples of taste-sensing system have been used, while providing the first "taste scale" in the world. This article explains the principle of taste sensors and their application to foods and medicines, and also a novel type of taste sensor using allostery. Taste-sensor technology, the underlying principle of which is different from that of conventional analytical instruments, markedly affects many aspects including social economy as well as the food industry.
Asunto(s)
Técnicas Biosensibles , Gusto , Electrodos , InvestigaciónRESUMEN
Promethazine hydrochloride (PM) is a widely used drug so its determination is important. Solid-contact potentiometric sensors could be an appropriate solution for that purpose due to their analytical properties. The aim of this research was to develop solid-contact sensor for potentiometric determination of PM. It had a liquid membrane containing hybrid sensing material based on functionalized carbon nanomaterials and PM ions. The membrane composition for the new PM sensor was optimized by varying different membrane plasticizers and the content of the sensing material. The plasticizer was selected based on calculations of Hansen solubility parameters (HSP) and experimental data. The best analytical performances were obtained using a sensor with 2-nitrophenyl phenyl ether (NPPE) as the plasticizer and 4% of the sensing material. It had a Nernstian slope (59.4 mV/decade of activity), a wide working range (6.2 × 10-7 M-5.0 × 10-3 M), a low limit of detection (1.5 × 10-7 M), fast response time (6 s), low signal drift (-1.2 mV/h), and good selectivity. The working pH range of the sensor was between 2 and 7. The new PM sensor was successfully used for accurate PM determination in a pure aqueous PM solution and pharmaceutical products. For that purpose, the Gran method and potentiometric titration were used.
RESUMEN
Potentiometric sensors are the largest and most commonly used group of electrochemical sensors. Among them, ion-selective electrodes hold a prominent place. Since the end of the last century, their re-development has been observed, which is a consequence of the introduction of solid contact constructions, i.e., electrodes without an internal electrolyte solution. Research carried out in the field of potentiometric sensors primarily focuses on developing new variants of solid contact in order to obtain devices with better analytical parameters, and at the same time cheaper and easier to use, which has been made possible thanks to the achievements of material engineering. This paper presents an overview of new materials used as a solid contact in ion-selective electrodes over the past several years. These are primarily composite and hybrid materials that are a combination of carbon nanomaterials and polymers, as well as those obtained from carbon and polymer nanomaterials in combination with others, such as metal nanoparticles, metal oxides, ionic liquids and many others. Composite materials often have better mechanical, thermal, electrical, optical and chemical properties than the original components. With regard to their use in the construction of ion-selective electrodes, it is particularly important to increase the capacitance and surface area of the material, which makes them more effective in the process of charge transfer between the polymer membrane and the substrate material. This allows to obtain sensors with better analytical and operational parameters. Brief characteristics of electrodes with solid contact, their advantages and disadvantages, as well as research methods used to assess their parameters and analytical usefulness were presented. The work was divided into chapters according to the type of composite material, while the data in the table were arranged according to the type of ion. Selected basic analytical parameters of the obtained electrodes have been collected and summarized in order to better illustrate and compare the achievements that have been described till now in this field of analytical chemistry, which is potentiometry. This comprehensive review is a compendium of knowledge in the research area of functional composite materials and state-of-the-art SC-ISE construction technologies.
Asunto(s)
Electrodos de Iones Selectos , Polímeros , Electrodos , Polímeros/química , Óxidos , Potenciometría , Carbono/químicaRESUMEN
For the first time, a prototype of a portable device for the potentiometric determination of antioxidant capacity based on a new measurement principle is proposed. A feature of the approach is the use of an electrochemical microcell with separated spaces and two identical electrodes with immobilized reagents. An antioxidant solution is introduced into one half-cell, and the antioxidants interact with the reagents. The other half-cell contains only reagents. The potential difference between the electrodes is due to the change in the ratio of the oxidized and reduced form of the reagents, which occurs as a result of the reaction with the antioxidants in one of the half-cells and is related to their concentration. The range of linearity of the microcell with immobilized reagents is 40-4000 µM-eq, and the limit of detection is 20 µM-eq. The device was successfully tested in the analysis of standard antioxidant solutions. The recoveries were (92-113)%, and the relative standard deviation did not exceed 15%. A good correlation was found between the data obtained by the approach and the potentiometric method in a macrocell for fruit juice analysis. Pearson's coefficient for the obtained experimental data was 0.9955. The proposed portable device is promising and can be used in field conditions.