Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Planta ; 259(6): 155, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750378

RESUMEN

MAIN CONCLUSION: Pearl millet wild relatives harbour novel alleles which could be utilized to broaden genetic base of cultivated species. Genomics-informed pre-breeding is needed to speed up introgression from wild to cultivated gene pool in pearl millet. Rising episodes of intense biotic and abiotic stresses challenge pearl millet production globally. Wild relatives provide a wide spectrum of novel alleles which could address challenges posed by climate change. Pre-breeding holds potential to introgress novel diversity in genetically narrow cultivated Pennisetum glaucum from diverse gene pool. Practical utilization of gene pool diversity remained elusive due to genetic intricacies. Harnessing promising traits from wild pennisetum is limited by lack of information on underlying candidate genes/QTLs. Next-Generation Omics provide vast scope to speed up pre-breeding in pearl millet. Genomic resources generated out of draft genome sequence and improved genome assemblies can be employed to utilize gene bank accessions effectively. The article highlights genetic richness in pearl millet and its utilization with a focus on harnessing next-generation Omics to empower pre-breeding.


Asunto(s)
Genoma de Planta , Genómica , Pennisetum , Fitomejoramiento , Pennisetum/genética , Pennisetum/fisiología , Fitomejoramiento/métodos , Genoma de Planta/genética , Variación Genética , Sitios de Carácter Cuantitativo/genética , Alelos
2.
J Anim Ecol ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308204

RESUMEN

As spring phenology advances with climate change, so too must the timing of life cycle events. Breeding at the right time is critical in many species as it maximizes fitness. For long-distance migratory birds, flexibility in the duration of the arrival-breeding interval (pre-breeding period) may allow populations to adjust their timing of breeding. However, whether first egg-lay dates are flexible to local environmental conditions after arrival, and if they are constrained by the time needed to replenish energy lost during migration, remains unclear. We investigated the regional flexibility of the arrival-breeding interval in an avian migrant, the purple martin, Progne subis, across their breeding range. We evaluated whether the duration of the arrival-breeding interval was flexible to temperature and precipitation at breeding sites, and if timing was limited by migration rate and stopover duration. We also tested if longer interval durations were associated with higher fledging success. To address our hypotheses, we used a combination of migration tracking, weather and breeding data collected from four regions across eastern North America (26.1° N to 52.4° N latitude). We found the arrival-breeding interval to be shortest in the north and longest in the south. Across all regions, warmer temperatures encountered at breeding grounds were associated with shorter intervals, and faster migration rates led to longer intervals. The length of the interval was not influenced by precipitation or stopover duration. Finally, longer intervals were not associated with higher fledge success. Currently, the longer arrival-breeding intervals in this study system, on average 28.3 days, may provide both early and late-arriving birds with ample time for recovery so birds can lay eggs according to temperature. Any negative effects of faster migration may have been buffered by longer arrival-breeding intervals, as interval length did not determine fledge success. With ongoing climate change, further research is needed to examine if arrival-breeding intervals become constrained by migration timing, which may limit opportunities for migrants to match the timing of breeding with key resources.

3.
Am J Bot ; 111(6): e16357, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898619

RESUMEN

PREMISE: Wild species are strategic sources of valuable traits to be introduced into crops through hybridization. For peanut, the 33 currently described wild species in the section Arachis are particularly important because of their sexual compatibility with the domesticated species, Arachis hypogaea. Although numerous wild accessions are carefully preserved in seed banks, their morphological similarities pose challenges to routine classification. METHODS: Using a high-density array, we genotyped 272 accessions encompassing all diploid species in section Arachis. Detailed relationships between accessions and species were revealed through phylogenetic analyses and interpreted using the expertise of germplasm collectors and curators. RESULTS: Two main groups were identified: one with A genome species and the other with B, D, F, G, and K genomes. Species groupings generally showed clear boundaries. Structure within groups was informative, for instance, revealing the history of the proto-domesticate A. stenosperma. However, some groupings suggested multiple sibling species. Others were polyphyletic, indicating the need for taxonomic revision. Annual species were better defined than perennial ones, revealing limitations in applying classical and phylogenetic species concepts to the genus. We suggest new species assignments for several accessions. CONCLUSIONS: Curated by germplasm collectors and curators, this analysis of species relationships lays the foundation for future species descriptions, classification of unknown accessions, and germplasm use for peanut improvement. It supports the conservation and curation of current germplasm, both critical tasks considering the threats to the genus posed by habitat loss and the current restrictions on new collections and germplasm transfer.


Asunto(s)
Arachis , Productos Agrícolas , Filogenia , Arachis/genética , Arachis/clasificación , Productos Agrícolas/genética , Genoma de Planta , Banco de Semillas , Genotipo
4.
Oecologia ; 204(3): 613-624, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38400948

RESUMEN

When wintering at different sites, individuals from the same breeding population can experience different conditions, with costs and benefits that may have implications throughout their lifetime. Using a dataset from a longitudinal study on Eurasian Spoonbills from southern France, we explored whether survival rate varied among individuals using different wintering sites. In the last 13 years, more than 3000 spoonbills have been ringed as chicks in Camargue. These birds winter in five main regions that vary in both migratory flyway (East Atlantic vs. Central European) and migration distance (long-distance vs. short-distance vs. resident). We applied Cormack-Jolly-Seber models and found evidence for apparent survival to correlate with migration distance, but not with flyway. During the interval between the first winter sighting and the next breeding period, long-distance migrants had the lowest survival, independently of the flyway taken. Additionally, as they age, spoonbills seem to better cope with migratory challenges and wintering conditions as no differences in apparent survival among wintering strategies were detected during subsequent years. As dispersal to other breeding colonies was rarely observed, the lower apparent survival during this period is likely to be partly driven by lower true survival. This supports the potential role of crossing of natural barriers and degradation of wintering sites in causing higher mortality rates as recorded for a variety of long-distance migrants. Our work confirms variation in demographic parameters across winter distribution ranges and reinforces the importance of longitudinal studies to better understand the complex demographics of migratory species.


Asunto(s)
Migración Animal , Aves , Humanos , Animales , Estudios Longitudinales , Francia , Estaciones del Año
5.
Proc Biol Sci ; 290(1997): 20222408, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37072044

RESUMEN

Migrating animals show remarkable diversity in migration strategies, even between individuals from the same population. Migrating longer distances is usually expected to be costlier in terms of time, energy expenditure and risks with potential repercussions for subsequent stages within the annual cycle. Such costs are expected to be balanced by increased survival, for example due to higher quality wintering areas or lower energy expenditure at lower latitudes. We compared reproductive parameters and apparent survival of lesser black-backed gulls (Larus fuscus) breeding in The Netherlands, whose winter range extends from the UK to West Africa, resulting in one-way migration distances that differ by more than 4500 km. Individuals migrating furthest arrived later in the colony than shorter distance migrants, but still laid in synchrony with the colony and consequently had a shorter pre-laying period. This shorter pre-laying period affected neither egg volumes nor hatching success. We found no relationship between migration distance and apparent survival probability, corresponding with previous research showing that annual energy expenditure and distance travelled throughout the year is similar across migration strategies. Combined, our results indicate an equal fitness payoff across migration strategies, suggesting there is no strong selective pressure acting on migration strategy within this population.


Asunto(s)
Migración Animal , Charadriiformes , Animales , Reproducción , Estaciones del Año , Países Bajos
6.
Planta ; 258(1): 15, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311932

RESUMEN

MAIN CONCLUSION: The present review illustrates a comprehensive overview of the allele mining for genetic improvement in vegetable crops, and allele exploration methods and their utilization in various applications related to pre-breeding of economically important traits in vegetable crops. Vegetable crops have numerous wild descendants, ancestors and terrestrial races that could be exploited to develop high-yielding and climate-resilient varieties resistant/tolerant to biotic and abiotic stresses. To further boost the genetic potential of economic traits, the available genomic tools must be targeted and re-opened for exploitation of novel alleles from genetic stocks by the discovery of beneficial alleles from wild relatives and their introgression to cultivated types. This capability would be useful for giving plant breeders direct access to critical alleles that confer higher production, improve bioactive compounds, increase water and nutrient productivity as well as biotic and abiotic stress resilience. Allele mining is a new sophisticated technique for dissecting naturally occurring allelic variants in candidate genes that influence important traits which could be used for genetic improvement of vegetable crops. Target-induced local lesions in genomes (TILLINGs) is a sensitive mutation detection avenue in functional genomics, particularly wherein genome sequence information is limited or not available. Population exposure to chemical mutagens and the absence of selectivity lead to TILLING and EcoTILLING. EcoTILLING may lead to natural induction of SNPs and InDels. It is anticipated that as TILLING is used for vegetable crops improvement in the near future, indirect benefits will become apparent. Therefore, in this review we have highlighted the up-to-date information on allele mining for genetic enhancement in vegetable crops and methods of allele exploration and their use in pre-breeding for improvement of economic traits.


Asunto(s)
Fitomejoramiento , Verduras , Verduras/genética , Alelos , Productos Agrícolas/genética , Clima
7.
Plant Biotechnol J ; 21(6): 1123-1139, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36740649

RESUMEN

Landraces, that is, traditional varieties, have a large diversity that is underexploited in modern breeding. A novel DNA pooling strategy was implemented to identify promising landraces and genomic regions to enlarge the genetic diversity of modern varieties. As proof of concept, DNA pools from 156 American and European maize landraces representing 2340 individuals were genotyped with an SNP array to assess their genome-wide diversity. They were compared to elite cultivars produced across the 20th century, represented by 327 inbred lines. Detection of selective footprints between landraces of different geographic origin identified genes involved in environmental adaptation (flowering times, growth) and tolerance to abiotic and biotic stress (drought, cold, salinity). Promising landraces were identified by developing two novel indicators that estimate their contribution to the genome of inbred lines: (i) a modified Roger's distance standardized by gene diversity and (ii) the assignation of lines to landraces using supervised analysis. It showed that most landraces do not have closely related lines and that only 10 landraces, including famous landraces as Reid's Yellow Dent, Lancaster Surecrop and Lacaune, cumulated half of the total contribution to inbred lines. Comparison of ancestral lines directly derived from landraces with lines from more advanced breeding cycles showed a decrease in the number of landraces with a large contribution. New inbred lines derived from landraces with limited contributions enriched more the haplotype diversity of reference inbred lines than those with a high contribution. Our approach opens an avenue for the identification of promising landraces for pre-breeding.


Asunto(s)
Genómica , Fitomejoramiento , Genotipo , Genoma de Planta/genética , ADN , Variación Genética/genética , Zea mays/genética
8.
Curr Genomics ; 22(6): 440-449, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35340360

RESUMEN

Developing climate-resilient wheat is a priority for South Asia since the effect of climate change will be pronounced on the major crops that are staple to the region. South Asia must produce >400 million metric tons (MMT) of wheat by 2050 to meet the demand. However, the current average yield <3 t/ha is not sufficient to meet the requirement. In this review, we are addressing how pre-breeding methods in wheat can address the gap in grain yield as well as reduce the bottleneck of genetic diversity. Physiological pre-breeding which incorporates screening of diverse germplasm from gene banks for physiological and agronomic traits, the strategic crossing of complementary traits, high throughput phenotyping, molecular markers-based generation advancement, genomic prediction, and validation of high-value heat and drought tolerant lines to South Asia can help to alleviate the drastic effect of climate change on wheat production. There are several gene banks, if utilized well, can play a major role in breeding for climate-resilient wheat. CIMMYT's wheat physiological pre-breeding has delivered several hundred lines via the Stress Adapted Trait Yield Nursery (SATYN) to the NARS in many South Asian countries; India, Pakistan, Nepal, Bangladesh, Afghanistan, and Iran. Some of these improved germplasms have resulted in varieties for farmer's field. We conclude the review by pointing out the importance of collaborative interdisciplinary translational research to alleviate the effects of climate change on wheat production in South Asia.

9.
BMC Genomics ; 21(1): 349, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393177

RESUMEN

BACKGROUND: The narrow genetic base of elite germplasm compromises long-term genetic gain and increases the vulnerability to biotic and abiotic stresses in unpredictable environmental conditions. Therefore, an efficient strategy is required to broaden the genetic base of commercial breeding programs while not compromising short-term variety release. Optimal cross selection aims at identifying the optimal set of crosses that balances the expected genetic value and diversity. We propose to consider genomic selection and optimal cross selection to recurrently improve genetic resources (i.e. pre-breeding), to bridge the improved genetic resources with elites (i.e. bridging), and to manage introductions into the elite breeding population. Optimal cross selection is particularly adapted to jointly identify bridging, introduction and elite crosses to ensure an overall consistency of the genetic base broadening strategy. RESULTS: We compared simulated breeding programs introducing donors with different performance levels, directly or indirectly after bridging. We also evaluated the effect of the training set composition on the success of introductions. We observed that with recurrent introductions of improved donors, it is possible to maintain the genetic diversity and increase mid- and long-term performances with only limited penalty at short-term. Considering a bridging step yielded significantly higher mid- and long-term genetic gain when introducing low performing donors. The results also suggested to consider marker effects estimated with a broad training population including donor by elite and elite by elite progeny to identify bridging, introduction and elite crosses. CONCLUSION: Results of this study provide guidelines on how to harness polygenic variation present in genetic resources to broaden elite germplasm.


Asunto(s)
Modelos Genéticos , Cruzamiento , Variación Genética , Análisis de Componente Principal , Selección Genética
10.
Glob Chang Biol ; 26(7): 4079-4093, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32320514

RESUMEN

Early vigour in wheat is a trait that has received attention for its benefits reducing evaporation from the soil surface early in the season. However, with the growth enhancement common to crops grown under elevated atmospheric CO2 concentrations (e[CO2 ]), there is a risk that too much early growth might deplete soil water and lead to more severe terminal drought stress in environments where production relies on stored soil water content. If this is the case, the incorporation of such a trait in wheat breeding programmes might have unintended negative consequences in the future, especially in dry years. We used selected data from cultivars with proven expression of high and low early vigour from the Australian Grains Free Air CO2 Enrichment (AGFACE) facility, and complemented this analysis with simulation results from two crop growth models which differ in the modelling of leaf area development and crop water use. Grain yield responses to e[CO2 ] were lower in the high early vigour group compared to the low early vigour group, and although these differences were not significant, they were corroborated by simulation model results. However, the simulated lower response with high early vigour lines was not caused by an earlier or greater depletion of soil water under e[CO2 ] and the mechanisms responsible appear to be related to an earlier saturation of the radiation intercepted. Whether this is the case in the field needs to be further investigated. In addition, there was some evidence that the timing of the drought stress during crop growth influenced the effect of e[CO2 ] regardless of the early vigour trait. There is a need for FACE investigations of the value of traits for drought adaptation to be conducted under more severe drought conditions and variable timing of drought stress, a risky but necessary endeavour.


Asunto(s)
Sequías , Triticum , Australia , Dióxido de Carbono/análisis , Grano Comestible/química
11.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348635

RESUMEN

Vegetable legumes are an essential source of carbohydrates, vitamins, and minerals, along with health-promoting bioactive chemicals. The demand for the use of either fresh or processed vegetable legumes is continually expanding on account of the growing consumer awareness about their well-balanced diet. Therefore, sustaining optimum yields of vegetable legumes is extremely important. Here we seek to present d etails of prospects of underexploited vegetable legumes for food availability, accessibility, and improved livelihood utilization. So far research attention was mainly focused on pulse legumes' performance as compared to vegetable legumes. Wild and cultivated vegetable legumes vary morphologically across diverse habitats. This could make them less known, underutilized, and underexploited, and make them a promising potential nutritional source in developing nations where malnutrition still exists. Research efforts are required to promote underexploited vegetable legumes, for improving their use to feed the ever-increasing population in the future. In view of all the above points, here we have discussed underexploited vegetable legumes with tremendous potential; namely, vegetable pigeon pea (Cajanus cajan), cluster bean (Cyamopsis tetragonoloba), winged bean (Psophocarpus tetragonolobus), dolichos bean (Lablab purpureus), and cowpea (Vigna unguiculata), thereby covering the progress related to various aspects such as pre-breeding, molecular markers, quantitative trait locus (QTLs), genomics, and genetic engineering. Overall, this review has summarized the information related to advancements in the breeding of vegetable legumes which will ultimately help in ensuring food and nutritional security in developing nations.


Asunto(s)
Cruzamiento/métodos , Grano Comestible/genética , Fabaceae/genética , Edición Génica/métodos , Genoma de Planta , Verduras/genética , Grano Comestible/clasificación , Fabaceae/clasificación , Genómica , Organismos Modificados Genéticamente , Sitios de Carácter Cuantitativo , Verduras/clasificación
12.
J Anim Ecol ; 87(4): 906-920, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29931768

RESUMEN

Recent studies unravelled the effect of climate changes on populations through their impact on functional traits and demographic rates in terrestrial and freshwater ecosystems, but such understanding in marine ecosystems remains incomplete. Here, we evaluate the impact of the combined effects of climate and functional traits on population dynamics of a long-lived migratory seabird breeding in the southern ocean: the black-browed albatross (Thalassarche melanophris, BBA). We address the following prospective question: "Of all the changes in the climate and functional traits, which would produce the biggest impact on the BBA population growth rate?" We develop a structured matrix population model that includes the effect of climate and functional traits on the complete BBA life cycle. A detailed sensitivity analysis is conducted to understand the main pathway by which climate and functional trait changes affect the population growth rate. The population growth rate of BBA is driven by the combined effects of climate over various seasons and multiple functional traits with carry-over effects across seasons on demographic processes. Changes in sea surface temperature (SST) during late winter cause the biggest changes in the population growth rate, through their effect on juvenile survival. Adults appeared to respond to changes in winter climate conditions by adapting their migratory schedule rather than by modifying their at-sea foraging activity. However, the sensitivity of the population growth rate to SST affecting BBA migratory schedule is small. BBA foraging activity during the pre-breeding period has the biggest impact on population growth rate among functional traits. Finally, changes in SST during the breeding season have little effect on the population growth rate. These results highlight the importance of early life histories and carry-over effects of climate and functional traits on demographic rates across multiple seasons in population response to climate change. Robust conclusions about the roles of various phases of the life cycle and functional traits in population response to climate change rely on an understanding of the relationships of traits to demographic rates across the complete life cycle.


Asunto(s)
Aves/fisiología , Cambio Climático , Rasgos de la Historia de Vida , Longevidad , Animales , Estudios Longitudinales , Modelos Biológicos , Dinámica Poblacional , Crecimiento Demográfico
13.
Am J Bot ; 105(6): 1053-1066, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29985538

RESUMEN

PREMISE OF THE STUDY: The genetic bottleneck of polyploid formation can be mitigated by multiple origins, gene flow, and recombination among different lineages. In crop plants with limited origins, efforts to increase genetic diversity have limitations. Here we used lineage recombination to increase genetic diversity in peanut, an allotetraploid likely of single origin, by crossing with a novel allopolyploid genotype and selecting improved lines. METHODS: Single backcross progeny from cultivated peanut × wild species-derived allotetraploid cross were studied over successive generations. Using genetic assumptions that encompass segmental allotetraploidy, we used single nucleotide polymorphisms and whole-genome sequence data to infer genome structures. KEY RESULTS: Selected lines, despite a high proportion of wild alleles, are agronomically adapted, productive, and with improved disease resistances. Wild alleles mostly substituted homologous segments of the peanut genome. Regions of dispersed wild alleles, characteristic of gene conversion, also occurred. However, wild chromosome segments sometimes replaced cultivated peanut's homeologous subgenome; A. ipaënsis B sometimes replaced A. hypogaea A subgenome (~0.6%), and A. duranensis replaced A. hypogaea B subgenome segments (~2%). Furthermore, some subgenome regions historically lost in cultivated peanut were "recovered" by wild chromosome segments (effectively reversing the "polyploid ratchet"). These processes resulted in lines with new genome structure variations. CONCLUSIONS: Genetic diversity was introduced by wild allele introgression, and by introducing new genome structure variations. These results highlight the special possibilities of segmental allotetraploidy and of using lineage recombination to increase genetic diversity in peanut, likely mirroring what occurs in natural segmental allopolyploids with multiple origins.


Asunto(s)
Arachis/genética , Hibridación Genética , Poliploidía , Alelos , Variación Genética , Recombinación Homóloga
14.
J Exp Bot ; 68(8): 1927-1939, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28499040

RESUMEN

We simulated pre-breeding in evolving gene banks - populations of exotic and crop types undergoing optimal contribution selection for long-term genetic gain and management of population genetic diversity. The founder population was based on crosses between elite crop varieties and exotic lines of field pea (Pisum sativum) from the primary genepool, and was subjected to 30 cycles of recurrent selection for an economic index composed of four traits with low heritability: black spot resistance, flowering time and stem strength (measured on single plants), and grain yield (measured on whole plots). We compared a small population with low selection pressure, a large population with high selection pressure, and a large population with moderate selection pressure. Single seed descent was compared with S0-derived recurrent selection. Optimal contribution selection achieved higher index and lower population coancestry than truncation selection, which reached a plateau in index improvement after 40 years in the large population with high selection pressure. With optimal contribution selection, index doubled in 38 years in the small population with low selection pressure and 27-28 years in the large population with moderate selection pressure. Single seed descent increased the rate of improvement in index per cycle but also increased cycle time.


Asunto(s)
Productos Agrícolas/genética , Pisum sativum/genética , Fitomejoramiento/métodos , Banco de Semillas/organización & administración , Manejo de Especímenes/métodos , Variación Genética
15.
J Exp Bot ; 67(4): 1033-43, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26826219

RESUMEN

Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R (2)=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field.


Asunto(s)
Botánica/instrumentación , Botánica/métodos , Procesamiento de Imagen Asistido por Computador/instrumentación , Raíces de Plantas/crecimiento & desarrollo , Espectrometría de Fluorescencia , Triticum/crecimiento & desarrollo , Botánica/economía , Procesamiento de Imagen Asistido por Computador/economía , Fenotipo , Raíces de Plantas/genética , Espectrometría de Fluorescencia/economía , Espectrometría de Fluorescencia/instrumentación , Triticum/genética
16.
J Exp Bot ; 66(18): 5519-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26071535

RESUMEN

The process of domestication has led to dramatic morphological and physiological changes in crop species due to adaptation to cultivation and to the needs of farmers. To investigate the phenotypic architecture of shoot- and root-related traits and quantify the impact of primary and secondary domestication, we examined a collection of 36 wheat genotypes under optimal and nitrogen-starvation conditions. These represented three taxa that correspond to key steps in the recent evolution of tetraploid wheat (i.e. wild emmer, emmer, and durum wheat). Overall, nitrogen starvation reduced the shoot growth of all genotypes, while it induced the opposite effect on root traits, quantified using the automated phenotyping platform GROWSCREEN-Rhizo. We observed an overall increase in all of the shoot and root growth traits from wild emmer to durum wheat, while emmer was generally very similar to wild emmer but intermediate between these two subspecies. While the differences in phenotypic diversity due to the effects of primary domestication were not significant, the secondary domestication transition from emmer to durum wheat was marked by a large and significant decrease in the coefficient of additive genetic variation. In particular, this reduction was very strong under the optimal condition and less intense under nitrogen starvation. Moreover, although under the optimal condition both root and shoot traits showed significantly reduced diversity due to secondary domestication, under nitrogen starvation the reduced diversity was significant only for shoot traits. Overall, a considerable amount of phenotypic variation was observed in wild emmer and emmer, which could be exploited for the development of pre-breeding strategies.


Asunto(s)
Fenotipo , Triticum/genética , Fertilizantes/análisis , Nitrógeno/metabolismo , Fitomejoramiento , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Tetraploidía , Triticum/crecimiento & desarrollo , Triticum/metabolismo
17.
Ann Bot ; 115(2): 237-49, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25538110

RESUMEN

BACKGROUND AND AIMS: Arachis batizocoi is a wild relative of cultivated peanut (A. hypogaea), an allotetraploid with an AABB genome. Arachis batizocoi was once considered the ancestral donor of the peanut B genome, but cytogenetics and DNA phylogenies have indicated a new genome classification, 'K'. These observations seem inconsistent with genetic studies and breeding that have shown that A. batizocoi can behave as a B genome. METHODS: The genetic behaviour, genome composition and phylogenetic position of A. batizocoi were studied using controlled hybridizations, induced tetraploidy, whole-genome in situ fluorescent hybridization (GISH) and molecular phylogenetics. KEY RESULTS: Sterile diploid hybrids containing AK genomes were obtained using A. batizocoi and the A genome species A. duranensis, A. stenosperma, A. correntina or A. villosa. From these, three types of AAKK allotetraploids were obtained, each in multiple independent polyploidy events. Induced allotetraploids were vigorous and fertile, and were hybridized to A. hypogaea to produce F1 hybrids. Even with the same parental combination, fertility of these F1 hybrids varied greatly, suggesting the influence of stochastic genetic or epigenetic events. Interestingly, hybrids with A. hypogaea ssp. hypogaea were significantly more fertile than those with the subspecies fastigiata. GISH in cultivated × induced allotetraploids hybrids (harbouring AABK genomes) and a molecular phylogeny using 16 intron sequences showed that the K genome is distinct, but more closely related to the B than to the A genome. CONCLUSIONS: The K genome of A. batizocoi is more related to B than to the A genome, but is distinct. As such, when incorporated in an induced allotetraploid (AAKK) it can behave as a B genome in crosses with peanut. However, the fertility of hybrids and their progeny depends upon the compatibility of the A genome interactions. The genetic distinctness of A. batizocoi makes it an important source of allelic diversity in itself, especially in crosses involving A. hypogaea ssp. hypogaea.


Asunto(s)
Arachis/genética , Fabaceae/genética , Genoma de Planta , Hibridación Genética , Filogenia , Poliploidía , Variación Genética , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
18.
Zoolog Sci ; 31(8): 529-34, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25088594

RESUMEN

Characterization of foraging-site preferences of threatened and endangered species is a key component of effective habitat conservation. We studied foraging-site selection by the brown eared pheasant (Crossoptilon mantchuricum) in the Huanglongshan Nature Reserve, Yanan City, Shaanxi Province, China, from early February to end of May 2011. We identified feeding sites by locating tracks and scratches characteristic of the birds, and compared habitat characteristics at these sites to those at randomly selected sites across the study area. During the pre-breeding season, the birds tended to be found in the areas characterized by gullies within mixed forests with intermediate sun exposure on gentle slopes (< 10°), and close to water and footpaths. The sites utilized by the birds also featured greater tree diameter, lower shrub density, lower grass cover, and lower altitude than random sites. During the breeding season, the birds tended to be found in the areas of slightly higher altitude, more shrubs, moderately steep slopes (10°-20°), and farther from water and paths. These patterns were consistent with seasonal changes in vegetation and food-resource availability in the study area. Management of brown eared pheasants' populations for conservation must account for these seasonal shifts in habitat requirements.


Asunto(s)
Ecosistema , Galliformes/fisiología , Estaciones del Año , Animales , China , Demografía , Reproducción/fisiología
19.
Plant Sci ; 346: 112155, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38885883

RESUMEN

Domestication syndrome, selection pressure, and modern plant breeding programs have reduced the genetic diversity of the wheat germplasm. For the genetic gains of breeding programs to be sustainable, plant breeders require a diverse gene pool to select genes for resistance to biotic stress factors, tolerance to abiotic stress factors, and improved quality and yield components. Thus, old landraces, subspecies and wild ancestors are rich sources of genetic diversity that have not yet been fully exploited, and it is possible to utilize this diversity. Compared with durum wheat, tetraploid wheat subspecies have retained much greater genetic diversity despite genetic drift and various environmental influences, and the identification and utilization of this diversity can make a greater contribution to the genetic enrichment of wheat. In addition, using the pre-breeding method, the valuable left-behind alleles in the wheat gene pool can be re-introduced through hybridization and introgressive gene flow to create a sustainable opportunity for the genetic gain of wheat. This review provides some insights about the potential of tetraploid wheats in plant breeding and the genetic gains made by them in plant breeding across past decades, and gathers the known functional information on genes/QTLs, metabolites, traits and their direct involvement in wheat resistance/tolerance to biotic/abiotic stresses.


Asunto(s)
Fitomejoramiento , Tetraploidía , Triticum , Triticum/genética , Triticum/fisiología , Fitomejoramiento/métodos , Variación Genética , Sitios de Carácter Cuantitativo
20.
Equine Vet J ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103748

RESUMEN

Three bacteria extensively acknowledged as venereal pathogens with the potential to induce endometritis include Taylorella equigenitalis, the causative agent of contagious equine metritis (CEM), specific strains of Pseudomonas aeruginosa, and certain capsule types of Klebsiella pneumoniae. The United Kingdom's Horserace Betting Levy Board recommends pre-breeding screening for these bacteria in their International Codes of Practice and >20 000 samples are tested per annum in the United Kingdom alone. While the pathogenesis and regulatory importance of CEM are well established, an evaluation of the literature pertaining to venereal transmission of P. aeruginosa and K. pneumoniae was lacking. The aim of this review was to evaluate published literature and determine the significance of P. aeruginosa and K. pneumoniae as venereal pathogens in horses. Literature definitively demonstrating venereal transmission was not available. Instead, application of molecular typing methods suggested that common environmental sources of contamination, such as water, or fomites be considered as modes of transmission. The presence of organisms with pathogenic potential on a horse's external genitalia did not predict venereal transmission with resultant endometritis and reduced fertility. These findings may prompt further investigation using molecular technologies to confirm or exclude venereal spread and investigation of alternative mechanisms of transmission are indicated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA