Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 92(4): 1376-1391, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38899391

RESUMEN

PURPOSE: We propose and evaluate multiphoton parallel transmission (MP-pTx) to mitigate flip angle inhomogeneities in high-field MRI. MP-pTx is an excitation method that utilizes a single, conventional birdcage coil supplemented with low-frequency (kHz) irradiation from a multichannel shim array and/or gradient channels. SAR analysis is simplified to that of a conventional birdcage coil, because only the radiofrequency (RF) field from the birdcage coil produces significant SAR. METHODS: MP-pTx employs an off-resonance RF pulse from a conventional birdcage coil supplemented with oscillating z $$ z $$ -directed fields from a multichannel shim array and/or the gradient coils. We simulate the ability of MP-pTx to create uniform nonselective brain excitations at 7 T using realistic B 1 + $$ {\mathrm{B}}_1^{+} $$ and Δ B 0 $$ \Delta {\mathrm{B}}_0 $$ field maps. The RF, shim array, and gradient waveform's amplitudes and phases are optimized using a genetic algorithm followed by sequential quadratic programming. RESULTS: A 1 ms MP-pTx excitation using a 32-channel shim array with current constrained to less than 50 Amp-turns reduced the transverse magnetization's normalized root-mean-squared error from 29% for a conventional birdcage excitation to 6.6% and was nearly 40% better than a 1 ms birdcage coil 5 kT-point excitation with optimized kT-point locations and comparable pulse power. CONCLUSION: The MP-pTx method resembles conventional pTx in its goals and approach but replaces the parallel RF channels with cheaper, low-frequency shim channels. The method mitigates high-field flip angle inhomogeneities to a level better than 3 T CP-mode and comparable to 7 T pTx while retaining the straightforward SAR characteristics of conventional birdcage excitations, as low-frequency shim array fields produce negligible SAR.


Asunto(s)
Algoritmos , Encéfalo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Humanos , Encéfalo/diagnóstico por imagen , Reproducibilidad de los Resultados , Fantasmas de Imagen , Simulación por Computador , Fotones , Aumento de la Imagen/métodos , Procesamiento de Señales Asistido por Computador , Interpretación de Imagen Asistida por Computador/métodos
2.
Magn Reson Med ; 91(3): 1209-1224, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37927216

RESUMEN

PURPOSE: We model the performance of parallel transmission (pTx) arrays with 8, 16, 24, and 32 channels and varying loop sizes built on a close-fitting helmet for brain imaging at 7 T and compare their local specific absorption rate (SAR) and flip-angle performances to that of birdcage coil (used as a baseline) and cylindrical 8-channel and 16-channel pTx coils (single-row and dual-row). METHODS: We use the co-simulation approach along with MATLAB scripting for batch-mode simulation of the coils. For each coil, we extracted B1 + maps and SAR matrices, which we compressed using the virtual observation points algorithm, and designed slice-selective RF shimming pTx pulses with multiple local SAR and peak power constraints to generate L-curves in the transverse, coronal, and sagittal orientations. RESULTS: Helmet designs outperformed cylindrical pTx arrays at a constant number of channels in the flip-angle uniformity at a constant local SAR metric: up to 29% for 8-channel arrays, and up to 34% for 16-channel arrays, depending on the slice orientation. For all helmet arrays, increasing the loop diameter led to better local SAR versus flip-angle uniformity tradeoffs, although this effect was more pronounced for the 8-channel and 16-channel systems than the 24-channel and 32-channel systems, as the former have more limited degrees of freedom and therefore benefit more from loop-size optimization. CONCLUSION: Helmet pTx arrays significantly outperformed cylindrical arrays with the same number of channels in local SAR and flip-angle uniformity metrics. This improvement was especially pronounced for non-transverse slice excitations. Loop diameter optimization for helmets appears to favor large loops, compatible with nearest-neighbor decoupling by overlap.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Encéfalo/diagnóstico por imagen , Cabeza/diagnóstico por imagen , Fantasmas de Imagen
3.
Magn Reson Med ; 91(6): 2358-2373, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38193277

RESUMEN

PURPOSE: Spoke pulses improve excitation homogeneity in parallel-transmit MRI. We propose an efficient global optimization algorithm, Bayesian optimization of gradient trajectory (BOGAT), for single-slice and simultaneous multislice imaging. THEORY AND METHODS: BOGAT adds an outer loop to optimize kT-space positions. For each position, the RF coefficients are optimized (e.g., with magnitude least squares) and the cost function evaluated. Bayesian optimization progressively estimates the cost function. It automatically chooses the kT-space positions to sample, to achieve fast convergence, often coming close to the globally optimal spoke positions. We investigated the typical features of spokes cost functions by a grid search with field maps comprising 85 slabs from 14 volunteers. We tested BOGAT in this database, and prospectively in a phantom and in vivo. We compared the vendor-provided Fourier transform approach with the same magnitude least squares RF optimizer. RESULTS: The cost function is nonconvex and seen empirically to be piecewise smooth with discontinuities where the underlying RF optimum changes sharply. BOGAT converged to within 10% of the global minimum cost within 30 iterations in 93% of slices in our database. BOGAT achieved up to 56% lower flip angle RMS error (RMSE) or 55% lower pulse energy in phantoms versus the Fourier transform approach, and up to 30% lower RMSE and 29% lower energy in vivo with 7.8 s extra computation. CONCLUSION: BOGAT efficiently estimated near-global optimum spoke positions for the two-spoke tests, reducing flip-angle RMSE and/or pulse energy in a computation time (˜10 s), which is suitable for online optimization.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Humanos , Teorema de Bayes , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Análisis de los Mínimos Cuadrados , Encéfalo/diagnóstico por imagen
4.
Magn Reson Med ; 92(5): 1867-1880, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38818538

RESUMEN

PURPOSE: To employ optimal control for the numerical design of Chemical Exchange Saturation Transfer (CEST) saturation pulses to maximize contrast and stability against B 0 $$ {\mathrm{B}}_0 $$ inhomogeneities. THEORY AND METHODS: We applied an optimal control framework for the design pulse shapes for CEST saturation pulse trains. The cost functional minimized both the pulse energy and the discrepancy between the corresponding CEST spectrum and the target spectrum based on a continuous radiofrequency (RF) pulse. The optimization is subject to hardware limitations. In measurements on a 7 T preclinical scanner, the optimal control pulses were compared to continuous-wave and Gaussian saturation methods. We conducted a comparison of the optimal control pulses with Gaussian, block pulse trains, and adiabatic spin-lock pulses. RESULTS: The optimal control pulse train demonstrated saturation levels comparable to continuous-wave saturation and surpassed Gaussian saturation by up to 50 % in phantom measurements. In phantom measurements at 3 T the optimized pulses not only showcased the highest CEST contrast, but also the highest stability against field inhomogeneities. In contrast, block pulse saturation resulted in severe artifacts. Dynamic Bloch-McConnell simulations were employed to identify the source of these artifacts, and underscore the B 0 $$ {\mathrm{B}}_0 $$ robustness of the optimized pulses. CONCLUSION: In this work, it was shown that a substantial improvement in pulsed saturation CEST imaging can be achieved by using Optimal Control design principles. It is possible to overcome the sensitivity of saturation to B0 inhomogeneities while achieving CEST contrast close to continuous wave saturation.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Distribución Normal , Humanos , Simulación por Computador , Medios de Contraste/química , Ondas de Radio
5.
Magn Reson Med ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365913

RESUMEN

PURPOSE: To develop a small-tip multidimensional RF pulse design procedure that incorporates linear time-invariant gradient imperfections and concomitant field effects. This could be particularly important for contemporary low-field MRI systems with high-performance gradients. THEORY AND METHODS: We developed an extension of the small-tip excitation k-space formalism, where concomitant fields were approximated as a Bloch-Siegert shift in the rotating frame. This was evaluated using realistic simulations of 2D selective excitation at various field strengths (0.2T, 0.55T, 1.5T, 3T, and 7T) with single and parallel transmit. Simulated excitation profiles from the original and extended k-space formalisms were compared. Experimental validations were performed at 0.55T with a single-channel transmit. RESULTS: The extended formalism provides improved 2D excitation profiles in all scenarios simulated, compared against the original formalism. The proposed method corrects the concomitant field effects on 2D selective excitations for B0 > 0.2T when the magnitude of the B0 is far larger than that of nonrotating concomitant fields. Simulation and phantom experiments at 0.55T match well for both original and proposed methods, with the proposed method providing sharper and more accurate excitation profiles at off-isocenter distances up to 15 cm. The impact of the proposed method is greatest in scenarios where concomitant fields are substantial, such as low field strengths and off-isocenter. CONCLUSION: Concomitant fields can be modeled as a Bloch-Siegert shift in the rotating frame during multidimensional RF pulse design, resulting in improved excitation profiles with sharp edges. This is important to consider for off-isocenter excitations and imaging at low field strengths with strong gradients.

6.
Magn Reson Med ; 92(6): 2373-2391, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39046914

RESUMEN

PURPOSE: To optimize Relaxation along a Fictitious Field (RAFF) pulses for rotating frame relaxometry with improved robustness in the presence of B 0 $$ {\mathrm{B}}_0 $$ and B 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneities. METHODS: The resilience of RAFF pulses against B 0 $$ {\mathrm{B}}_0 $$ and B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities was studied using Bloch simulations. A parameterized extension of the RAFF formulation was introduced and used to derive a generalized inhomogeneity-resilient RAFF (girRAFF) pulse. RAFF and girRAFF preparation efficiency, defined as the ratio of the longitudinal magnetization before and after the preparation ( M z ( T p ) / M 0 $$ {M}_z\left({T}_p\right)/{M}_0 $$ ), were simulated and validated in phantom experiments. T RAFF $$ {T}_{\mathrm{RAFF}} $$ and T girRAFF $$ {T}_{\mathrm{girRAFF}} $$ parametric maps were acquired at 3T in phantom, the calf muscle, and the knee cartilage of healthy subjects. The relaxation time maps were analyzed for resilience against artificially induced field inhomogeneities and assessed in terms of in vivo reproducibility. RESULTS: Optimized girRAFF preparations yielded improved preparation efficiency (0.95/0.91 simulations/phantom) with respect to RAFF (0.36/0.67 simulations/phantom). T girRAFF $$ {T}_{\mathrm{girRAFF}} $$ preparations showed in phantom/calf 6.0/4.8 times higher resilience to B 0 $$ {\mathrm{B}}_0 $$ inhomogeneities than RAFF, and a 4.7/5.3 improved resilience to B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities. In the knee cartilage, T girRAFF $$ {T}_{\mathrm{girRAFF}} $$ (53 ± $$ \pm $$ 14 ms) was higher than T RAFF $$ {T}_{\mathrm{RAFF}} $$ (42 ± $$ \pm $$ 11 ms). Moreover, girRAFF preparations yielded 7.6/4.9 times improved reproducibility across B 0 $$ {\mathrm{B}}_0 $$ / B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneity conditions, 1.9 times better reproducibility across subjects and 1.2 times across slices compared with RAFF. Dixon-based fat suppression led to a further 15-fold improvement in the robustness of girRAFF to inhomogeneities. CONCLUSIONS: RAFF pulses display residual sensitivity to off-resonance and pronounced sensitivity to B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities. Optimized girRAFF pulses provide increased robustness and may be an appealing alternative for applications where resilience against field inhomogeneities is required.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Simulación por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Músculo Esquelético/fisiología , Músculo Esquelético/diagnóstico por imagen , Adulto , Reproducibilidad de los Resultados , Masculino
7.
NMR Biomed ; 37(11): e5210, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38993021

RESUMEN

The aim of the current study is to demonstrate the feasibility of radiofrequency (RF) pulses generated via an optimal control (OC) algorithm to perform magnetic resonance elastography (MRE) and quantify the mechanical properties of materials with very short transverse relaxation times (T2 < 5 ms) for the first time. OC theory applied to MRE provides RF pulses that bring isochromats from the equilibrium state to a fixed target state, which corresponds to the phase pattern of a conventional MRE acquisition. Such RF pulses applied with a constant gradient allow to simultaneously perform slice selection and motion encoding in the slice direction. Unlike conventional MRE, no additional motion-encoding gradients (MEGs) are needed, enabling shorter echo times. OC pulses were implemented both in turbo spin echo (OC rapid acquisition with refocused echoes [RARE]) and ultrashort echo time (OC UTE) sequences to compare their motion-encoding efficiency with the conventional MEG encoding (classical MEG MRE). MRE experiments were carried out on agar phantoms with very short T2 values and on an ex vivo bovine tendon. Magnitude images, wave field images, phase-to-noise ratio (PNR), and shear storage modulus maps were compared between OC RARE, OC UTE, and classical MEG MRE in samples with different T2 values. Shear storage modulus values of the agar phantoms were in agreement with values found in the literature, and that of the bovine tendon was corroborated with rheometry measurements. Only the OC sequences could encode motion in very short T2 samples, and only OC UTE sequences yielded magnitude images enabling proper visualization of short T2 samples and tissues. The OC UTE sequence produced the best PNRs, demonstrating its ability to perform anatomical and mechanical characterization. Its success warrants in vivo confirmation in further studies.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Fantasmas de Imagen , Ondas de Radio , Diagnóstico por Imagen de Elasticidad/métodos , Animales , Bovinos , Tendones/diagnóstico por imagen , Tendones/fisiología , Tendones/anatomía & histología , Algoritmos , Factores de Tiempo , Imagen por Resonancia Magnética , Módulo de Elasticidad
8.
NMR Biomed ; 37(9): e5151, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38583871

RESUMEN

Magnetization transfer spectroscopy relies heavily on the robust determination of T 1 relaxation times of nuclei participating in metabolic exchange. Challenges arise due to the use of surface RF coils for transmission (high B 1 + variation) and the broad resonance band of most X nuclei. These challenges are particularly pronounced when fast T 1 mapping methods, such as the dual-angle method, are employed. Consequently, in this work, we develop resonance offset and B 1 + robust excitation RF pulses for 31P magnetization transfer spectroscopy at 7T through ensemble-based time-optimal control. In our approach, we introduce a cost functional for designing robust pulses, incorporating the full Bloch equations as constraints, which are solved using symmetric operator splitting techniques. The optimal control design of the RF pulses developed demonstrates improved accuracy, desired phase properties, and reduced RF power when applied to dual-angle T 1 mapping, thereby improving the precision of exchange-rate measurements, as demonstrated in a preclinical in vivo study quantifying brain creatine kinase activity.


Asunto(s)
Espectroscopía de Resonancia Magnética , Animales , Espectroscopía de Resonancia Magnética/métodos , Factores de Tiempo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ondas de Radio , Algoritmos
9.
MAGMA ; 37(1): 127-138, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064137

RESUMEN

OBJECTIVE: With modern optimization methods, free optimization of parallel transmit pulses together with their gradient waveforms can be performed on-line within a short time. A toolbox which uses PyTorch's autodifferentiation for simultaneous optimization of RF and gradient waveforms is presented and its performance is evaluated. METHODS: MR measurements were performed on a 9.4T MRI scanner using a 3D saturated single-shot turboFlash sequence for [Formula: see text] mapping. RF pulse simulation and optimization were done using a Python toolbox and a dedicated server. An RF- and Gradient pulse design toolbox was developed, including a cost function to balance different metrics and respect hardware and regulatory limits. Pulse performance was evaluated in GRE and MPRAGE imaging. Pulses for non-selective and for slab-selective excitation were designed. RESULTS: Universal pulses for non-selective excitation reduced the flip angle error to an NRMSE of (12.3±1.7)% relative to the targeted flip angle in simulations, compared to (42.0±1.4)% in CP mode. The tailored pulses performed best, resulting in a narrow flip angle distribution with NRMSE of (8.2±1.0)%. The tailored pulses could be created in only 66 s, making it feasible to design them during an experiment. A 90° pulse was designed as preparation pulse for a satTFL sequence and achieved a NRMSE of 7.1%. We showed that both MPRAGE and GRE imaging benefited from the pTx pulses created with our toolbox. CONCLUSION: The pTx pulse design toolbox can freely optimize gradient and pTx RF waveforms in a short time. This allows for tailoring high-quality pulses in just over a minute.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Algoritmos , Simulación por Computador , Fantasmas de Imagen
10.
MAGMA ; 37(2): 257-272, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366129

RESUMEN

OBJECTIVE: To compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design. METHODS: The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability. Four optimization configurations are compared to a standard Gaussian spectral selective pre-saturation pulse and to a Dixon acquisition using phantom and volunteer (N = 5) data at 1.5 T with a turbo spin echo (TSE) sequence. Measurements and simulations are conducted across various body parts and image orientations. RESULTS: Phantom measurements demonstrate up to a 3.5-fold reduction in residual fat signal compared to Gaussian fat saturation. In vivo evaluations show improvements up to sixfold for dorsal subcutaneous fat in sagittal cervical spine acquisitions. The versatility of the tailored trajectory is confirmed through sagittal foot/ankle, coronal, and transversal cervical spine experiments. Additional measurements indicate that excitation field (B1) information can be disregarded at 1.5 T. Acceleration methods reduce computation time to a few seconds. DISCUSSION: An individual pulse design that primarily compensates for main field (B0) inhomogeneities in fat pre-saturation is successfully implemented within an online "push-button" workflow. Both fat saturation homogeneity and the level of suppression are improved.


Asunto(s)
Aumento de la Imagen , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Fantasmas de Imagen , Frecuencia Cardíaca , Vértebras Cervicales/diagnóstico por imagen
11.
J Biomol NMR ; 77(1-2): 1-14, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36534224

RESUMEN

The nuclear Overhauser effect (NOE) is one of NMR spectroscopy's most important and versatile parameters. NOE is routinely utilized to determine the structures of medium-to-large size biomolecules and characterize protein-protein, protein-RNA, protein-DNA, and protein-ligand interactions in aqueous solutions. Typical [1H,1H] NOESY pulse sequences incorporate water suppression schemes to reduce the water signal that dominates 1H-detected spectra and minimize NOE intensity losses due to unwanted polarization exchange between water and labile protons. However, at high- and ultra-high magnetic fields, the excitation of the water signal during the execution of the NOESY pulse sequences may cause significant attenuation of NOE cross-peak intensities. Using an evolutionary algorithm coupled with artificial intelligence, we recently designed high-fidelity pulses [Water irrAdiation DEvoid (WADE) pulses] that elude water excitation and irradiate broader bandwidths relative to commonly used pulses. Here, we demonstrate that WADE pulses, implemented into the 2D [1H,1H] NOESY experiments, increase the intensity of the NOE cross-peaks for labile and, to a lesser extent, non-exchangeable protons. We applied the new 2D [1H,1H] WADE-NOESY pulse sequence to two well-folded, medium-size proteins, i.e., the K48C mutant of ubiquitin and the Raf kinase inhibitor protein. We observed a net increase of the NOE intensities varying from 30 to 170% compared to the commonly used NOESY experiments. The new WADE pulses can be easily engineered into 2D and 3D homo- and hetero-nuclear NOESY pulse sequences to boost their sensitivity.


Asunto(s)
Inteligencia Artificial , Protones , Resonancia Magnética Nuclear Biomolecular , Agua/química , Proteínas/química
12.
Magn Reson Med ; 90(6): 2321-2333, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37526176

RESUMEN

PURPOSE: CEST MRI has been used to probe changes in cardiac metabolism via assessment of CEST contrast from Cr. However, B1 variation across the myocardium leads to spatially variable Cr CEST contrast in healthy myocardium. METHODS: We developed a spatial-spectral (SPSP) saturation pulsed CEST protocol to compensate for B1 variation. Flip angle maps were used to individually tailor SPSP pulses comprised of a train of one-dimensional spatially selective subpulses selective along the principal B1 gradient dimension. Complete Z-spectra in the hearts of (n = 10) healthy individuals were acquired using conventional Gaussian saturation and SPSP schemes and supported by phantom studies. RESULTS: In simulations, the use of SPSP pulses reduced the average SD of the effective saturation B1 values within the myocardium (n = 10) from 0.12 ± 0.02 µT to 0.05 ± 0.01 µT (p < 0.01) and reduced the average SD of Cr CEST contrast in vivo from 10.0 ± 4.3% to 6.1 ± 3.5% (p < 0.05). Results from the hearts of human subjects showed a significant reduction of CEST contrast distribution at 2 ppm, as well as amplitude, when using SPSP saturation. Corresponding phantom experiments revealed PCr-specific contrast generation at body temperature when SPSP saturation was used but combined PCr and Cr contrast generation when Gaussian saturation was used. CONCLUSION: The use of SPSP saturation pulsed CEST resulted in PCr-specific contrast generation and enabled ratiometric mapping of PCr to total Cr CEST contrast in the human heart at 3T.

13.
Magn Reson Med ; 90(4): 1345-1362, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37357374

RESUMEN

PURPOSE: An end-to-end differentiable 2D Bloch simulation is used to reduce T2 induced blurring in single-shot turbo spin echo sequences, also called rapid imaging with refocused echoes (RARE) sequences, by using a joint optimization of refocusing flip angles and a convolutional neural network. METHODS: Simulation and optimization were performed in the MR-zero framework. Variable flip angle train and DenseNet parameters were optimized jointly using the instantaneous transverse magnetization, available in our simulation, at a certain echo time, which serves as ideal blurring-free target. Final optimized sequences were exported for in vivo measurements at a real system (3 T Siemens, PRISMA) using the Pulseq standard. RESULTS: The optimized RARE was able to successfully lower T2 -induced blurring for single-shot RARE sequences in proton density-weighted and T2 -weighted images. In addition to an increased sharpness, the neural network allowed correction of the contrast changes to match the theoretical transversal magnetization. The optimization found flip angle design strategies similar to existing literature, however, visual inspection of the images and evaluation of the respective point spread function demonstrated an improved performance. CONCLUSIONS: This work demonstrates that when variable flip angles and a convolutional neural network are optimized jointly in an end-to-end approach, sequences with more efficient minimization of T2 -induced blurring can be found. This allows faster single- or multi-shot RARE MRI with longer echo trains.


Asunto(s)
Imagen por Resonancia Magnética , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Factores de Tiempo , Protones
14.
Magn Reson Med ; 89(1): 77-94, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36128895

RESUMEN

PURPOSE: To evaluate the benefits and challenges of dynamic parallel transmit (pTx) pulses for fat saturation (FS) and water-excitation (WE), in the context of CEST MRI. METHODS: "Universal" kT -points (for FS) and spiral non-selective (for WE) trajectories were optimized offline for flip angle (FA) homogeneity. Routines to optimize the pulse shape online, based on the subject's fields maps, were implemented (target FA of 110°/0° for FS, 0°/5° for WE at fat/water frequencies). The pulses were inserted in a CEST sequence with a pTx readout. The different fat suppression schemes and their effects on CEST contrasts were compared in 12 volunteers at 7T. RESULTS: With a 25%-shorter pulse duration, pTx FS largely improved the FA homogeneity (root-mean-square-error (RMSE) = 12.3° vs. 53.4° with circularly-polarized mode, at the fat frequency). However, the spectral selectivity was degraded mainly in the cerebellum and close to the sinuses (RMSE = 5.8° vs. 0.2° at the water frequency). Similarly, pTx WE showed a trade-off between FA homogeneity and spectral selectivity compared to pTx non-selective pulses (RMSE = 0.9° and 1.1° at the fat and water frequencies, vs. 4.6° and 0.5°). In the brain, CEST metrics were reduced by up to 31.9% at -3.3 ppm with pTx FS, suggesting a mitigated lipid-induced bias. CONCLUSION: This clinically compatible implementation of dynamic pTx pulses improved the fat suppression homogeneity at 7T taking into account the subject-specific B0 heterogeneities online. This study highlights the lipid-induced biases on the CEST z-spectrum. The results are promising for body applications where B0 heterogeneities and fat are more substantial.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Medios de Contraste , Lípidos , Algoritmos
15.
Magn Reson Med ; 89(6): 2227-2241, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36708203

RESUMEN

PURPOSE: To achieve high-resolution multishot echo-planar imaging (EPI) for functional MRI (fMRI) with reduced sensitivity to in-plane motion and between-shot phase variations. METHODS: Two-dimensional radiofrequency pulses were incorporated in a multishot EPI sequence at 7T which selectively excited a set of in-plane bands (shutters) in the phase encoding direction, which moved between shots to cover the entire slice. A phase- and motion-corrected reconstruction was implemented for the acquisition. Brain imaging experiments were performed with instructed motion to evaluate image quality for conventional multishot and shuttered EPI. Temporal stability was assessed in three subjects by quantifying temporal SNR (tSNR) and artifact levels, and fMRI activation experiments using visual stimulation were performed to assess the strength and distribution of activation, using both conventional multishot and shuttered EPI. RESULTS: In the instructed motion experiment, ghosting was lower in shuttered EPI images without or with corrections and image quality metrics were improved with motion correction. tSNR was improved by phase correction in both conventional multishot and shuttered EPI and the acquisitions had similar tSNR without and with phase correction. However, while phase correction was necessary to maximize tSNR in conventional multishot EPI, it also increased intermittent ghosting, but did not increase intermittent ghosting in shuttered EPI. Phase correction increased activation strength in both conventional multishot and shuttered EPI, but caused increased spurious activation outside the brain and in frontal brain regions in conventional multishot EPI. CONCLUSION: Shuttered EPI supports multishot segmented EPI acquisitions with lower sensitivity to artifacts from motion for high-resolution fMRI.


Asunto(s)
Algoritmos , Imagen Eco-Planar , Humanos , Imagen Eco-Planar/métodos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Movimiento (Física) , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos
16.
NMR Biomed ; 36(5): e4876, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36385447

RESUMEN

Specific absorption rate (SAR) relates power absorption to tissue heating, and therefore is used as a safety constraint in magnetic resonance imaging (MRI). This study investigates the implications of initial head positioning on local and whole-head SAR. A virtual body model was simulated at 161 positions inside an eight-channel parallel-transmit (pTx) array. On-axis displacements and rotations of up to 20 mm/degrees and off-axis axial/coronal translations were investigated. Single-channel, radiofrequency (RF) shimming (i.e., single-spoke pTx) and multispoke pTx pulses were designed for seven axial, five coronal and five sagittal slices at each position (the slices were consistent across all positions). Whole-head and local SAR were calculated using safety models consisting of a single (centred) body position, multiple representative positions and all simulated body positions. Positional mismatches between safety models and actual positions cause SAR underestimation. For axial imaging, the actual peak local SAR was up to 4.2-fold higher for both single-channel and 5-spoke pTx, 3.5-fold higher for 3-/4-spoke pTx, and 2-fold higher for RF shimming and 2-spoke pTx, compared with that calculated using the centred body position. For sagittal and coronal imaging, the underestimation of peak local SAR was up to 5.2-fold and 3.8-fold, respectively. Using all body positions to estimate SAR prevented SAR underestimation but yielded up to 11-fold SAR overestimation for RF shimming. Local SAR of single-channel and pTx multispoke pulses showed considerable dependence on the initial patient position. RF shimming yielded much lower sensitivity to positional mismatches for axial imaging but not for sagittal and coronal imaging. This was deemed attributable to the higher degrees-of-freedom of control offered by the investigated coil array for axial imaging. Whole-head SAR is less sensitive to positional mismatches compared with local SAR. Nevertheless, whole-head SAR increased by up to 80% for sagittal imaging. Local and whole-head SAR were observed to be more sensitive to positional mismatches in the axial plane, because of larger variations in coil-tissue proximity. Using all possible body positions in the safety model may become substantially over-conservative and limit imaging performance, especially for the RF shimming mode for axial imaging.


Asunto(s)
Cabeza , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Diseño de Equipo , Fantasmas de Imagen , Ondas de Radio , Simulación por Computador
17.
Magn Reson Med ; 87(5): 2254-2270, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34958134

RESUMEN

PURPOSE: Tailored parallel-transmit (pTx) pulses produce uniform excitation profiles at 7 T, but are sensitive to head motion. A potential solution is real-time pulse redesign. A deep learning framework is proposed to estimate pTx B1+ distributions following within-slice motion, which can then be used for tailored pTx pulse redesign. METHODS: Using simulated data, conditional generative adversarial networks were trained to predict B1+ distributions in the head following a displacement. Predictions were made for two virtual body models that were not included in training. Predicted maps were compared with ground-truth (simulated, following motion) B1 maps. Tailored pTx pulses were designed using B1 maps at the original position (simulated, no motion) and evaluated using simulated B1 maps at displaced position (ground-truth maps) to quantify motion-related excitation error. A second pulse was designed using predicted maps (also evaluated on ground-truth maps) to investigate improvement offered by the proposed method. RESULTS: Predicted B1+ maps corresponded well with ground-truth maps. Error in predicted maps was lower than motion-related error in 99% and 67% of magnitude and phase evaluations, respectively. Worst-case flip-angle normalized RMS error due to motion (76% of target flip angle) was reduced by 59% when pulses were redesigned using predicted maps. CONCLUSION: We propose a framework for predicting B1+ maps online with deep neural networks. Predicted maps can then be used for real-time tailored pulse redesign, helping to overcome head motion-related error in pTx.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Algoritmos , Encéfalo , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Redes Neurales de la Computación
18.
Magn Reson Med ; 87(6): 2839-2850, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35122302

RESUMEN

PURPOSE: In parallel transmission (pTX), subject-tailored RF pulses allow achieving excellent flip angle (FA) accuracy but often require computationally extensive online optimizations, precise characterization of the static field ( ΔB0 ), and the transmit RF field ( B1+ ) distributions. This costs time and requires expertise from the MR user. Universal pulses (UPs) have been proposed to reduce this burden, yet, with a penalty in FA accuracy. This study introduces the concept of standardized universal pulses (SUPs), where pulses are designed offline and adjusted to the subject through a fast online calibration scan. METHODS: A SUP is designed offline using a so-called standardized database, wherein each B1+ map has been normalized to a reference transmit RF field distribution. When scanning a new subject, a 3-slice B1+ acquisition (scan time <10  s) is performed and used to adjust the SUP to the subject through a linear transform. SUP performance was assessed at 7T with simulations by computing the FA-normalized root mean square error (FA-NRMSE) and the FA pattern stability as measured by the average and coefficient of variation of the FA across 15 control subjects, along with in vivo experiments using an MP2RAGE sequence implementing the SUP variant for the FLASH readout. RESULTS: Adjusted SUP improved the FA-NRMSE (8.8 % for UP vs. 7.1 % for adjusted SUP). Experimentally in vivo, this translated in an improved signal homogeneity and more accurate T1 quantification using MP2RAGE. CONCLUSION: The proposed SUP approach improves excitation accuracy (FA-NRMSE) while preserving the same offline pulse design principle as offered by UPs.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Encéfalo , Calibración , Bases de Datos Factuales , Humanos , Fantasmas de Imagen , Ondas de Radio
19.
Magn Reson Med ; 88(3): 1081-1097, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35468232

RESUMEN

PURPOSE: To perform B1+$$ {B}_1^{+} $$ -selective excitation using the Bloch-Siegert shift for spatial localization. THEORY AND METHODS: A B1+$$ {B}_1^{+} $$ -selective excitation is produced by an radiofrequency (RF) pulse consisting of two summed component pulses: an off-resonant pulse that induces a B1+$$ {B}_1^{+} $$ -dependent Bloch-Siegert frequency shift and a frequency-selective excitation pulse. The passband of the pulse can be tailored by adjusting the frequency content of the frequency-selective pulse, as in conventional B0$$ {B}_0 $$ gradient-localized excitation. Fine magnetization profile control is achieved by using the Shinnar-Le Roux algorithm to design the frequency-selective excitation pulse. Simulations analyzed the pulses' robustness to off-resonance, their suitability for multi-echo spin echo pulse sequences, and how their performance compares to that of rotating-frame selective excitation pulses. The pulses were evaluated experimentally on a 47.5 mT MRI scanner using an RF gradient transmit coil. Multiphoton resonances produced by the pulses were characterized and their distribution across B1+$$ {B}_1^{+} $$ predicted. RESULTS: With correction for varying B1+$$ {B}_1^{+} $$ across the desired profile, the proposed pulses produced selective excitation with the specified profile characteristics. The pulses were robust against off-resonance and RF amplifier distortion, and suitable for multi-echo pulse sequences. Experimental profiles closely matched simulated patterns. CONCLUSION: The Bloch-Siegert shift can be used to perform B0$$ {B}_0 $$ -gradient-free selective excitation, enabling the excitation of slices or slabs in RF gradient-encoded MRI.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Algoritmos , Amplificadores Electrónicos , Fantasmas de Imagen
20.
Magn Reson Med ; 88(1): 180-194, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35266204

RESUMEN

PURPOSE: This work proposes a novel RF pulse design for parallel transmit (pTx) systems to obtain uniform saturation of semisolid magnetization for magnetization transfer (MT) contrast in the presence of transmit field B1+ inhomogeneities. The semisolid magnetization is usually modeled as being purely longitudinal, with the applied B1+ field saturating but not rotating its magnetization; thus, standard pTx pulse design methods do not apply. THEORY AND METHODS: Pulse design for saturation homogeneity (PUSH) optimizes pTx RF pulses by considering uniformity of root-mean squared B1+ , B1rms , which relates to the rate of semisolid saturation. Here we considered designs consisting of a small number of spatially non-selective sub-pulses optimized over either a single 2D plane or 3D. Simulations and in vivo experiments on a 7T Terra system with an 8-TX Nova head coil in five subjects were carried out to study the homogenization of B1rms and of the MT contrast by acquiring MT ratio maps. RESULTS: Simulations and in vivo experiments showed up to six and two times more uniform B1rms compared to circular polarized (CP) mode for 2D and 3D optimizations, respectively. This translated into 4 and 1.25 times more uniform MT contrast, consistently for all subjects, where two sub-pulses were enough for the implementation and coil used. CONCLUSION: The proposed PUSH method obtains more uniform and higher MT contrast than CP mode within the same specific absorption rate (SAR) budget.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Algoritmos , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Ondas de Radio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA