Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 928
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(3): e2216024120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623188

RESUMEN

Seagrasses provide multiple ecosystem services and act as intense carbon sinks in coastal regions around the globe but are threatened by multiple anthropogenic pressures, leading to enhanced seagrass mortality that reflects in the spatial self-organization of the meadows. Spontaneous spatial vegetation patterns appear in such different ecosystems as drylands, peatlands, salt marshes, or seagrass meadows, and the mechanisms behind this phenomenon are still an open question in many cases. Here, we report on the formation of vegetation traveling pulses creating complex spatiotemporal patterns and rings in Mediterranean seagrass meadows. We show that these structures emerge due to an excitable behavior resulting from the coupled dynamics of vegetation and porewater hydrogen sulfide, toxic to seagrass, in the sediment. The resulting spatiotemporal patterns resemble those formed in other physical, chemical, and biological excitable media, but on a much larger scale. Based on theory, we derive a model that reproduces the observed seascapes and predicts the annihilation of these circular structures as they collide, a distinctive feature of excitable pulses. We show also that the patterns in field images and the empirically resolved radial profiles of vegetation density and sediment sulfide concentration across the structures are consistent with predictions from the theoretical model, which shows these structures to have diagnostic value, acting as a harbinger of the terminal state of the seagrass meadows prior to their collapse.


Asunto(s)
Ecosistema , Modelos Teóricos , Humedales , Secuestro de Carbono , Sulfuros
2.
Proc Natl Acad Sci U S A ; 120(34): e2309374120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590405

RESUMEN

Self-healing slip pulses are major spatiotemporal failure modes of frictional systems, featuring a characteristic size [Formula: see text] and a propagation velocity [Formula: see text] ([Formula: see text] is time). Here, we develop a theory of slip pulses in realistic rate- and state-dependent frictional systems. We show that slip pulses are intrinsically unsteady objects-in agreement with previous findings-yet their dynamical evolution is closely related to their unstable steady-state counterparts. In particular, we show that each point along the time-independent [Formula: see text] line, obtained from a family of steady-state pulse solutions parameterized by the driving shear stress [Formula: see text], is unstable. Nevertheless, and remarkably, the [Formula: see text] line is a dynamic attractor such that the unsteady dynamics of slip pulses (when they exist)-whether growing ([Formula: see text]) or decaying ([Formula: see text])-reside on the steady-state line. The unsteady dynamics along the line are controlled by a single slow unstable mode. The slow dynamics of growing pulses, manifested by [Formula: see text], explain the existence of sustained pulses, i.e., pulses that propagate many times their characteristic size without appreciably changing their properties. Our theoretical picture of unsteady frictional slip pulses is quantitatively supported by large-scale, dynamic boundary-integral method simulations.

3.
J Neurosci ; 44(34)2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39038954

RESUMEN

Stress impairs fertility, at least in part, via inhibition of gonadotropin secretion. Luteinizing hormone (LH) is an important gonadotropin that is released in a pulsatile pattern in males and in females throughout the majority of the ovarian cycle. Several models of stress, including acute metabolic stress, suppress LH pulses via inhibition of neurons in the arcuate nucleus of the hypothalamus that coexpress kisspeptin, neurokinin B, and dynorphin (termed KNDy cells) which form the pulse generator. The mechanism for inhibition of KNDy neurons during stress, however, remains a significant outstanding question. Here, we investigated a population of catecholamine neurons in the nucleus of the solitary tract (NTS), marked by expression of the enzyme dopamine beta-hydroxylase (DBH), in female mice. First, we found that a subpopulation of DBH neurons in the NTS is activated (express c-Fos) during metabolic stress. Then, using chemogenetics, we determined that activation of these cells is sufficient to suppress LH pulses, augment corticosterone secretion, and induce sickness-like behavior. In subsequent studies, we identified evidence for suppression of KNDy cells (rather than downstream signaling pathways) and determined that the suppression of LH pulses was not dependent on the acute rise in glucocorticoids. Together these data support the hypothesis that DBH cells in the NTS are important for regulation of neuroendocrine and behavioral responses to stress.


Asunto(s)
Hormona Luteinizante , Núcleo Solitario , Animales , Femenino , Hormona Luteinizante/metabolismo , Ratones , Núcleo Solitario/metabolismo , Dopamina beta-Hidroxilasa/metabolismo , Ratones Endogámicos C57BL , Neuronas Adrenérgicas/metabolismo , Neuronas Adrenérgicas/fisiología , Corticosterona/metabolismo , Norepinefrina/metabolismo , Ratones Transgénicos , Estrés Fisiológico/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Kisspeptinas/metabolismo , Neuroquinina B/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110409

RESUMEN

A hypothalamic pulse generator located in the arcuate nucleus controls episodic release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) and is essential for reproduction. Recent evidence suggests this generator is composed of arcuate "KNDy" cells, the abbreviation based on coexpression of kisspeptin, neurokinin B, and dynorphin. However, direct visual evidence of KNDy neuron activity at a single-cell level during a pulse is lacking. Here, we use in vivo calcium imaging in freely moving female mice to show that individual KNDy neurons are synchronously activated in an episodic manner, and these synchronized episodes always precede LH pulses. Furthermore, synchronization among KNDy cells occurs in a temporal order, with some subsets of KNDy cells serving as "leaders" and others as "followers" during each synchronized episode. These results reveal an unsuspected temporal organization of activation and synchronization within the GnRH pulse generator, suggesting that different subsets of KNDy neurons are activated at pulse onset than afterward during maintenance and eventual termination of each pulse. Further studies to distinguish KNDy "leader" from "follower" cells is likely to have important clinical significance, since regulation of pulsatile GnRH secretion is essential for normal reproduction and disrupted in pathological conditions such as polycystic ovary syndrome and hypothalamic amenorrhea.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Dinorfinas/metabolismo , Femenino , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuroquinina B/metabolismo , Reproducción/fisiología
5.
Nano Lett ; 24(35): 11028-11035, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39186253

RESUMEN

The advancement of electronic technology has led to increasing research on performance and stability. Continuous electrical pulse stimulation can cause crystal structure changes, affecting performance and accelerating aging. Controlled repair of these defects is crucial. In this study, we investigated crystal structure changes in van der Waals (vdW) InSe crystals under continuous electric pulses by using electron beam lithography (EBL) and spherical aberration corrected transmission electron microscopy (Cs-TEM). Results show that electrical pulses induce amorphous regions in the InSe lattice, increasing the device resistance. We used Cs-STEM probe scanning for precise repair, abbreviated SPRT, to optimize device performance. SPRT is related to electric fields induced by the electron beam and can be applied to other 2D materials like α-In2Se3 and CrSe2, offering a potential approach to extend device lifespan.

6.
BMC Genomics ; 25(1): 95, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262915

RESUMEN

BACKGROUND: Evolutionarily conserved in plants, the enzyme D-myo-inositol-3-phosphate synthase (MIPS; EC 5.5.1.4) regulates the initial, rate-limiting reaction in the phytic acid biosynthetic pathway. They are reported to be transcriptional regulators involved in various physiological functions in the plants, growth, and biotic/abiotic stress responses. Even though the genomes of most legumes are fully sequenced and available, an all-inclusive study of the MIPS family members in legumes is still ongoing. RESULTS: We found 24 MIPS genes in ten legumes: Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata. The total number of MIPS genes found in each species ranged from two to three. The MIPS genes were classified into five clades based on their evolutionary relationships with Arabidopsis genes. The structural patterns of intron/exon and the protein motifs that were conserved in each gene were highly group-specific. In legumes, MIPS genes were inconsistently distributed across their genomes. A comparison of genomes and gene sequences showed that this family was subjected to purifying selection and the gene expansion in MIPS family in legumes was mainly caused by segmental duplication. Through quantitative PCR, expression patterns of MIPS in response to various abiotic stresses, in the vegetative tissues of various legumes were studied. Expression pattern shows that MIPS genes control the development and differentiation of various organs, and have significant responses to salinity and drought stress. CONCLUSION: The MIPS genes in the genomes of legumes have been identified, characterized and their expression was analysed. The findings pave way for understanding their molecular functions and evolution, and lead to identify the putative MIPS genes associated with different cell and tissue development.


Asunto(s)
Arabidopsis , Cajanus , Cicer , Phaseolus , Verduras , Glycine max
7.
BMC Genomics ; 25(1): 270, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475739

RESUMEN

BACKGROUND: Mung bean (Vigna radiata (L.) Wilczek), is an important pulse crop in the global south. Early flowering and maturation are advantageous traits for adaptation to northern and southern latitudes. This study investigates the genetic basis of the Days-to-Flowering trait (DTF) in mung bean, combining genome-wide association studies (GWAS) in mung bean and comparisons with orthologous genes involved with control of DTF responses in soybean (Glycine max (L) Merr) and Arabidopsis (Arabidopsis thaliana). RESULTS: The most significant associations for DTF were on mung bean chromosomes 1, 2, and 4. Only the SNPs on chromosomes 1 and 4 were heavily investigated using downstream analysis. The chromosome 1 DTF association is tightly linked with a cluster of locally duplicated FERONIA (FER) receptor-like protein kinase genes, and the SNP occurs within one of the FERONIA genes. In Arabidopsis, an orthologous FERONIA gene (AT3G51550), has been reported to regulate the expression of the FLOWERING LOCUS C (FLC). For the chromosome 4 DTF locus, the strongest candidates are Vradi04g00002773 and Vradi04g00002778, orthologous to the Arabidopsis PhyA and PIF3 genes, encoding phytochrome A (a photoreceptor protein sensitive to red to far-red light) and phytochrome-interacting factor 3, respectively. The soybean PhyA orthologs include the classical loci E3 and E4 (genes GmPhyA3, Glyma.19G224200, and GmPhyA2, Glyma.20G090000). The mung bean PhyA ortholog has been previously reported as a candidate for DTF in studies conducted in South Korea. CONCLUSION: The top two identified SNPs accounted for a significant proportion (~ 65%) of the phenotypic variability in mung bean DTF by the six significant SNPs (39.61%), with a broad-sense heritability of 0.93. The strong associations of DTF with genes that have orthologs with analogous functions in soybean and Arabidopsis provide strong circumstantial evidence that these genes are causal for this trait. The three reported loci and candidate genes provide useful targets for marker-assisted breeding in mung beans.


Asunto(s)
Arabidopsis , Fabaceae , Vigna , Vigna/genética , Estudio de Asociación del Genoma Completo , Arabidopsis/genética , Fitomejoramiento , Fabaceae/genética , Glycine max , Genómica
8.
J Biomol NMR ; 78(1): 19-30, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38102490

RESUMEN

A recently developed homonuclear dipolar recoupling scheme, Adiabatic Linearly FREquency Swept reCOupling (AL FRESCO), was applied to record two-dimensional (2D) 15N-15N correlations on uniformly 15N-labeled GB1 powders. A major feature exploited in these 15N-15N correlations was AL FRESCO's remarkably low RF power demands, which enabled seconds-long mixing schemes when establishing direct correlations. These 15N-15N mixing schemes proved efficient regardless of the magic-angle spinning (MAS) rate and, being nearly free from dipolar truncation effects, they enabled the detection of long-range, weak dipolar couplings, even in the presence of strong short-range dipolar couplings. This led to a connectivity information that was significantly better than that obtained with spontaneously proton-driven, 15N spin-diffusion experiments. An indirect approach producing long-range 15N-15N correlations was also tested, relying on short (ms-long) 1HN-1HN mixings schemes while applying AL FRESCO chirped pulses along the 15N channel. These indirect mixing schemes produced numerous long-distance Ni-Ni±n (n = 2 - 5) correlations, that might be useful for characterizing three-dimensional arrangements in proteins. Once again, these AL FRESCO mediated experiments proved more informative than variants based on spin-diffusion-based 1HN-1HN counterparts.


Asunto(s)
Péptidos , Proteínas , Resonancia Magnética Nuclear Biomolecular/métodos , Péptidos/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Imagen por Resonancia Magnética , Protones
9.
J Membr Biol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133275

RESUMEN

Drug delivery through electroporation could be highly beneficial for the treatment of different types of diseased tissues within the human body. In this work, a mathematical model of reversible tissue electroporation is presented for injecting drug into the diseased cells. The model emphasizes the tissue boundary where the drug is injected as a point source. In addition, the effect of drug loss at tissue boundaries through extracellular space is studied elaborately. Multiple pulses are applied to deliver a sufficient amount of drug into the targeted cells. The set of differential equations that model the physical circumstances are solved numerically. This model obtains a mass transfer coefficient (MTC), in terms of pore fraction coefficient and drug permeability that controls the drug transport from extracellular to intracellular space. The drug penetration throughout the tissue is captured for the application of different pulses. The boundary effects on drug concentration are highlighted in this study. The advocated model is able to perform homogeneous drug transport into the cells so that the affected tissue is treated completely. This model can be applied to optimize clinical experiments by avoiding the lengthy and costly in vivo and in vitro experiments.

10.
Magn Reson Med ; 92(3): 1095-1103, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38576077

RESUMEN

PURPOSE: To develop a method that achieves simultaneous brain and neck time-of-flight (ToF) magnetic resonance angiography (MRA) within feasible scan timeframes. METHODS: Localized quadratic (LQ) encoding is efficient for both signal-to-noise ratio (SNR) and in-flow enhancement. We proposed a spiral multiband LQ method to enable simultaneous intracranial and carotid ToF-MRA within a single scan. To address the venous signal contamination that becomes a challenge with multiband (MB) ToF, tilt-optimized non-saturated excitation (TONE) and partial-Fourier slice selection (PFSS) were further introduced in the LQ framework to mitigate the venous signal and improve artery contrast. A sequential spiral MB and LQ reconstruction pipeline was employed to obtain the brain-and-neck image volumes. RESULTS: The proposed MB method was able to achieve simultaneous brain and neck ToF-MRA within a 2:50-min scan. The complementarily boosted SNR-efficiency by MB and LQ acquisitions allows for the increased spatial coverage without increase in scan time or noticeable compromise in SNR. The incorporation of both TONE and PFSS effectively alleviated the venous contamination with improved small vessel sensitivity. Selection of scan parameters such as the LQ factor and flip angle reflected the trade-off among SNR, blood contrast, and venous suppression. CONCLUSIONS: A novel MB spiral LQ approach was proposed to enable fast intracranial and carotid ToF-MRA with minimized venous corruption. The method has shown promise in MRA applications where large spatial coverage is necessary.


Asunto(s)
Encéfalo , Angiografía por Resonancia Magnética , Cuello , Relación Señal-Ruido , Humanos , Angiografía por Resonancia Magnética/métodos , Cuello/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Arterias Carótidas/diagnóstico por imagen , Adulto , Masculino
11.
Magn Reson Med ; 91(1): 252-265, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769229

RESUMEN

PURPOSE: Accelerate multislice 2D MRI by using RF pulses that simultaneously act on different slices to combine contrast preparation and image acquisition. THEORY AND METHODS: MRI applications often require the use of multiple RF pulses to generate desired contrast and prepare the signal for readout. Examples are the use of inversion prepulses to generate T1 contrast, or the use of spin-echo preparations to generate T2 or diffusion contrast. In multislice MRI, this separation of contrast preparation and readout can render scans time-inefficient and lengthy. We introduce a class of pulse sequences that overcomes this inefficiency by combining contrast preparation and signal readout. This is accomplished by using RF pulses that manipulate the magnetization of multiple slices simultaneously and a gradient crusher scheme that selects a target slice for readout. RESULTS: Feasibility of the method was demonstrated for spin echo-based measurement of water diffusion and tissue pulsation in human brain at 3 T. Increases in time-efficiency and reductions in scan time were highly dependent on specific implementation and reached as high as 25% and 53%, respectively. CONCLUSION: A novel approach to multislice MRI is demonstrated that reduces scan time for specific applications.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Fantasmas de Imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cabeza
12.
Magn Reson Med ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39099141

RESUMEN

PURPOSE: This work aims to unravel the intricacies of adiabatic rotating frame relaxometry in biological tissues. THEORY AND METHODS: The classical formalisms of dipolar relaxation R 1 ρ $$ {R}_{1\rho } $$ and R 2 ρ $$ {R}_{2\rho } $$ were systematically analyzed for water molecules reorienting on "fast" and "slow" timescales. These two timescales are, respectively, responsible for the absence and presence of R 1 ρ $$ {R}_{1\rho } $$ dispersion. A time-averaged R 1 ρ $$ {R}_{1\rho } $$ or R 2 ρ $$ {R}_{2\rho } $$ over an adiabatic pulse duration was recast into a sum of R 1 $$ {R}_1 $$ and R 2 $$ {R}_2 $$ , but with different weightings. These weightings depend on the specific modulations of adiabatic pulse waveforms. In this context, stretched hyperbolic secant ( HSn $$ HSn $$ ) pulses were characterized. Previously published H S 1 $$ HS1 $$ R 1 ρ $$ {R}_{1\rho } $$ , continuous-wave (CW) R 1 ρ $$ {R}_{1\rho } $$ , and R 1 $$ {R}_1 $$ measures from 12 agarose phantoms were used to validate the theoretical predictions. A similar validation was also performed on previously published HSn $$ HSn $$ R 1 ρ $$ {R}_{1\rho } $$ ( n $$ n $$ =1, 4, 8) and HS 1 $$ HS1 $$ R 2 ρ $$ {R}_{2\rho } $$ from bovine cartilage specimens. RESULTS: Longitudinal relaxation weighting decreases for HSn $$ HSn $$ pulses as n $$ n $$ increases. Predicted CW R 1 ρ cal $$ {R}_{1\rho}^{cal} $$ values from agarose phantoms align well with the measured CW R 1 ρ exp $$ {R}_{1\rho}^{exp} $$ values, as indicated by a linear regression function: R 1 ρ cal = 1.04 * R 1 ρ exp - 1.96 $$ {R}_{1\rho}^{cal}={1.04}^{\ast }{R}_{1\rho}^{exp}-1.96 $$ . The predicted adiabatic R 1 ρ $$ {R}_{1\rho } $$ and R 2 ρ $$ {R}_{2\rho } $$ from cartilage specimens are consistent with those previously measured, as quantified by: R 1 ρ , 2 ρ cal = 1.10 * R 1 ρ , 2 ρ exp - 0.41 $$ {R}_{1\rho, 2\rho}^{cal}={1.10}^{\ast }{R}_{1\rho, 2\rho}^{exp}-0.41 $$ . CONCLUSION: This work has theoretically and experimentally demonstrated that adiabatic R 1 ρ $$ {R}_{1\rho } $$ and R 2 ρ $$ {R}_{2\rho } $$ can be recast into a sum of R 1 $$ {R}_1 $$ and R 2 $$ {R}_2 $$ , with varying weightings. Therefore, any suggestions that adiabatic rotating frame relaxometry in biological tissues could provide more information than the standard R 1 $$ {R}_1 $$ and R 2 $$ {R}_2 $$ warrant closer scrutiny.

13.
Hum Reprod ; 39(9): 2089-2103, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38978296

RESUMEN

STUDY QUESTION: Do hyperactive kisspeptin neurons contribute to abnormally high LH secretion and downstream hyperandrogenemia in polycystic ovary syndrome (PCOS)-like conditions and can inhibition of kisspeptin neurons rescue such endocrine impairments? SUMMARY ANSWER: Targeted inhibition of endogenous kisspeptin neuron activity in a mouse model of PCOS reduced the abnormally hyperactive LH pulse secretion and hyperandrogenemia to healthy control levels. WHAT IS KNOWN ALREADY: PCOS is a reproductive disorder characterized by hyperandrogenemia, anovulation, and/or polycystic ovaries, along with a hallmark feature of abnormal LH hyper-pulsatility, but the mechanisms underlying the endocrine impairments remain unclear. A chronic letrozole (LET; aromatase inhibitor) mouse model recapitulates PCOS phenotypes, including polycystic ovaries, anovulation, high testosterone, and hyperactive LH pulses. LET PCOS-like females also have increased hypothalamic kisspeptin neuronal activation which may drive their hyperactive LH secretion and hyperandrogenemia, but this has not been tested. STUDY DESIGN, SIZE, DURATION: Transgenic KissCRE+/hM4Di female mice or littermates Cre- controls were treated with placebo, or chronic LET (50 µg/day) to induce a PCOS-like phenotype, followed by acute (once) or chronic (2 weeks) clozapine-N-oxide (CNO) exposure to chemogenetically inhibit kisspeptin cells (n = 6 to 10 mice/group). PARTICIPANTS/MATERIALS, SETTING, METHODS: Key endocrine measures, including in vivo LH pulse secretion patterns and circulating testosterone levels, were assessed before and after selective kisspeptin neuron inhibition and compared between PCOS groups and healthy controls. Alterations in body weights were measured and pituitary and ovarian gene expression was determined by qRT-PCR. MAIN RESULTS AND THE ROLE OF CHANCE: Acute targeted inhibition of kisspeptin neurons in PCOS mice successfully lowered the abnormally hyperactive LH pulse secretion (P < 0.05). Likewise, chronic selective suppression of kisspeptin neuron activity reversed the previously high LH and testosterone levels (P < 0.05) down to healthy control levels and rescued reproductive gene expression (P < 0. 05). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Ovarian morphology was not assessed in this study. Additionally, mouse models can offer mechanistic insights into neuroendocrine processes in PCOS-like conditions but may not perfectly mirror PCOS in women. WIDER IMPLICATIONS OF THE FINDINGS: These data support the hypothesis that overactive kisspeptin neurons can drive neuroendocrine PCOS-like impairments, and this may occur in PCOS women. Our findings complement recent clinical investigations using NKB receptor antagonists to lower LH in PCOS women and suggest that pharmacological dose-dependent modulation of kisspeptin neuron activity may be a valuable future therapeutic target to clinically treat hyperandrogenism and lower elevated LH in PCOS women. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by NIH grants R01 HD111650, R01 HD090161, R01 HD100580, P50 HD012303, R01 AG078185, and NIH R24 HD102061, and a pilot project award from the British Society for Neuroendocrinology. There are no competing interests.


Asunto(s)
Modelos Animales de Enfermedad , Hiperandrogenismo , Kisspeptinas , Letrozol , Hormona Luteinizante , Neuronas , Síndrome del Ovario Poliquístico , Animales , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Kisspeptinas/metabolismo , Hormona Luteinizante/sangre , Hiperandrogenismo/metabolismo , Hiperandrogenismo/complicaciones , Ratones , Neuronas/metabolismo , Letrozol/farmacología , Ratones Transgénicos , Inhibidores de la Aromatasa/farmacología , Testosterona/sangre
14.
NMR Biomed ; 37(1): e5041, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37771076

RESUMEN

This article proposes a numerical framework to determine the optimal magnetization preparation in a three-dimensional magnetization-prepared rapid gradient-echo (MP-RAGE) sequence to obtain the best achievable contrast between target tissues based on differences in their relaxation times. The benefit lies in the adaptation of the algorithm of optimal control, GRAdient Ascent Pulse Engineering (GRAPE), to the optimization of magnetization preparation in a cyclic sequence without full recovery between each cycle. This numerical approach optimizes magnetization preparation of an arbitrary number of radio frequency pulses to enhance contrast, taking into account the establishment of a steady state in the longitudinal component of the magnetization. The optimal control preparation offers an optimized mixed T 1 / T 2 contrast in this traditional T 1 -weighted sequence. To show the versatility of the proposed method, numerical and in vitro results are described. Examples of contrasts acquired on brain regions of a healthy volunteer are presented for potential applications at 3 T.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos
15.
J Magn Reson Imaging ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206090

RESUMEN

BACKGROUND: Arterial spin labeling (ASL) allows non-invasive quantification of myocardial blood flow (MBF). Double-ECG gating (DG) ASL is more robust to heart rate variability than single-ECG gating (SG), but its reproducibility requires further investigation. Moreover, the existence of multiple quantification models hinders its application. Frequency-offset-corrected-inversion (FOCI) pulses provide sharper edge profiles than hyperbolic-secant (HS), which could benefit myocardial ASL. PURPOSE: To assess the performance of MBF quantification models for DG compared to SG ASL, to evaluate their reproducibility and to compare the effects of HS and FOCI pulses. STUDY TYPE: Prospective. SUBJECTS: Sixteen subjects (27 ± 8 years). FIELD STRENGTH/SEQUENCE: 1.5 T/DG and SG flow-sensitive alternating inversion recovery ASL. ASSESSMENT: Three models for DG MBF quantification were compared using Monte Carlo simulations and in vivo experiments. Two models used a fitting approach (one using only a single label and control image pair per fit, the other using all available image pairs), while the third model used a T1 correction approach. Slice profile simulations were conducted for HS and FOCI pulses with varying B0 and B1. Temporal signal-to-noise ratio (tSNR) was computed for different acquisition/quantification strategies and inversion pulses. The number of images that minimized MBF error was investigated in the model with highest tSNR. Intra and intersession reproducibility were assessed in 10 subjects. STATISTICAL TESTS: Within-subject coefficient of variation, analysis of variance. P-value <0.05 was considered significant. RESULTS: MBF was not different across acquisition/quantification strategies (P = 0.27) nor pulses (P = 0.9). DG MBF quantification models exhibited significantly higher tSNR and superior reproducibility, particularly for the fitting model using multiple images (tSNR was 3.46 ± 2.18 in vivo and 3.32 ± 1.16 in simulations, respectively; wsCV = 16%). Reducing the number of ASL pairs to 13/15 did not increase MBF error (minimum = 0.22 mL/g/min). DATA CONCLUSION: Reproducibility of MBF was better for DG than SG acquisitions, especially when employing a fitting model. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

16.
Chemphyschem ; 25(8): e202300713, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38407996

RESUMEN

Signals undergoing chemical or conformational exchange in one-dimensional NMR spectra are often identified by deuterium exchange. In order to obtain quantitative information about the dynamic processes involved, one frequently used method is EXchange SpectroscopY (EXSY). To detect all exchange processes, the EXSY experiment requires the acquisition of time-consuming two-dimensional spectra. Here we report a faster alternative, an experiment which uses spatial encoding to extract similar information in a 1D exchange-edited experiment. Thereby, all protons are observed at once, but in different slices of the detection volume. The experiment can be carried out in a single scan to identify exchanging sites in a 1D spectrum by changes in signal intensity indicating exchange processes. If the exchanging partner, for example water is in molar excess the exchange-editing method easily identifies mobile protons by negative signals in the 1D 1H NMR spectrum.

17.
MAGMA ; 37(2): 257-272, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366129

RESUMEN

OBJECTIVE: To compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design. METHODS: The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability. Four optimization configurations are compared to a standard Gaussian spectral selective pre-saturation pulse and to a Dixon acquisition using phantom and volunteer (N = 5) data at 1.5 T with a turbo spin echo (TSE) sequence. Measurements and simulations are conducted across various body parts and image orientations. RESULTS: Phantom measurements demonstrate up to a 3.5-fold reduction in residual fat signal compared to Gaussian fat saturation. In vivo evaluations show improvements up to sixfold for dorsal subcutaneous fat in sagittal cervical spine acquisitions. The versatility of the tailored trajectory is confirmed through sagittal foot/ankle, coronal, and transversal cervical spine experiments. Additional measurements indicate that excitation field (B1) information can be disregarded at 1.5 T. Acceleration methods reduce computation time to a few seconds. DISCUSSION: An individual pulse design that primarily compensates for main field (B0) inhomogeneities in fat pre-saturation is successfully implemented within an online "push-button" workflow. Both fat saturation homogeneity and the level of suppression are improved.


Asunto(s)
Aumento de la Imagen , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Fantasmas de Imagen , Frecuencia Cardíaca , Vértebras Cervicales/diagnóstico por imagen
18.
Bioelectromagnetics ; 45(1): 4-15, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37408527

RESUMEN

The biological effects of exposure to electromagnetic fields due to wireless technologies and connected devices are a subject of particular research interest. Ultrashort high-amplitude electromagnetic field pulses delivered to biological samples using immersed electrodes in a dedicated cuvette have widely demonstrated their effectiveness in triggering several cell responses including increased cytosolic calcium concentration and reactive oxygen species (ROS) production. In contrast, the effects of these pulses are poorly documented when electromagnetic pulses are delivered through an antenna. Here we exposed Arabidopsis thaliana plants to 30,000 pulses (237 kV m-1 , 280 ps rise-time, duration of 500 ps) emitted through a Koshelev antenna and monitored the consequences of electromagnetic fields exposure on the expression levels of several key genes involved in calcium metabolism, signal transduction, ROS, and energy status. We found that this treatment was mostly unable to trigger significant changes in the messenger RNA accumulation of calmodulin, Zinc-Finger protein ZAT12, NADPH oxidase/respiratory burst oxidase homolog (RBOH) isoforms D and F, Catalase (CAT2), glutamate-cystein ligase (GSH1), glutathione synthetase (GSH2), Sucrose non-fermenting-related Kinase 1 (SnRK1) and Target of rapamycin (TOR). In contrast, Ascorbate peroxidases APX-1 and APX-6 were significantly induced 3 h after the exposure. These results suggest that this treatment, although quite strong in amplitude, is mostly ineffective in inducing biological effects at the transcriptional level when delivered by an antenna. © 2023 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Campos Electromagnéticos , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/farmacología
19.
Bioelectromagnetics ; 45(5): 218-225, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38533693

RESUMEN

Mounting literature indicates that electromagnetic pulses (EMP) is the promising modality to treat cancers with advantages such as noninvasiveness and few side-effects, but its appropriate parameters and underlying mechanisms such as its influence on tumor-derived exosomes (TDEs) are largely unknown. This study aimed to elucidate effects of EMP, exosome inhibition and their coaction on A549 lung adenocarcinoma cells. A549 cells were randomly divided into control group, GW4869 group treated by 20 µM GW4869, vehicle group treated by dimethyl sulfoxide, EMP group treated by EMP exposure, and EMPG group treated by EMP exposure combined with 20 µM GW4869. After EMP exposure, cell proliferation was determined by CCK8 assay, cell cycle and apoptosis was detected by flow cytometry, and cell migration was determined by transwell assay. The results showed that EMP or exosomes inhibition did not affect cell proliferation, cell cycle, apoptosis and cell migration (p > 0.05), but cell migration in EMPG group was significantly decreased compared with vehicle group (p < 0.05). We concluded that under the experimental condition, EMP or GW4869 alone had no effects on behaviors of A549 cells, but their coaction could effectively inhibit the migration of A549 cells.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Exosomas , Humanos , Exosomas/metabolismo , Células A549 , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Compuestos de Bencilideno/farmacología , Compuestos de Anilina/farmacología , Ciclo Celular/efectos de los fármacos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia
20.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33500349

RESUMEN

The gonadotropin-releasing hormone (GnRH) pulse is fundamental for mammalian reproduction: GnRH pulse regimens are needed as therapies for infertile women as continuous GnRH treatment paradoxically inhibits gonadotropin release. Circumstantial evidence suggests that the hypothalamic arcuate KNDy neurons expressing kisspeptin (encoded by Kiss1), neurokinin B (encoded by Tac3), and dynorphin A serve as a GnRH pulse generator; however, no direct evidence is currently available. Here, we show that rescuing >20% KNDy neurons by transfecting Kiss1 inside arcuate Tac3 neurons, but not outside of these neurons, recovered folliculogenesis and luteinizing hormone (LH) pulses, an indicator of GnRH pulses, in female global Kiss1 knockout (KO) rats and that >90% conditional arcuate Kiss1 KO in newly generated Kiss1-floxed rats completely suppressed LH pulses. These results first provide direct evidence that KNDy neurons are the GnRH pulse generator, and at least 20% of KNDy neurons are sufficient to maintain folliculogenesis via generating GnRH/gonadotropin pulses.


Asunto(s)
Dinorfinas/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Kisspeptinas/metabolismo , Neuroquinina B/metabolismo , Neuronas/metabolismo , Organogénesis , Folículo Ovárico/crecimiento & desarrollo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Aromatasa/genética , Aromatasa/metabolismo , Retroalimentación Fisiológica , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Integrasas/metabolismo , Hormona Luteinizante/sangre , Tamaño de los Órganos , Folículo Ovárico/metabolismo , Hipófisis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Receptores de HL/genética , Receptores de HL/metabolismo , Receptores LHRH/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA