Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.098
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 181(2): 382-395.e21, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32246942

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease characterized by attack on oligodendrocytes within the central nervous system (CNS). Despite widespread use of immunomodulatory therapies, patients may still face progressive disability because of failure of myelin regeneration and loss of neurons, suggesting additional cellular pathologies. Here, we describe a general approach for identifying specific cell types in which a disease allele exerts a pathogenic effect. Applying this approach to MS risk loci, we pinpoint likely pathogenic cell types for 70%. In addition to T cell loci, we unexpectedly identified myeloid- and CNS-specific risk loci, including two sites that dysregulate transcriptional pause release in oligodendrocytes. Functional studies demonstrated inhibition of transcriptional elongation is a dominant pathway blocking oligodendrocyte maturation. Furthermore, pause release factors are frequently dysregulated in MS brain tissue. These data implicate cell-intrinsic aberrations outside of the immune system and suggest new avenues for therapeutic development. VIDEO ABSTRACT.


Asunto(s)
Comunicación Celular/genética , Enfermedad/genética , Oligodendroglía/metabolismo , Animales , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Oligodendroglía/fisiología , Factores de Riesgo
2.
Immunity ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39053462

RESUMEN

The reduced ability of the central nervous system to regenerate with increasing age limits functional recovery following demyelinating injury. Previous work has shown that myelin debris can overwhelm the metabolic capacity of microglia, thereby impeding tissue regeneration in aging, but the underlying mechanisms are unknown. In a model of demyelination, we found that a substantial number of genes that were not effectively activated in aged myeloid cells displayed epigenetic modifications associated with restricted chromatin accessibility. Ablation of two class I histone deacetylases in microglia was sufficient to restore the capacity of aged mice to remyelinate lesioned tissue. We used Bacillus Calmette-Guerin (BCG), a live-attenuated vaccine, to train the innate immune system and detected epigenetic reprogramming of brain-resident myeloid cells and functional restoration of myelin debris clearance and lesion recovery. Our results provide insight into aging-associated decline in myeloid function and how this decay can be prevented by innate immune reprogramming.

3.
Immunity ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39217987

RESUMEN

The precise neurophysiological changes prompted by meningeal lymphatic dysfunction remain unclear. Here, we showed that inducing meningeal lymphatic vessel ablation in adult mice led to gene expression changes in glial cells, followed by reductions in mature oligodendrocyte numbers and specific lipid species in the brain. These phenomena were accompanied by altered meningeal adaptive immunity and brain myeloid cell activation. During brain remyelination, meningeal lymphatic dysfunction provoked a state of immunosuppression in the brain that contributed to delayed spontaneous oligodendrocyte replenishment and axonal loss. The deficiencies in mature oligodendrocytes and neuroinflammation due to impaired meningeal lymphatic function were solely recapitulated in immunocompetent mice. Patients diagnosed with multiple sclerosis presented reduced vascular endothelial growth factor C in the cerebrospinal fluid, particularly shortly after clinical relapses, possibly indicative of poor meningeal lymphatic function. These data demonstrate that meningeal lymphatics regulate oligodendrocyte function and brain myelination, which might have implications for human demyelinating diseases.

4.
Genes Dev ; 34(17-18): 1177-1189, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32792353

RESUMEN

Dysregulation of the ubiquitin-proteasomal system (UPS) enables pathogenic accumulation of disease-driving proteins in neurons across a host of neurological disorders. However, whether and how the UPS contributes to oligodendrocyte dysfunction and repair after white matter injury (WMI) remains undefined. Here we show that the E3 ligase VHL interacts with Daam2 and their mutual antagonism regulates oligodendrocyte differentiation during development. Using proteomic analysis of the Daam2-VHL complex coupled with conditional genetic knockout mouse models, we further discovered that the E3 ubiquitin ligase Nedd4 is required for developmental myelination through stabilization of VHL via K63-linked ubiquitination. Furthermore, studies in mouse demyelination models and white matter lesions from patients with multiple sclerosis corroborate the function of this pathway during remyelination after WMI. Overall, these studies provide evidence that a signaling axis involving key UPS components contributes to oligodendrocyte development and repair and reveal a new role for Nedd4 in glial biology.


Asunto(s)
Diferenciación Celular , Proteínas de Microfilamentos/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Regeneración Nerviosa/genética , Enfermedades del Sistema Nervioso/genética , Oligodendroglía/fisiología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/genética , Enfermedades del Sistema Nervioso/fisiopatología , Oligodendroglía/citología , Estabilidad Proteica , Ubiquitinación/genética
5.
Proc Natl Acad Sci U S A ; 120(37): e2301030120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669365

RESUMEN

A hallmark of multiple sclerosis (MS) is the formation of multiple focal demyelinating lesions within the central nervous system (CNS). These lesions mainly consist of phagocytes that play a key role in lesion progression and remyelination, and therefore represent a promising therapeutic target in MS. We recently showed that unsaturated fatty acids produced by stearoyl-CoA desaturase-1 induce inflammatory foam cell formation during demyelination. These fatty acids are elongated by the "elongation of very long chain fatty acids" proteins (ELOVLs), generating a series of functionally distinct lipids. Here, we show that the expression and activity of ELOVLs are altered in myelin-induced foam cells. Especially ELOVL6, an enzyme responsible for converting saturated and monounsaturated C16 fatty acids into C18 species, was found to be up-regulated in myelin phagocytosing phagocytes in vitro and in MS lesions. Depletion of Elovl6 induced a repair-promoting phagocyte phenotype through activation of the S1P/PPARγ pathway. Elovl6-deficient foamy macrophages showed enhanced ABCA1-mediated lipid efflux, increased production of neurotrophic factors, and reduced expression of inflammatory mediators. Moreover, our data show that ELOVL6 hampers CNS repair, as Elovl6 deficiency prevented demyelination and boosted remyelination in organotypic brain slice cultures and the mouse cuprizone model. These findings indicate that targeting ELOVL6 activity may be an effective strategy to stimulate CNS repair in MS and other neurodegenerative diseases.


Asunto(s)
Esclerosis Múltiple , Remielinización , Animales , Ratones , Adipogénesis , Modelos Animales de Enfermedad , Ácidos Grasos , Ácidos Grasos Monoinsaturados , Células Espumosas
6.
Proc Natl Acad Sci U S A ; 120(20): e2217635120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155847

RESUMEN

Myelin repair is an unrealized therapeutic goal in the treatment of multiple sclerosis (MS). Uncertainty remains about the optimal techniques for assessing therapeutic efficacy and imaging biomarkers are required to measure and corroborate myelin restoration. We analyzed myelin water fraction imaging from ReBUILD, a double-blind, randomized placebo-controlled (delayed treatment) remyelination trial, that showed a significant reduction in VEP latency in patients with MS. We focused on brain regions rich in myelin. Fifty MS subjects in two arms underwent 3T MRI at baseline and months 3 and 5. Half of the cohort was randomly assigned to receive treatment from baseline through 3 mo, whereas the other half received treatment from 3 mo to 5 mo post-baseline. We computed myelin water fraction changes occurring in normal-appearing white matter of corpus callosum, optic radiations, and corticospinal tracts. An increase in myelin water fraction was documented in the normal-appearing white matter of the corpus callosum, in correspondence with the administration of the remyelinating treatment clemastine. This study provides direct, biologically validated imaging-based evidence of medically induced myelin repair. Moreover, our work strongly suggests that significant myelin repair occurs outside of lesions. We therefore propose myelin water fraction within the normal-appearing white matter of the corpus callosum as a biomarker for clinical trials looking at remyelination.


Asunto(s)
Esclerosis Múltiple , Remielinización , Sustancia Blanca , Humanos , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Encéfalo/patología , Vaina de Mielina/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen por Resonancia Magnética/métodos , Agua , Biomarcadores
7.
J Neurosci ; 44(28)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38749703

RESUMEN

Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand-mediated activation hindering myelin repair. Following chronic cuprizone (CPZ)-induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase-/butyrylcholinesterase (BChE)-mediated degradation. Using choline acetyltransferase (ChAT) reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and CPZ demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin-induced demyelination. In CPZ-demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following CPZ demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand-mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand-mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.


Asunto(s)
Enfermedades Desmielinizantes , Oligodendroglía , Transducción de Señal , Animales , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Ratones , Oligodendroglía/metabolismo , Oligodendroglía/efectos de los fármacos , Femenino , Masculino , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ratones Endogámicos C57BL , Acetilcolina/metabolismo , Cuprizona/toxicidad , Lisofosfatidilcolinas/toxicidad , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Colina O-Acetiltransferasa/metabolismo , Remielinización/fisiología , Remielinización/efectos de los fármacos , Vaina de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Ratones Transgénicos
8.
J Biol Chem ; 300(1): 105487, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995941

RESUMEN

Oligodendrocyte precursor cells are present in the adult central nervous system, and their impaired ability to differentiate into myelinating oligodendrocytes can lead to demyelination in patients with multiple sclerosis, accompanied by neurological deficits and cognitive impairment. Exosomes, small vesicles released by cells, are known to facilitate intercellular communication by carrying bioactive molecules. In this study, we utilized exosomes derived from human umbilical cord mesenchymal stem cells (HUMSCs-Exos). We performed sequencing and bioinformatics analysis of exosome-treated cells to demonstrate that HUMSCs-Exos can stimulate myelin gene expression in oigodendrocyte precursor cells. Functional investigations revealed that HUMSCs-Exos activate the Pi3k/Akt pathway and regulate the Tbr1/Wnt signaling molecules through the transfer of miR-23a-3p, promoting oligodendrocytes differentiation and enhancing the expression of myelin-related proteins. In an experimental autoimmune encephalomyelitis model, treatment with HUMSCs-Exos significantly improved neurological function and facilitated remyelination. This study provides cellular and molecular insights into the use of cell-free exosome therapy for central nervous system demyelination associated with multiple sclerosis, demonstrating its great potential for treating demyelinating and neurodegenerative diseases.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Esclerosis Múltiple , Remielinización , Adulto , Humanos , Diferenciación Celular/genética , Exosomas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , MicroARNs/farmacología , MicroARNs/uso terapéutico , Esclerosis Múltiple/genética , Esclerosis Múltiple/terapia , Esclerosis Múltiple/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Remielinización/efectos de los fármacos , Remielinización/genética , Cordón Umbilical/citología , Cordón Umbilical/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas de Dominio T Box/metabolismo , Modelos Animales de Enfermedad , Células Cultivadas
9.
FASEB J ; 38(2): e23413, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38243760

RESUMEN

Sphingosine-1-phosphate receptor (S1PR) modulators are clinically used to treat relapse-remitting multiple sclerosis (MS) and the early phase of progressive MS when inflammation still prevails. In the periphery, S1PR modulators prevent lymphocyte egress from lymph nodes, hence hampering neuroinflammation. Recent findings suggest a role for S1PR modulation in remyelination. As the Giα-coupled S1P1 subtype is the most prominently expressed S1PR in oligodendrocyte precursor cells (OPCs), selective modulation (functional antagonism) of S1P1 may have direct effects on OPC functionality. We hypothesized that functional antagonism of S1P1 by ponesimod induces remyelination by boosting OPC differentiation. In the cuprizone mouse model of demyelination, we found ponesimod to decrease the latency time of visual evoked potentials compared to vehicle conditions, which is indicative of functional remyelination. In addition, the Y maze spontaneous alternations test revealed that ponesimod reversed cuprizone-induced working memory deficits. Myelin basic protein (MBP) immunohistochemistry and transmission electron microscopy of the corpus callosum revealed an increase in myelination upon ponesimod treatment. Moreover, treatment with ponesimod alone or in combination with A971432, an S1P5 monoselective modulator, significantly increased primary mouse OPC differentiation based on O4 immunocytochemistry. In conclusion, S1P1 functional antagonism by ponesimod increases remyelination in the cuprizone model of demyelination and significantly increases OPC differentiation in vitro.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Tiazoles , Ratones , Animales , Cuprizona/toxicidad , Receptores de Esfingosina-1-Fosfato/metabolismo , Oligodendroglía , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Potenciales Evocados Visuales , Diferenciación Celular/fisiología , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Modelos Animales de Enfermedad
10.
Brain ; 147(4): 1331-1343, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38267729

RESUMEN

Cortical myelin loss and repair in multiple sclerosis (MS) have been explored in neuropathological studies, but the impact of these processes on neurodegeneration and the irreversible clinical progression of the disease remains unknown. Here, we evaluated in vivo cortical demyelination and remyelination in a large cohort of people with all clinical phenotypes of MS followed up for 5 years using magnetization transfer imaging (MTI), a technique that has been shown to be sensitive to myelin content changes in the cortex. We investigated 140 people with MS (37 clinically isolated syndrome, 71 relapsing-MS, 32 progressive-MS), who were clinically assessed at baseline and after 5 years and, along with 84 healthy controls, underwent a 3 T-MRI protocol including MTI at baseline and after 1 year. Changes in cortical volume over the radiological follow-up were computed with a Jacobian integration method. Magnetization transfer ratio was employed to calculate for each patient an index of cortical demyelination at baseline and of dynamic cortical demyelination and remyelination over the follow-up period. The three indices of cortical myelin content change were heterogeneous across patients but did not significantly differ across clinical phenotypes or treatment groups. Cortical remyelination, which tended to fail in the regions closer to CSF (-11%, P < 0.001), was extensive in half of the cohort and occurred independently of age, disease duration and clinical phenotype. Higher indices of cortical dynamic demyelination (ß = 0.23, P = 0.024) and lower indices of cortical remyelination (ß = -0.18, P = 0.03) were significantly associated with greater cortical atrophy after 1 year, independently of age and MS phenotype. While the extent of cortical demyelination predicted a higher probability of clinical progression after 5 years in the entire cohort [odds ratio (OR) = 1.2; P = 0.043], the impact of cortical remyelination in reducing the risk of accumulating clinical disability after 5 years was significant only in the subgroup of patients with shorter disease duration and limited extent of demyelination in cortical regions (OR = 0.86, P = 0.015, area under the curve = 0.93). In this subgroup, a 30% increase in cortical remyelination nearly halved the risk of clinical progression at 5 years, independently of clinical relapses. Overall, our results highlight the critical role of cortical myelin dynamics in the cascade of events leading to neurodegeneration and to the subsequent accumulation of irreversible disability in MS. Our findings suggest that early-stage myelin repair compensating for cortical myelin loss has the potential to prevent neuro-axonal loss and its long-term irreversible clinical consequences in people with MS.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Vaina de Mielina/patología , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Progresión de la Enfermedad , Atrofia/patología
11.
Brain ; 147(4): 1294-1311, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38289861

RESUMEN

Ischaemic stroke causes neuron loss and long-term functional deficits. Unfortunately, effective approaches to preserving neurons and promoting functional recovery remain unavailable. Oligodendrocytes, the myelinating cells in the CNS, are susceptible to oxygen and nutrition deprivation and undergo degeneration after ischaemic stroke. Technically, new oligodendrocytes and myelin can be generated by the differentiation of oligodendrocyte precursor cells (OPCs). However, myelin dynamics and their functional significance after ischaemic stroke remain poorly understood. Here, we report numerous denuded axons accompanied by decreased neuron density in sections from ischaemic stroke lesions in human brain, suggesting that neuron loss correlates with myelin deficits in these lesions. To investigate the longitudinal changes in myelin dynamics after stroke, we labelled and traced pre-existing and newly-formed myelin, respectively, using cell-specific genetic approaches. Our results indicated massive oligodendrocyte death and myelin loss 2 weeks after stroke in the transient middle cerebral artery occlusion (tMCAO) mouse model. In contrast, myelin regeneration remained insufficient 4 and 8 weeks post-stroke. Notably, neuronal loss and functional impairments worsened in aged brains, and new myelin generation was diminished. To analyse the causal relationship between remyelination and neuron survival, we manipulated myelinogenesis by conditional deletion of Olig2 (a positive regulator) or muscarinic receptor 1 (M1R, a negative regulator) in OPCs. Deleting Olig2 inhibited remyelination, reducing neuron survival and functional recovery after tMCAO. Conversely, enhancing remyelination by M1R conditional knockout or treatment with the pro-myelination drug clemastine after tMCAO preserved white matter integrity and neuronal survival, accelerating functional recovery. Together, our findings demonstrate that enhancing myelinogenesis is a promising strategy to preserve neurons and promote functional recovery after ischaemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Humanos , Anciano , Vaina de Mielina/patología , Isquemia Encefálica/complicaciones , Isquemia Encefálica/patología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/patología , Oligodendroglía/patología , Neuronas , Diferenciación Celular/fisiología
12.
Mol Ther ; 32(9): 3163-3176, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38937968

RESUMEN

Galactosyl-ceramidase (GALC) is a ubiquitous lysosomal enzyme crucial for the correct myelination of the mammalian nervous system during early postnatal development. However, the physiological consequence of GALC deficiency in the adult brain remains unknown. In this study, we found that mice with conditional ablation of GALC activity in post-myelinating oligodendrocytes were lethally sensitized when challenged with chronic experimental allergic encephalomyelitis (EAE), in contrast with the non-lethal dysmyelination observed in Galc-ablated mice without the EAE challenge. Mechanistically, we found strong inflammatory demyelination without remyelination and an impaired fusion of lysosomes and autophagosomes with accumulation of myelin debris after a transcription factor EB-dependent increase in the lysosomal autophagosome flux. These results indicate that the physiological impact of GALC deficiency is highly influenced by the cell context (oligodendroglial vs. global expression), the presence of inflammation, and the developmental time when it happens (pre-myelination vs. post-myelination). We conclude that Galc expression in adult oligodendrocytes is crucial for the maintenance of adult central myelin and to decrease vulnerability to additional demyelinating insults.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Galactosilceramidasa , Vaina de Mielina , Oligodendroglía , Animales , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Ratones , Vaina de Mielina/metabolismo , Galactosilceramidasa/metabolismo , Galactosilceramidasa/genética , Modelos Animales de Enfermedad , Lisosomas/metabolismo , Ratones Noqueados , Índice de Severidad de la Enfermedad , Enfermedad Crónica
13.
Mol Cell Neurosci ; 129: 103937, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796120

RESUMEN

Experimental models of multiple sclerosis (MS) have significantly contributed to our understanding of pathophysiology and the development of therapeutic interventions. Various in vivo animal models have successfully replicated key features of MS and associated pathophysiological processes, shedding light on the sequence of events leading to disease initiation, progression, and resolution. Nevertheless, these models often entail substantial costs and prolonged treatment periods. In contrast, in vitro models offer distinct advantages, including cost-effectiveness and precise control over experimental conditions, thereby facilitating more reproducible results. We have developed a novel in vitro model tailored to the study of oligodendroglial maturation and myelin deposition under demyelinating and remyelinating conditions, which encompasses all the cell types present in the central nervous system (CNS). Of note, our model enables the evaluation of microglial cell commitment through a protocol involving their depletion and subsequent repopulation. Given that the development and survival of microglia are critically reliant on colony-stimulating factor-1 receptor (CSF-1R) signaling, we have employed CSF-1R inhibition to effectively deplete microglia. This versatile model holds promise for the assessment of potential therapies aimed at promoting oligodendroglial differentiation to safeguard and repair myelin, hence mitigate neurodegenerative processes.


Asunto(s)
Microglía , Vaina de Mielina , Oligodendroglía , Remielinización , Microglía/metabolismo , Animales , Oligodendroglía/metabolismo , Vaina de Mielina/metabolismo , Ratones , Remielinización/fisiología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Diferenciación Celular/fisiología , Células Cultivadas
14.
Proc Natl Acad Sci U S A ; 119(46): e2120393119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343243

RESUMEN

Failure of remyelination underlies the progressive nature of demyelinating diseases such as multiple sclerosis. Why endogenous repair mechanisms frequently fail in these disorders is poorly understood. However, there is now evidence indicating that this is related to an overly inflammatory microenvironment combined with the intrinsic inability of oligodendrocyte precursor cells (OPCs) to differentiate into mature myelinating cells. Previously, we found that phloretin, a flavonoid abundantly present in apples and strawberries, reduces neuroinflammation by driving macrophages toward an antiinflammatory phenotype. Here, we show that phloretin also markedly stimulates remyelination in ex vivo and in vivo animal models. Improved remyelination was attributed to a direct impact of phloretin on OPC maturation and occurred independently from alterations in microglia function and inflammation. We found, mechanistically, that phloretin acts as a direct ligand for the fatty acid sensing nuclear receptor peroxisome proliferator-activated receptor gamma, thereby promoting the maturation of OPCs. Together, our findings indicate that phloretin has proregenerative properties in central nervous system disorders, with potentially broad implications for the development of therapeutic strategies and dietary interventions aimed at promoting remyelination.


Asunto(s)
Células Precursoras de Oligodendrocitos , Remielinización , Animales , Ratones , Remielinización/fisiología , Floretina/farmacología , Ratones Endogámicos C57BL , Oligodendroglía , Diferenciación Celular/fisiología , Vaina de Mielina
15.
J Neurosci ; 43(7): 1143-1153, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36732069

RESUMEN

Cerebral creatine deficiency syndrome (CCDS) is an inborn error of metabolism characterized by intellectual delays, seizures, and autistic-like behavior. However, the role of endogenously synthesized creatine on CNS development and function remains poorly understood. Here, magnetic resonance spectroscopy of adult mouse brains from both sexes revealed creatine synthesis is dependent on the expression of the enzyme, guanidinoacetate methyltransferase (GAMT). To identify Gamt-expressed cells, and how Gamt affects postnatal CNS development, we generated a mouse line by knocking-in a GFP, which is expressed on excision of Gamt We found that Gamt is expressed in mature oligodendrocytes during active myelination in the developing postnatal CNS. Homozygous deletion of Gamt resulted in significantly reduced mature oligodendrocytes and delayed myelination in the corpus callosum. Moreover, the absence of endogenous creatine resulted in altered AMPK signaling in the brain, reduced brain creatine kinase expression in cortical neurons, and signs of axonal damage. Experimental demyelination in mice after tamoxifen-induced conditional deletion of Gamt in oligodendrocyte lineage cells resulted in delayed maturation of oligodendrocytes and myelin coverage in lesions. Moreover, creatine and cyclocreatine supplementation can enhance remyelination after demyelination. Our results suggest endogenously synthesized creatine controls the bioenergetic demand required for the timely maturation of oligodendrocytes during postnatal CNS development, and that delayed myelination and altered CNS energetics through the disruption of creatine synthesis might contribute to conditions, such as CCDS.SIGNIFICANCE STATEMENT Cerebral creatine deficiency syndrome is a rare disease of inborn errors in metabolism, which is characterized by intellectual delays, seizures, and autism-like behavior. We found that oligodendrocytes are the main source of endogenously synthesized creatine in the adult CNS, and the loss of endogenous creatine synthesis led to delayed myelination. Our study suggests impaired cerebral creatine synthesis affects the timing of myelination and may impact brain bioenergetics.


Asunto(s)
Enfermedades Desmielinizantes , Discapacidad Intelectual , Masculino , Femenino , Ratones , Animales , Creatina/metabolismo , Homocigoto , Eliminación de Secuencia , Oligodendroglía/metabolismo , Discapacidad Intelectual/genética , Enfermedades Desmielinizantes/patología , Convulsiones
16.
Glia ; 72(10): 1801-1820, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38899723

RESUMEN

The kappa opioid receptor has been identified as a promising therapeutic target for promoting remyelination. In the current study, we evaluated the ability of nalfurafine to promote oligodendrocyte progenitor cell (OPC) differentiation and myelination in vitro, and its efficacy in an extended, cuprizone-induced demyelination model. Primary mouse (C57BL/6J) OPC-containing cultures were treated with nalfurafine (0.6-200 nM), clemastine (0.01-100 µM), T3 (30 ng/mL), or vehicle for 5 days. Using immunocytochemistry and confocal microscopy, we found that nalfurafine treatment increased OPC differentiation, oligodendrocyte (OL) morphological complexity, and myelination of nanofibers in vitro. Adult male mice (C57BL/6J) were given a diet containing 0.2% cuprizone and administered rapamycin (10 mg/kg) once daily for 12 weeks followed by 6 weeks of treatment with nalfurafine (0.01 or 0.1 mg/kg), clemastine (10 mg/kg), or vehicle. We quantified the number of OLs using immunofluorescence, gross myelination using black gold staining, and myelin thickness using electron microscopy. Cuprizone + rapamycin treatment produced extensive demyelination and was accompanied by a loss of mature OLs, which was partially reversed by therapeutic administration of nalfurafine. We also assessed these mice for functional behavioral changes in open-field, horizontal bar, and mouse motor skill sequence tests (complex wheel running). Cuprizone + rapamycin treatment resulted in hyperlocomotion, poorer horizontal bar scores, and less distance traveled on the running wheels. Partial recovery was observed on both the horizontal bar and complex running wheel tests over time, which was facilitated by nalfurafine treatment. Taken together, these data highlight the potential of nalfurafine as a remyelination-promoting therapeutic.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Ratones Endogámicos C57BL , Morfinanos , Vaina de Mielina , Sirolimus , Compuestos de Espiro , Animales , Morfinanos/farmacología , Masculino , Compuestos de Espiro/farmacología , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/tratamiento farmacológico , Ratones , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Vaina de Mielina/metabolismo , Sirolimus/farmacología , Cuprizona/toxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Diferenciación Celular/efectos de los fármacos
17.
Glia ; 72(2): 338-361, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37860913

RESUMEN

Extracellular vesicles (EVs) are involved in diverse cellular functions, playing a significant role in cell-to-cell communication in both physiological conditions and pathological scenarios. Therefore, EVs represent a promising therapeutic strategy. Oligodendrocytes (OLs) are myelinating glial cells developed from oligodendrocyte progenitor cells (OPCs) and damaged in chronic demyelinating diseases such as multiple sclerosis (MS). Glycoprotein transferrin (Tf) plays a critical role in iron homeostasis and has pro-differentiating effects on OLs in vivo and in vitro. In the current work, we evaluated the use of EVs as transporters of Tf to the central nervous system (CNS) through the intranasal (IN) route. For the in vitro mechanistic studies, we used rat plasma EVs. Our results show that EVTf enter OPCs through clathrin-caveolae and cholesterol-rich lipid raft endocytic pathways, releasing the cargo and exerting a pro-maturation effect on OPCs. These effects were also observed in vivo using the animal model of demyelination induced by cuprizone (CPZ). In this model, IN administered Tf-loaded EVs isolated from mouse plasma reached the brain parenchyma, internalizing into OPCs, promoting their differentiation, and accelerating remyelination. Furthermore, in vivo experiments demonstrated that EVs protected the Tf cargo and significantly reduced the amount of Tf required to induce remyelination as compared to soluble Tf. Collectively, these findings unveil EVs as functional nanocarriers of Tf to induce remyelination.


Asunto(s)
Enfermedades Desmielinizantes , Vesículas Extracelulares , Ratones , Ratas , Animales , Transferrina/metabolismo , Enfermedades Desmielinizantes/patología , Oligodendroglía/metabolismo , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Cuprizona/toxicidad , Vesículas Extracelulares/metabolismo , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo
18.
Glia ; 72(8): 1392-1401, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38572807

RESUMEN

Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) characterized by demyelination, axonal damage and, for the majority of people, a decline in neurological function in the long-term. Remyelination could assist in the protection of axons and their functional recovery, but such therapies are not, as yet, available. The TAM (Tyro3, Axl, and MERTK) receptor ligand GAS6 potentiates myelination in vitro and promotes recovery in pre-clinical models of MS. However, it has remained unclear which TAM receptor is responsible for transducing this effect and whether post-translational modification of GAS6 is required. In this study, we show that the promotion of myelination requires post-translational modification of the GLA domain of GAS6 via vitamin K-dependent γ-carboxylation. We also confirmed that the intracerebroventricular provision of GAS6 for 2 weeks to demyelinated wild-type (WT) mice challenged with cuprizone increased the density of myelinated axons in the corpus callosum by over 2-fold compared with vehicle control. Conversely, the provision of GAS6 to Tyro3 KO mice did not significantly improve the density of myelinated axons. The improvement in remyelination following the provision of GAS6 to WT mice was also accompanied by an increased density of CC1+ve mature oligodendrocytes compared with vehicle control, whereas this improvement was not observed in the absence of Tyro3. This effect occurs independent of any influence on microglial activation. This work therefore establishes that the remyelinative activity of GAS6 is dependent on Tyro3 and includes potentiation of oligodendrocyte numbers.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Péptidos y Proteínas de Señalización Intercelular , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Tirosina Quinasas Receptoras , Remielinización , Animales , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Remielinización/fisiología , Remielinización/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Cuprizona/toxicidad , Ratones , Modelos Animales de Enfermedad , Vaina de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Masculino , Femenino
19.
Immunology ; 171(4): 618-633, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38243672

RESUMEN

Oligodendrocyte progenitor cells (OPCs) were regarded for years solely for their regenerative role; however, their immune-modulatory roles have gained much attention recently, particularly in the context of multiple sclerosis (MS). Despite extensive studies on OPCs, there are limited data elucidating the interactions between their intrinsic regenerative and immune functions, as well as their relationship with the inflamed central nervous system (CNS) environment, a key factor in MS pathology. We examined the effects of pro-inflammatory cytokines, represented by interferon (IFN)-γ and tumour necrosis factor (TNF)-α, as well as anti-inflammatory cytokines, represented by interleukin (IL)-4 and IL-10, on OPC differentiation and immune characteristics. Using primary cultures, enzyme-linked immunosorbent assay and immunofluorescence stainings, we assessed differentiation capacity, phagocytic activity, major histocompatibility complex (MHC)-II expression, and cytokine secretion. We observed that the anti-inflammatory milieu (IL4 and IL10) reduced both OPC differentiation and immune functions. Conversely, exposure to TNF-α led to intact differentiation, increased phagocytic activity, high levels of MHC-II expression, and cytokines secretion. Those effects were attributed to signalling via TNF-receptor-2 and counteracted the detrimental effects of IFN-γ on OPC differentiation. Our findings suggest that a pro-regenerative, permissive inflammatory environment is needed for OPCs to execute both regenerative and immune-modulatory functions.


Asunto(s)
Esclerosis Múltiple , Células Precursoras de Oligodendrocitos , Humanos , Células Precursoras de Oligodendrocitos/metabolismo , Citocinas/metabolismo , Diferenciación Celular , Esclerosis Múltiple/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inmunidad , Antiinflamatorios/farmacología , Oligodendroglía
20.
J Neurochem ; 168(1): 3-25, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38055776

RESUMEN

Microglia (MG) play a crucial role as the predominant myeloid cells in the central nervous system and are commonly activated in multiple sclerosis. They perform essential functions under normal conditions, such as actively surveying the surrounding parenchyma, facilitating synaptic remodeling, engulfing dead cells and debris, and protecting the brain against infectious pathogens and harmful self-proteins. Extracellular vesicles (EVs) are diverse structures enclosed by a lipid bilayer that originate from intracellular endocytic trafficking or the plasma membrane. They are released by cells into the extracellular space and can be found in various bodily fluids. EVs have recently emerged as a communication mechanism between cells, enabling the transfer of functional proteins, lipids, different RNA species, and even fragments of DNA from donor cells. MG act as both source and recipient of EVs. Consequently, MG-derived EVs are involved in regulating synapse development and maintaining homeostasis. These EVs also directly influence astrocytes, significantly increasing the release of inflammatory cytokines like IL-1ß, IL-6, and TNF-α, resulting in a robust inflammatory response. Furthermore, EVs derived from inflammatory MG have been found to inhibit remyelination, whereas Evs produced by pro-regenerative MG effectively promote myelin repair. This review aims to provide an overview of the current understanding of MG-derived Evs, their impact on neighboring cells, and the cellular microenvironment in normal conditions and pathological states, specifically focusing on demyelination and remyelination processes.


Asunto(s)
Vesículas Extracelulares , Esclerosis Múltiple , Remielinización , Humanos , Microglía/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Esclerosis Múltiple/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA