Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38566506

RESUMEN

Despite a decade-long study on Developmental Topographical Disorientation, the underlying mechanism behind this neurological condition remains unknown. This lifelong selective inability in orientation, which causes these individuals to get lost even in familiar surroundings, is present in the absence of any other neurological disorder or acquired brain damage. Herein, we report an analysis of the functional brain network of individuals with Developmental Topographical Disorientation ($n = 19$) compared against that of healthy controls ($n = 21$), all of whom underwent resting-state functional magnetic resonance imaging, to identify if and how their underlying functional brain network is altered. While the established resting-state networks (RSNs) are confirmed in both groups, there is, on average, a greater connectivity and connectivity strength, in addition to increased global and local efficiency in the overall functional network of the Developmental Topographical Disorientation group. In particular, there is an enhanced connectivity between some RSNs facilitated through indirect functional paths. We identify a handful of nodes that encode part of these differences. Overall, our findings provide strong evidence that the brain networks of individuals suffering from Developmental Topographical Disorientation are modified by compensatory mechanisms, which might open the door for new diagnostic tools.


Asunto(s)
Lesiones Encefálicas , Encéfalo , Humanos , Pruebas Neuropsicológicas , Confusión/etiología , Confusión/patología , Mapeo Encefálico , Lesiones Encefálicas/patología , Imagen por Resonancia Magnética
2.
Cereb Cortex ; 34(10)2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39385613

RESUMEN

Visual working memory (VWM) is a core cognitive function wherein visual information is stored and manipulated over short periods. Response errors in VWM tasks arise from the imprecise memory of target items, swaps between targets and nontargets, and random guesses. However, it remains unclear whether these types of errors are underpinned by distinct neural networks. To answer this question, we recruited 80 healthy adults to perform delayed estimation tasks and acquired their resting-state functional magnetic resonance imaging scans. The tasks required participants to reproduce the memorized visual feature along continuous scales, which, combined with mixture distribution modeling, allowed us to estimate the measures of memory precision, swap errors, and random guesses. Intrinsic functional connectivity within and between different networks, identified using a hierarchical clustering approach, was estimated for each participant. Our analyses revealed that higher memory precision was associated with increased connectivity within a frontal-opercular network, as well as between the dorsal attention network and an angular-gyrus-cerebellar network. We also found that coupling between the frontoparietal control network and the cingulo-opercular network contributes to both memory precision and random guesses. Our findings demonstrate that distinct sources of variability in VWM performance are underpinned by different yet partially overlapping intrinsic functional networks.


Asunto(s)
Imagen por Resonancia Magnética , Memoria a Corto Plazo , Red Nerviosa , Percepción Visual , Humanos , Memoria a Corto Plazo/fisiología , Femenino , Masculino , Adulto , Adulto Joven , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Percepción Visual/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Vías Nerviosas/fisiología
3.
Hum Brain Mapp ; 45(13): e70018, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39230193

RESUMEN

The characterisation of resting-state networks (RSNs) using neuroimaging techniques has significantly contributed to our understanding of the organisation of brain activity. Prior work has demonstrated the electrophysiological basis of RSNs and their dynamic nature, revealing transient activations of brain networks with millisecond timescales. While previous research has confirmed the comparability of RSNs identified by electroencephalography (EEG) to those identified by magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), most studies have utilised static analysis techniques, ignoring the dynamic nature of brain activity. Often, these studies use high-density EEG systems, which limit their applicability in clinical settings. Addressing these gaps, our research studies RSNs using medium-density EEG systems (61 sensors), comparing both static and dynamic brain network features to those obtained from a high-density MEG system (306 sensors). We assess the qualitative and quantitative comparability of EEG-derived RSNs to those from MEG, including their ability to capture age-related effects, and explore the reproducibility of dynamic RSNs within and across the modalities. Our findings suggest that both MEG and EEG offer comparable static and dynamic network descriptions, albeit with MEG offering some increased sensitivity and reproducibility. Such RSNs and their comparability across the two modalities remained consistent qualitatively but not quantitatively when the data were reconstructed without subject-specific structural MRI images.


Asunto(s)
Electroencefalografía , Magnetoencefalografía , Red Nerviosa , Humanos , Magnetoencefalografía/métodos , Electroencefalografía/métodos , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Masculino , Femenino , Adulto Joven , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Anciano , Conectoma/métodos , Adolescente , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Descanso/fisiología
4.
Stress ; 27(1): 2275207, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37877207

RESUMEN

Maternal prenatal distress (PD), frequently defined as in utero prenatal stress exposure (PSE) to the developing fetus, influences the developing brain and numerous associations between PSE and brain structure have been described both in neonates and in older children. Previous studies addressing PSE-linked alterations in neonates' brain activity have focused on connectivity analyses from predefined seed regions, but the effects of PSE at the level of distributed functional networks remains unclear. In this study, we investigated the impact of prenatal distress on the spatial and temporal properties of functional networks detected in functional MRI data from 20 naturally sleeping, term-born (age 25.85 ± 7.72 days, 11 males), healthy neonates. First, we performed group level independent component analysis (GICA) to evaluate an association between PD and the identified functional networks. Second, we searched for an association with PD at the level of the stability of functional networks over time using leading eigenvector dynamics analysis (LEiDA). No statistically significant associations were detected at the spatial level for the GICA-derived networks. However, at the dynamic level, LEiDA revealed that maternal PD negatively associated with the stability of a frontoparietal network. These results imply that maternal PD may influence the stability of frontoparietal connections in neonatal brain network dynamics and adds to the cumulating evidence that frontal areas are especially sensitive to PSE. We advocate for early preventive intervention strategies regarding pregnant mothers. Nevertheless, future research venues are required to assess optimal intervention timing and methods for maximum benefit.


Asunto(s)
Encéfalo , Estrés Psicológico , Masculino , Recién Nacido , Embarazo , Femenino , Niño , Humanos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética , Madres
5.
Brain Topogr ; 37(3): 432-446, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37751055

RESUMEN

Fragile X syndrome (FXS) is one of the most common inherited causes of intellectual disabilities. While there is currently no cure for FXS, EEG is considered an important method to investigate the pathophysiology and evaluate behavioral and cognitive treatments. We conducted EEG microstate analysis to investigate resting brain dynamics in FXS participants. Resting-state recordings from 70 FXS participants and 71 chronological age-matched typically developing control (TDC) participants were used to derive microstates via modified k-means clustering. The occurrence, mean global field power (GFP), and global explained variance (GEV) of microstate C were significantly higher in the FXS group compared to the TDC group. The mean GFP was significantly negatively correlated with non-verbal IQ (NVIQ) in the FXS group, where lower NVIQ scores were associated with greater GFP. In addition, the occurrence, mean duration, mean GFP, and GEV of microstate D were significantly greater in the FXS group than the TDC group. The mean GFP and occurrence of microstate D were also correlated with individual alpha frequencies in the FXS group, where lower IAF frequencies accompanied greater microstate GFP and occurrence. Alterations in microstates C and D may be related to the two well-established cognitive characteristics of FXS, intellectual disabilities and attention impairments, suggesting that microstate parameters could serve as markers to study cognitive impairments and evaluate treatment outcomes in this population. Slowing of the alpha peak frequency and its correlation to microstate D parameters may suggest changes in thalamocortical dynamics in FXS, which could be specifically related to attention control. (250 words).


Asunto(s)
Disfunción Cognitiva , Síndrome del Cromosoma X Frágil , Discapacidad Intelectual , Humanos , Electroencefalografía , Encéfalo/fisiología
6.
Brain Topogr ; 37(4): 552-570, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38141125

RESUMEN

The error-related negativity (ERN) is a negative deflection in the electroencephalography (EEG) waveform at frontal-central scalp sites that occurs after error commission. The relationship between the ERN and broader patterns of brain activity measured across the entire scalp that support error processing during early childhood is unclear. We examined the relationship between the ERN and EEG microstates - whole-brain patterns of dynamically evolving scalp potential topographies that reflect periods of synchronized neural activity - during both a go/no-go task and resting-state in 90, 4-8-year-old children. The mean amplitude of the ERN was quantified during the -64 to 108 millisecond (ms) period of time relative to error commission, which was determined by data-driven microstate segmentation of error-related activity. We found that greater magnitude of the ERN associated with greater global explained variance (GEV; i.e., the percentage of total variance in the data explained by a given microstate) of an error-related microstate observed during the same -64 to 108 ms period (i.e., error-related microstate 3), and to greater anxiety risk as measured by parent-reported behavioral inhibition. During resting-state, six data-driven microstates were identified. Both greater magnitude of the ERN and greater GEV values of error-related microstate 3 associated with greater GEV values of resting-state microstate 4, which showed a frontal-central scalp topography. Source localization results revealed overlap between the underlying neural generators of error-related microstate 3 and resting-state microstate 4 and canonical brain networks (e.g., ventral attention) known to support the higher-order cognitive processes involved in error processing. Taken together, our results clarify how individual differences in error-related and intrinsic brain activity are related and enhance our understanding of developing brain network function and organization supporting error processing during early childhood.


Asunto(s)
Encéfalo , Electroencefalografía , Descanso , Humanos , Niño , Femenino , Electroencefalografía/métodos , Masculino , Preescolar , Encéfalo/fisiología , Descanso/fisiología , Potenciales Evocados/fisiología , Mapeo Encefálico/métodos , Tiempo de Reacción/fisiología
7.
Brain Cogn ; 177: 106156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613926

RESUMEN

Acute physical activity influences cognitive performance. However, the relationship between exercise intensity, neural network activity, and cognitive performance remains poorly understood. This study examined the effects of different exercise intensities on resting-state functional connectivity (rsFC) and cognitive performance. Twenty male athletes (27.3 ± 3.6 years) underwent cycling exercises of different intensities (high, low, rest/control) on different days in randomized order. Before and after, subjects performed resting-state functional magnetic resonance imaging and a behavioral Attention Network Test (ANT). Independent component analysis and Linear mixed effects models examined rsFC changes within ten resting-state networks. No significant changes were identified in ANT performance. Resting-state analyses revealed a significant interaction in the Left Frontoparietal Network, driven by a non-significant rsFC increase after low-intensity and a significant rsFC decrease after high-intensity exercise, suggestive of an inverted U-shape relationship between exercise intensity and rsFC. Similar but trend-level rsFC interactions were observed in the Dorsal Attention Network (DAN) and the Cerebellar Basal Ganglia Network. Explorative correlation analysis revealed a significant positive association between rsFC increases in the right superior parietal lobule (part of DAN) and better ANT orienting in the low-intensity condition. Results indicate exercise intensity-dependent subacute rsFC changes in cognition-related networks, but their cognitive-behavioral relevance needs further investigation.


Asunto(s)
Cognición , Ejercicio Físico , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Masculino , Imagen por Resonancia Magnética/métodos , Adulto , Ejercicio Físico/fisiología , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Cognición/fisiología , Adulto Joven , Atención/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Descanso/fisiología
8.
Neuroradiology ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230715

RESUMEN

PURPOSE: This review highlights the importance of functional connectivity in pediatric neuroscience, focusing on its role in understanding neurodevelopment and potential applications in clinical practice. It discusses various techniques for analyzing brain connectivity and their implications for clinical interventions in neurodevelopmental disorders. METHODS: The principles and applications of independent component analysis and seed-based connectivity analysis in pediatric brain studies are outlined. Additionally, the use of graph analysis to enhance understanding of network organization and topology is reviewed, providing a comprehensive overview of connectivity methods across developmental stages, from fetuses to adolescents. RESULTS: Findings from the reviewed studies reveal that functional connectivity research has uncovered significant insights into the early formation of brain circuits in fetuses and neonates, particularly the prenatal origins of cognitive and sensory systems. Longitudinal research across childhood and adolescence demonstrates dynamic changes in brain connectivity, identifying critical periods of development and maturation that are essential for understanding neurodevelopmental trajectories and disorders. CONCLUSION: Functional connectivity methods are crucial for advancing pediatric neuroscience. Techniques such as independent component analysis, seed-based connectivity analysis, and graph analysis offer valuable perspectives on brain development, creating new opportunities for early diagnosis and targeted interventions in neurodevelopmental disorders, thereby paving the way for personalized therapeutic strategies.

9.
Cereb Cortex ; 33(14): 9144-9153, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37259175

RESUMEN

The default mode network is essential for higher-order cognitive processes and is composed of an extensive network of functional and structural connections. Early in fetal life, the default mode network shows strong connectivity with other functional networks; however, the association with structural development is not well understood. In this study, resting-state functional magnetic resonance imaging and anatomical images were acquired in 30 pregnant women with singleton pregnancies. Participants completed 1 or 2 MR imaging sessions, on average 3 weeks apart (43 data sets), between 28- and 39-weeks postconceptional ages. Subcortical volumes were automatically segmented. Activation time courses from resting-state functional magnetic resonance imaging were extracted from the default mode network, medial temporal lobe network, and thalamocortical network. Generalized estimating equations were used to examine the association between functional connectivity strength between default mode network-medial temporal lobe, default mode network-thalamocortical network, and subcortical volumes, respectively. Increased functional connectivity strength in the default mode network-medial temporal lobe network was associated with smaller right hippocampal, left thalamic, and right caudate nucleus volumes, but larger volumes of the left caudate. Increased functional connectivity strength in the default mode network-thalamocortical network was associated with smaller left thalamic volumes. The strong associations seen among the default mode network functional connectivity networks and regionally specific subcortical volume development indicate the emergence of short-range connectivity in the third trimester.


Asunto(s)
Red en Modo Predeterminado , Lóbulo Temporal , Embarazo , Humanos , Femenino , Imagen por Resonancia Magnética/métodos , Hipocampo , Encéfalo/diagnóstico por imagen , Mapeo Encefálico
10.
Cereb Cortex ; 33(22): 11025-11035, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37746803

RESUMEN

This work explored neural network changes in early Parkinson's disease: Resting-state functional magnetic resonance imaging was used to investigate functional alterations in different stages of Parkinson's disease (PD). Ninety-five PD patients (50 early/mild and 45 early/moderate) and 37 healthy controls (HCs) were included. Independent component analysis revealed significant differences in intra-network connectivity, specifically in the default mode network (DMN) and right frontoparietal network (RFPN), in both PD groups compared to HCs. Inter-network connectivity analysis showed reduced connectivity between the executive control network (ECN) and DMN, as well as ECN-left frontoparietal network (LFPN), in early/mild PD. Early/moderate PD exhibited decreased connectivity in ECN-LFPN, ECN-RFPN, ECN-DMN, and DMN-auditory network, along with increased connectivity in LFPN-cerebellar network. Correlations were found between ECN-DMN and ECN-LFPN connections with UPDRS-III scores in early/mild PD. These findings suggest that PD progression involves dysfunction in multiple intra- and inter-networks, particularly implicating the ECN, and a wider range of abnormal functional networks may mark the progression of the disease.


Asunto(s)
Encéfalo , Enfermedad de Parkinson , Humanos , Mapeo Encefálico/métodos , Enfermedad de Parkinson/diagnóstico por imagen , Imagen por Resonancia Magnética , Redes Neurales de la Computación
11.
Cereb Cortex ; 33(11): 7175-7184, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36799546

RESUMEN

Subjective perceptual experience is influenced not only by bottom-up sensory information and experience-based top-down processes, but also by an individual's current brain state. Specifically, a previous study found increased prestimulus insula and intraparietal sulcus (IPS) activity before participants perceived an illusory Gestalt (global) compared with the non-illusory (local) interpretation of a bistable stimulus. That study provided only a snapshot of the brain state that favors the illusory interpretation. In the current study, we tested whether areas that differentiate between the illusory and non-illusory perception, immediately before stimulus onset, are also associated with an individual's general tendency to perceive it, which remains stable over time. We examined individual differences in task-free functional connectivity of insula and IPS and related them to differences in the individuals' duration of the two stimulus interpretations. We found stronger connectivity of the IPS with areas of the default mode and visual networks to be associated with shorter local perceptual phases, i.e. a faster switch to an illusory percept, and an opposite effect for insula connectivity with the early visual cortex. Our findings suggest an important role of IPS and insula interactions with nodes of key intrinsic networks in forming a perceptual tendency toward illusory Gestalt perception.


Asunto(s)
Mapeo Encefálico , Ilusiones , Humanos , Encéfalo/diagnóstico por imagen , Lóbulo Parietal , Corteza Insular , Imagen por Resonancia Magnética , Estimulación Luminosa , Percepción Visual
12.
Cereb Cortex ; 33(4): 1246-1262, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35368068

RESUMEN

Temporally stable patterns of neural coordination among distributed brain regions are crucial for survival. Recently, many studies highlight association between healthy aging and modifications in organization of functional brain networks, across various time-scales. Nonetheless, quantitative characterization of temporal stability of functional brain networks across healthy aging remains unexplored. This study introduces a data-driven unsupervised approach to capture high-dimensional dynamic functional connectivity (dFC) via low-dimensional patterns and subsequent estimation of temporal stability using quantitative metrics. Healthy aging related changes in temporal stability of dFC were characterized across resting-state, movie-viewing, and sensorimotor tasks (SMT) on a large (n = 645) healthy aging dataset (18-88 years). Prominent results reveal that (1) whole-brain temporal dynamics of dFC movie-watching task is closer to resting-state than to SMT with an overall trend of highest temporal stability observed during SMT followed by movie-watching and resting-state, invariant across lifespan aging, (2) in both tasks conditions stability of neurocognitive networks in young adults is higher than older adults, and (3) temporal stability of whole brain resting-state follows a U-shaped curve along lifespan-a pattern shared by sensorimotor network stability indicating their deeper relationship. Overall, the results can be applied generally for studying cohorts of neurological disorders using neuroimaging tools.


Asunto(s)
Mapeo Encefálico , Longevidad , Adulto Joven , Humanos , Anciano , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Modelos Neurológicos , Descanso , Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen
13.
Cereb Cortex ; 33(6): 2593-2611, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35739579

RESUMEN

The dysfunctional patterns of microstates dynamics in obsessive-compulsive disorder (OCD) remain uncertain. Using high-density electrical neuroimaging (EEG) at rest, we explored microstates deterioration in OCD and whether abnormal microstates patterns are associated with a dysregulation of the resting-state networks interplay. We used EEG microstates analyses, TESS method for sources reconstruction, and General Linear Models to test for the effect of disease severity on neural responses. OCD patients exhibited an increased contribution and decreased duration of microstates C and D, respectively. Activity was decreased in the Salience Network (SN), associated with microstate C, but increased in the Default Mode Network (DMN) and Executive Control Network (ECN), respectively, associated with microstates E and D. The hyperactivity of the right angular gyrus in the ECN correlated with the symptoms severity. The imbalance between microstates C and D invalidates the hypothesis that this electrophysiological pattern is specific to psychosis. Demonstrating that the SN-ECN dysregulation manifests as abnormalities in microstates C and D, we confirm that the SN deterioration in OCD is accompanied by a failure of the DMN to deactivate and aberrant compensatory activation mechanisms in the ECN. These abnormalities explain typical OCD clinical features but also detachment from reality, shared with psychosis.


Asunto(s)
Encéfalo , Trastorno Obsesivo Compulsivo , Humanos , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Neuroimagen , Lóbulo Parietal , Trastorno Obsesivo Compulsivo/diagnóstico por imagen
14.
BMC Ophthalmol ; 24(1): 411, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300474

RESUMEN

BACKGROUND: The pathogenesis of intermittent exotropia (IXT) remains unclear. The study aims to investigate alterations of resting-state networks (RSNs) in IXT adult patients using resting-state functional magnetic resonance imaging (rs-fMRI) data to explore the potential neural mechanisms. METHODS: Twenty-six IXT adult patients and 22 age-, sex-, handedness-, and education-matched healthy controls (HCs) underwent fMRI scanning and ophthalmological examinations. Brain areas with significant functional connectivity (FC) differences between the IXT and HC groups were selected as regions of interest (ROI) and mean z-scores were calculated to control for individual differences. RESULTS: Compared with HCs, IXT patients exhibited altered FC in various brain regions within RSNs involved in binocular fusion, stereopsis, ocular movement, emotional processes and social cognition, including the default mode network (DMN), the dorsal attention network (DAN), the visual network (VN), the sensorimotor network (SMN), the executive control network (ECN), the frontoparietal network (FPN) and the auditory network (AN). The degree of exodeviation was positively correlated with FC value of left middle occipital gyrus (MOG) within the VN. Correspondingly, we found a negative correlation between the degree of exodeviation and the FC value of left angular gyrus (AG) within FPN (P < 0.05). The FNC analysis between different RSNs also provides evidence on visual-motor cortical plasticity. CONCLUSIONS: IXT patients showed widespread changes of brain activity within RSNs related to binocular fusion, stereopsis, oculomotor control, emotional processes, and social cognition. These findings extend our current understanding of the neuropathological mechanisms of IXT. TRIAL REGISTRATION: Beginning date of the trial: 2021-09-01. Date of registration:2021-07-18. Trial registration number: ChiCTR 2,100,048,852. Trial registration site: http://www.chictr.org.cn/index.aspx .


Asunto(s)
Exotropía , Imagen por Resonancia Magnética , Humanos , Exotropía/fisiopatología , Exotropía/diagnóstico por imagen , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Adulto , Adulto Joven , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico/métodos , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Descanso/fisiología , Persona de Mediana Edad
15.
J Integr Neurosci ; 23(9): 174, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39344224

RESUMEN

BACKGROUND: Sleep deprivation (SD) can impair an individual's alertness, which is the basis of attention and the mechanism behind continuous information processing. However, research concerning the effects of total sleep deprivation (TSD) on alertness networks is inadequate. In this study, we investigate the cognitive neural mechanism of alertness processing after TSD. METHODS: Twenty-four college students volunteered to participate in the study. The resting-state electroencephalogram (EEG) data were collected under two conditions (rested wakefulness [RW], and TSD). We employed isolated effective coherence (iCoh) analysis and functional independent component analysis (fICA) to explore the effects of TSD on participants' alertness network. RESULTS: This study found the existence of two types of effective connectivity after TSD, as demonstrated by iCoh: from the left cuneus to the right middle frontal gyrus in the ß3 and γ bands, and from the left angular gyrus to the left insula in the δ, θ, α, ß1, ß3, and γ bands. Furthermore, Pearson correlation analysis showed that increased effective connectivity between all the bands had a positive correlation with increases in the response time in the psychomotor vigilance task (PVT). Finally, fICA revealed that the neural oscillations of the cuneus in the α2 bands increased, and of the angular gyrus in the α and ß1 bands decreased in TSD. CONCLUSIONS: TSD impairs the alertness function among individuals. Increased effective connectivity from the cuneus to the middle frontal gyrus may represent overloads on the alertness network, resulting in participants strengthening top-down control of the attention system. Moreover, enhanced effective connectivity from the angular gyrus to the insula may indicate a special perception strategy in which individuals focus on salient and crucial environmental information while ignoring inessential stimuli to reduce the heavy burden on the alertness network. CLINICAL TRIAL REGISTRATION: No: ChiCTR2400088448. Registered 19 August 2024, https://www.chictr.org.cn.


Asunto(s)
Atención , Corteza Prefrontal , Privación de Sueño , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Atención/fisiología , Ondas Encefálicas/fisiología , Conectoma , Electroencefalografía , Red Nerviosa/fisiopatología , Corteza Prefrontal/fisiopatología , Desempeño Psicomotor/fisiología , Privación de Sueño/fisiopatología
16.
J Neurosci ; 42(11): 2205-2220, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35074866

RESUMEN

Bodily rhythms appear as novel scaffolding mechanisms orchestrating the spatiotemporal organization of spontaneous brain activity. Here, we follow-up on the discovery of the gastric resting-state network (Rebollo et al., 2018), composed of brain regions in which the fMRI signal is phase-synchronized to the slow (0.05 Hz) electrical rhythm of the stomach. Using a larger sample size (n = 63 human participants, both genders), we further characterize the anatomy and effect sizes of gastric-brain coupling across resting-state networks, a fine grained cortical parcellation, as well as along the main gradients of cortical organization. Most (67%) of the gastric network is included in the somato-motor-auditory (38%) and visual (29%) resting state networks (RSNs). Gastric brain coupling also occurs in the granular insula and, to a lesser extent, in the piriform cortex. Thus, all sensory and motor cortices corresponding to both exteroceptive and interoceptive modalities are coupled to the gastric rhythm during rest. Conversely, little gastric-brain coupling occurs in cognitive networks and transmodal regions. These results suggest not only that gastric rhythm and sensory-motor processes are likely to interact, but also that gastric-brain coupling might be a mechanism of sensory and motor integration that mostly bypasses cognition, complementing the classical hierarchical organization of the human brain.SIGNIFICANCE STATEMENT While there is growing interest for brain-body communication in general and brain-viscera communication in particular, little is known about how the brain interacts with the gastric rhythm, the slow electrical rhythm continuously produced in the stomach. Here, we show in human participants at rest that the gastric network, composed of brain regions synchronized with delays to the gastric rhythm, includes all motor and sensory (vision, audition, touch and interoception, olfaction) regions, but only few of the transmodal regions associated with higher-level cognition. Such results prompt for a reconsideration of the classical view of cortical organization, where the different sensory modalities are considered as relatively independent modules.


Asunto(s)
Mapeo Encefálico , Corteza Sensoriomotora , Encéfalo/anatomía & histología , Mapeo Encefálico/métodos , Cognición , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Estómago/diagnóstico por imagen
17.
J Neurosci ; 42(24): 4867-4878, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35552233

RESUMEN

The predisposition to engage in autonomous habitual behaviors has been associated with behavioral disorders, such as obsessive-compulsive disorder and addiction. Attentional set-shifting tasks (ASSTs), which incorporate changes governing the association of discriminative stimuli with contingent reinforcement, are commonly used to measure underlying processes of cognitive/behavioral flexibility. The purpose of this study was to identify primate brain networks that mediate trait-like deficits in ASST performance using resting-state fMRI. A self-pacing ASST was administered to three cohorts of rhesus monkeys (total n = 35, 18 female). Increased performance over 30 consecutive sessions segregated the monkeys into two populations, termed High Performers (HP, n = 17) and Low Performers (LP, n = 17), with one anomaly. Compared with LPs, HPs had higher rates of improving performance over sessions and completed the 8 sets/sessions with fewer errors. LP monkeys, on the other hand, spent most of each session in the first set and often did not acquire the first reversal. A whole-brain independent components analysis of resting-state fMRI under isoflurane identified four strong networks. Of these, a dual regression analysis revealed that a designated "executive control network," differed between HPs and LPs. Specific areas of connectivity in the rhesus executive control network, including frontal cortices (ventrolateral, ventromedial, and orbital) and the dorsal striatum (caudate, putamen) correlated with perseverative errors and response latency. Overall, the results identify trait-like characteristics of behavioral flexibility that are associated with correlated brain activity involving specific nuclei of frontostriatal networks.SIGNIFICANCE STATEMENT Resting state functional connectivity MRI in rhesus monkeys identified specific nuclei in frontostriatal circuitry that were associated with population differences in perseverative and impulsive aspects of cognitive flexibility.


Asunto(s)
Mapeo Encefálico , Lipopolisacáridos , Animales , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Femenino , Macaca mulatta , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas
18.
Neuroimage ; 284: 120459, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977408

RESUMEN

Metabolic, hormonal, autonomic and physiological rhythms may have a significant impact on cerebral hemodynamics and intrinsic brain synchronization measured with fMRI (the resting-state connectome). The impact of their characteristic time scales (hourly, circadian, seasonal), and consequently scan timing effects, on brain topology in inherently heterogeneous developing connectomes remains elusive. In a cohort of 4102 early adolescents with resting-state fMRI (median age = 120.0 months; 53.1 % females) from the Adolescent Brain Cognitive Development Study, this study investigated associations between scan time-of-day, time-of-week (school day vs weekend) and time-of-year (school year vs summer vacation) and topological properties of resting-state connectomes at multiple spatial scales. On average, participants were scanned around 2 pm, primarily during school days (60.9 %), and during the school year (74.6 %). Scan time-of-day was negatively correlated with multiple whole-brain, network-specific and regional topological properties (with the exception of a positive correlation with modularity), primarily of visual, dorsal attention, salience, frontoparietal control networks, and the basal ganglia. Being scanned during the weekend (vs a school day) was correlated with topological differences in the hippocampus and temporoparietal networks. Being scanned during the summer vacation (vs the school year) was consistently positively associated with multiple topological properties of bilateral visual, and to a lesser extent somatomotor, dorsal attention and temporoparietal networks. Time parameter interactions suggested that being scanned during the weekend and summer vacation enhanced the positive effects of being scanned in the morning. Time-of-day effects were overall small but spatially extensive, and time-of-week and time-of-year effects varied from small to large (Cohen's f ≤ 0.1, Cohen's d<0.82, p < 0.05). Together, these parameters were also positively correlated with temporal fMRI signal variability but only in the left hemisphere. Finally, confounding effects of scan time parameters on relationships between connectome properties and cognitive task performance were assessed using the ABCD neurocognitive battery. Although most relationships were unaffected by scan time parameters, their combined inclusion eliminated associations between properties of visual and somatomotor networks and performance in the Matrix Reasoning and Pattern Comparison Processing Speed tasks. Thus, scan time of day, week and year may impact measurements of adolescent brain's functional circuits, and should be accounted for in studies on their associations with cognitive performance, in order to reduce the probability of incorrect inference.


Asunto(s)
Conectoma , Femenino , Humanos , Adolescente , Niño , Masculino , Imagen por Resonancia Magnética , Encéfalo/fisiología , Cognición , Ganglios Basales , Red Nerviosa/fisiología
19.
Neuroimage ; 281: 120365, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683809

RESUMEN

Cognitive Reserve (CR) refers to the preservation of cognitive function in the face of age- or disease-related neuroanatomical decline. While bilingualism has been shown to contribute to CR, the extent to which, and what particular aspect of, second language experience contributes to CR are debated, and the underlying neural mechanism(s) unknown. Intrinsic functional connectivity reflects experience-dependent neuroplasticity that occurs across timescales ranging from minutes to decades, and may be a neural mechanism underlying CR. To test this hypothesis, we used voxel-based morphometry and resting-state functional connectivity analyses of MRI data to compare structural and functional brain integrity between monolingual and bilingual older adults, matched on cognitive performance, and across levels of second language proficiency measured as a continuous variable. Bilingualism, and degree of second language proficiency specifically, were associated with lower gray matter integrity in a hub of the default mode network - a region that is particularly vulnerable to decline in aging and dementia - but preserved intrinsic functional network organization. Bilingualism moderated the association between neuroanatomical differences and cognitive decline, such that lower gray matter integrity was associated with lower executive function in monolinguals, but not bilinguals. Intrinsic functional network integrity predicted executive function when controlling for group differences in gray matter integrity and language status. Our findings confirm that lifelong bilingualism is a CR factor, as bilingual older adults performed just as well as their monolingual peers on tasks of executive function, despite showing signs of more advanced neuroanatomical aging, and that this is a consequence of preserved intrinsic functional network organization.


Asunto(s)
Reserva Cognitiva , Multilingüismo , Humanos , Anciano , Pruebas Neuropsicológicas , Encéfalo/diagnóstico por imagen , Lenguaje
20.
Neuroimage ; 268: 119861, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36610677

RESUMEN

Recent studies suggest that the interaction between presbycusis and cognitive impairment may be partially explained by the cognitive-ear link. However, the underlying neurophysiological mechanisms remain largely unknown. In this study, we combined magnetic resonance spectroscopy (MRS) and resting-state functional magnetic resonance imaging (fMRI) to investigate auditory gamma-aminobutyric acid (GABA) and glutamate (Glu) levels, intra- and inter-network functional connectivity, and their relationships with auditory and cognitive function in 51 presbycusis patients and 51 well-matched healthy controls. Our results confirmed reorganization of the cognitive-ear link in presbycusis, including decreased auditory GABA and Glu levels and aberrant functional connectivity involving auditory networks (AN) and cognitive-related networks, which were associated with reduced speech perception or cognitive impairment. Moreover, mediation analyses revealed that decreased auditory GABA levels and dysconnectivity between the AN and default mode network (DMN) mediated the association between hearing loss and impaired information processing speed in presbycusis. These findings highlight the importance of AN-DMN dysconnectivity in cognitive-ear link reorganization leading to cognitive impairment, and hearing loss may drive reorganization via decreased auditory GABA levels. Modulation of GABA neurotransmission may lead to new treatment strategies for cognitive impairment in presbycusis patients.


Asunto(s)
Disfunción Cognitiva , Presbiacusia , Humanos , Ácido Glutámico , Cognición , Ácido gamma-Aminobutírico , Disfunción Cognitiva/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA