Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 760
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 169(6): 1000-1011, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575665

RESUMEN

Many cellular stresses activate senescence, a persistent hyporeplicative state characterized in part by expression of the p16INK4a cell-cycle inhibitor. Senescent cell production occurs throughout life and plays beneficial roles in a variety of physiological and pathological processes including embryogenesis, wound healing, host immunity, and tumor suppression. Meanwhile, the steady accumulation of senescent cells with age also has adverse consequences. These non-proliferating cells occupy key cellular niches and elaborate pro-inflammatory cytokines, contributing to aging-related diseases and morbidity. This model suggests that the abundance of senescent cells in vivo predicts "molecular," as opposed to chronologic, age and that senescent cell clearance may mitigate aging-associated pathology.


Asunto(s)
Envejecimiento/patología , Ciclo Celular , Senescencia Celular , Animales , Humanos , Neoplasias/inmunología , Cicatrización de Heridas
2.
Mol Cell ; 84(17): 3271-3287.e8, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39178863

RESUMEN

Cellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory senescence-associated secretory phenotype (SASP), is a cause of aging. In senescent cells, cytoplasmic chromatin fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. Promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are also involved in senescence and anti-viral immunity. The HIRA histone H3.3 chaperone localizes to PML NBs in senescent cells. Here, we show that HIRA and PML are essential for SASP expression, tightly linked to HIRA's localization to PML NBs. Inactivation of HIRA does not directly block expression of nuclear factor κB (NF-κB) target genes. Instead, an H3.3-independent HIRA function activates SASP through a CCF-cGAS-STING-TBK1-NF-κB pathway. HIRA physically interacts with p62/SQSTM1, an autophagy regulator and negative SASP regulator. HIRA and p62 co-localize in PML NBs, linked to their antagonistic regulation of SASP, with PML NBs controlling their spatial configuration. These results outline a role for HIRA and PML in the regulation of SASP.


Asunto(s)
Proteínas de Ciclo Celular , Senescencia Celular , Chaperonas de Histonas , Inflamación , FN-kappa B , Proteínas Nucleares , Proteína de la Leucemia Promielocítica , Proteínas Serina-Treonina Quinasas , Proteína Sequestosoma-1 , Transducción de Señal , Factores de Transcripción , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Cromatina/genética , Células HEK293 , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Histonas/metabolismo , Histonas/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Nucleotidiltransferasas , Proteína de la Leucemia Promielocítica/metabolismo , Proteína de la Leucemia Promielocítica/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
3.
Mol Cell ; 83(22): 4158-4173.e7, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37949068

RESUMEN

Sporulating bacteria can retreat into long-lasting dormant spores that preserve the capacity to germinate when propitious. However, how the revival transcriptional program is memorized for years remains elusive. We revealed that in dormant spores, core RNA polymerase (RNAP) resides in a central chromosomal domain, where it remains bound to a subset of intergenic promoter regions. These regions regulate genes encoding for most essential cellular functions, such as rRNAs and tRNAs. Upon awakening, RNAP recruits key transcriptional components, including sigma factor, and progresses to express the adjacent downstream genes. Mutants devoid of spore DNA-compacting proteins exhibit scattered RNAP localization and subsequently disordered firing of gene expression during germination. Accordingly, we propose that the spore chromosome is structured to preserve the transcriptional program by halting RNAP, prepared to execute transcription at the auspicious time. Such a mechanism may sustain long-term transcriptional programs in diverse organisms displaying a quiescent life form.


Asunto(s)
Bacillus subtilis , Esporas Bacterianas , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo
4.
Genes Dev ; 36(9-10): 533-549, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618311

RESUMEN

Senescence is a stress-responsive tumor suppressor mechanism associated with expression of the senescence-associated secretory phenotype (SASP). Through the SASP, senescent cells trigger their own immune-mediated elimination, which if evaded leads to tumorigenesis. Senescent parenchymal cells are separated from circulating immunocytes by the endothelium, which is targeted by microenvironmental signaling. Here we show that SASP induces endothelial cell NF-κB activity and that SASP-induced endothelial expression of the canonical NF-κB component Rela underpins senescence surveillance. Using human liver sinusoidal endothelial cells (LSECs), we show that SASP-induced endothelial NF-κB activity regulates a conserved transcriptional program supporting immunocyte recruitment. Furthermore, oncogenic hepatocyte senescence drives murine LSEC NF-κB activity in vivo. Critically, we show two distinct endothelial pathways in senescence surveillance. First, endothelial-specific loss of Rela prevents development of Stat1-expressing CD4+ T lymphocytes. Second, the SASP up-regulates ICOSLG on LSECs, with the ICOS-ICOSLG axis contributing to senescence cell clearance. Our results show that the endothelium is a nonautonomous SASP target and an organizing center for immune-mediated senescence surveillance.


Asunto(s)
Senescencia Celular , FN-kappa B , Animales , Senescencia Celular/genética , Células Endoteliales/metabolismo , Endotelio/metabolismo , Ratones , FN-kappa B/metabolismo , Fenotipo
5.
Genes Dev ; 36(9-10): 511-513, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35680423

RESUMEN

Senescence is a specialized form of cell cycle arrest induced in response to damage and stress. In certain settings, senescent cells can promote their own removal by recruitment of the immune system, a process that is thought to decline in efficiency with age. In this issue of Genes & Development, Yin et al. (pp. 533-549) discover a surprising cross-talk where senescent cells instruct endothelial cells to help organize the clearance of the senescent population. This uncovers yet another layer of complexity in senescent cell biology, with implications for cancer treatment and aging.


Asunto(s)
Senescencia Celular , Células Endoteliales , Puntos de Control del Ciclo Celular , Senescencia Celular/genética
6.
Mol Cell ; 81(9): 2041-2052.e6, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823141

RESUMEN

Cellular senescence is a state of stable proliferative arrest triggered by damaging signals. Senescent cells persist during aging and promote age-related pathologies via the pro-inflammatory senescence-associated secretory phenotype (SASP), whose regulation depends on environmental factors. In vivo, a major environmental variable is oxygenation, which varies among and within tissues. Here, we demonstrate that senescent cells express lower levels of detrimental pro-inflammatory SASP factors in physiologically hypoxic environments, as measured in culture and in tissues. Mechanistically, exposure of senescent cells to low-oxygen conditions leads to AMPK activation and AMPK-mediated suppression of the mTOR-NF-κB signaling loop. Finally, we demonstrate that treatment with hypoxia-mimetic compounds reduces SASP in cells and tissues and improves strength in chemotherapy-treated and aged mice. Our findings highlight the importance of oxygen as a determinant for pro-inflammatory SASP expression and offer a potential new strategy to reduce detrimental paracrine effects of senescent cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proliferación Celular , Senescencia Celular , Hipoxia/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Edad , Animales , Antibióticos Antineoplásicos/farmacología , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Hidroxibenzoatos/farmacología , Hipoxia/patología , Hipoxia/fisiopatología , Mediadores de Inflamación/metabolismo , Isoquinolinas/farmacología , Ratones Endogámicos C57BL , Fuerza Muscular , FN-kappa B/metabolismo , Comunicación Paracrina , Fenotipo , Transducción de Señal
7.
Genes Dev ; 34(23-24): 1565-1576, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262144

RESUMEN

Cellular senescence is a stress response that elicits a permanent cell cycle arrest and triggers profound phenotypic changes such as the production of a bioactive secretome, referred to as the senescence-associated secretory phenotype (SASP). Acute senescence induction protects against cancer and limits fibrosis, but lingering senescent cells drive age-related disorders. Thus, targeting senescent cells to delay aging and limit dysfunction, known as "senotherapy," is gaining momentum. While drugs that selectively kill senescent cells, termed "senolytics" are a major focus, SASP-centered approaches are emerging as alternatives to target senescence-associated diseases. Here, we summarize the regulation and functions of the SASP and highlight the therapeutic potential of SASP modulation as complimentary or an alternative to current senolytic approaches.


Asunto(s)
Envejecimiento/patología , Senescencia Celular/genética , Susceptibilidad a Enfermedades/terapia , Quimioterapia , Envejecimiento/genética , Desarrollo de Medicamentos , Epigénesis Genética , Regulación de la Expresión Génica , Humanos , Preparaciones Farmacéuticas/química , Vías Secretoras , Transducción de Señal
8.
Trends Genet ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39341687

RESUMEN

This review comprehensively examines the molecular biology and genetic origins of cellular senescence. We focus on various cellular stressors and pathways leading to senescence, including recent advances in the understanding of the genetic influences driving senescence, such as telomere attrition, chemotherapy-induced DNA damage, pathogens, oncogene activation, and cellular and metabolic stress. This review also highlights the complex interplay of various signaling and metabolic pathways involved in cellular senescence and provides insights into potential therapeutic targets for aging-related diseases. Furthermore, this review outlines future research directions to deepen our understanding of senescence biology and develop effective interventions targeting senescent cells (SnCs).

9.
EMBO J ; 41(6): e108946, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34985783

RESUMEN

Cellular senescence is a state of stable growth arrest and a desired outcome of tumor suppressive interventions. Treatment with many anti-cancer drugs can cause premature senescence of non-malignant cells. These therapy-induced senescent cells can have pro-tumorigenic and pro-disease functions via activation of an inflammatory secretory phenotype (SASP). Inhibitors of cyclin-dependent kinases 4/6 (CDK4/6i) have recently proven to restrain tumor growth by activating a senescence-like program in cancer cells. However, the physiological consequence of exposing the whole organism to pharmacological CDK4/6i remains poorly characterized. Here, we show that exposure to CDK4/6i induces non-malignant cells to enter a premature state of senescence dependent on p53. We observe in mice and breast cancer patients that the CDK4/6i-induced senescent program activates only a partial SASP enriched in p53 targets but lacking pro-inflammatory and NF-κB-driven components. We find that CDK4/6i-induced senescent cells do not acquire pro-tumorigenic and detrimental properties but retain the ability to promote paracrine senescence and undergo clearance. Our results demonstrate that SASP composition is exquisitely stress-dependent and a predictor for the biological functions of different senescence subsets.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Senescencia Celular/fisiología , Quinasa 4 Dependiente de la Ciclina/genética , Femenino , Humanos , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína p53 Supresora de Tumor/genética
10.
Genes Dev ; 32(13-14): 909-914, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29967290

RESUMEN

The senescence-associated secretory phenotype (SASP) is a major trait of senescent cells, but the molecular regulators of SASP factor secretion are poorly understood. Mass spectrometry analysis revealed that secretory carrier membrane protein 4 (SCAMP4) levels were strikingly elevated on the surface of senescent cells compared with proliferating cells. Interestingly, silencing SCAMP4 in senescent fibroblasts reduced the secretion of SASP factors, including interleukin 6 (IL6), IL8, growth differentiation factor 15 (GDF-15), C-X-C motif chemokine ligand 1 (CXCL1), and IL7, while, conversely, SCAMP4 overexpression in proliferating fibroblasts increased SASP factor secretion. Our results indicate that SCAMP4 accumulates on the surface of senescent cells, promotes SASP factor secretion, and critically enhances the SASP phenotype.


Asunto(s)
Proteínas Portadoras/metabolismo , Senescencia Celular/genética , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Portadoras/genética , Línea Celular , Proliferación Celular/fisiología , Fibroblastos/citología , Silenciador del Gen , Humanos , Proteínas de la Membrana/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
11.
EMBO J ; 40(6): e104296, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33459422

RESUMEN

The IκB kinase (IKK)-NF-κB pathway is activated as part of the DNA damage response and controls both inflammation and resistance to apoptosis. How these distinct functions are achieved remained unknown. We demonstrate here that DNA double-strand breaks elicit two subsequent phases of NF-κB activation in vivo and in vitro, which are mechanistically and functionally distinct. RNA-sequencing reveals that the first-phase controls anti-apoptotic gene expression, while the second drives expression of senescence-associated secretory phenotype (SASP) genes. The rapidly activated first phase is driven by the ATM-PARP1-TRAF6-IKK cascade, which triggers proteasomal destruction of inhibitory IκBα, and is terminated through IκBα re-expression from the NFKBIA gene. The second phase, which is activated days later in senescent cells, is on the other hand independent of IKK and the proteasome. An altered phosphorylation status of NF-κB family member p65/RelA, in part mediated by GSK3ß, results in transcriptional silencing of NFKBIA and IKK-independent, constitutive activation of NF-κB in senescence. Collectively, our study reveals a novel physiological mechanism of NF-κB activation with important implications for genotoxic cancer treatment.


Asunto(s)
Senescencia Celular/fisiología , Quinasa I-kappa B/metabolismo , Inhibidor NF-kappaB alfa/biosíntesis , Factor de Transcripción ReIA/metabolismo , Transcripción Genética/genética , Animales , Apoptosis/genética , Línea Celular , Proliferación Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Femenino , Silenciador del Gen/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Inhibidor NF-kappaB alfa/genética , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo
12.
Cell Mol Life Sci ; 81(1): 200, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684535

RESUMEN

BACKGROUND AND AIM: Cellular senescence of hepatocytes involves permanent cell cycle arrest, disrupted cellular bioenergetics, resistance to cell death, and the release of pro-inflammatory cytokines. This 'zombie-like' state perpetuates harmful effects on tissues and holds potential implications for liver disease progression. Remarkably, senescence exhibits heterogeneity, stemming from two crucial factors: the inducing stressor and the cell type. As such, our present study endeavors to characterize stressor-specific changes in senescence phenotype, its related molecular patterns, and cellular bioenergetics in primary mouse hepatocytes (PMH) and hepatocyte-derived liver organoids (HepOrgs). METHODS: PMH, isolated by collagenase-perfused mouse liver (C57B6/J; 18-23 weeks), were cultured overnight in William's E-medium supplemented with 2% FBS, L-glutamine, and hepatocyte growth supplements. HepOrgs were developed by culturing cells in a 3D matrix for two weeks. The senescence was induced by DNA damage (doxorubicin, cisplatin, and etoposide), oxidative stress (H2O2, and ethanol), and telomere inhibition (BIBR-1532), p53 activation (nutlin-3a), DNA methyl transferase inhibition (5-azacitidine), and metabolism inhibitors (galactosamine and hydroxyurea). SA-ß galactosidase activity, immunofluorescence, immunoblotting, and senescence-associated secretory phenotype (SASP), and cellular bioenergetics were used to assess the senescence phenotype. RESULTS: Each senescence inducer triggers a unique combination of senescence markers in hepatocytes. All senescence inducers, except hydroxyurea and ethanol, increased SA-ß galactosidase activity, the most commonly used marker for cellular senescence. Among the SASP factors, CCL2 and IL-10 were consistently upregulated, while Plasminogen activator inhibitor-1 exhibited global downregulation across all modes of senescence. Notably, DNA damage response was activated by DNA damage inducers. Cell cycle markers were most significantly reduced by doxorubicin, cisplatin, and galactosamine. Additionally, DNA damage-induced senescence shifted cellular bioenergetics capacity from glycolysis to oxidative phosphorylation. In HepOrgs exposed to senescence inducers, there was a notable increase in γH2A.X, p53, and p21 levels. Interestingly, while showing a similar trend, SASP gene expression in HepOrgs was significantly higher compared to PMH, demonstrating a several-fold increase. CONCLUSION: In our study, we demonstrated that each senescence inducer activates a unique combination of senescence markers in PMH. Doxorubicin demonstrated the highest efficacy in inducing senescence, followed by cisplatin and H2O2, with no impact on apoptosis. Each inducer prompted DNA damage response and mitochondrial dysfunction, independent of MAPK/AKT.


Asunto(s)
Senescencia Celular , Daño del ADN , Hepatocitos , Ratones Endogámicos C57BL , Estrés Oxidativo , Animales , Senescencia Celular/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/citología , Ratones , Estrés Oxidativo/efectos de los fármacos , Células Cultivadas , Fenotipo Secretor Asociado a la Senescencia , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Doxorrubicina/farmacología , Metabolismo Energético/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino
13.
Genes Dev ; 31(20): 2085-2098, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29138277

RESUMEN

Expression of the transcription factors OCT4, SOX2, KLF4, and cMYC (OSKM) reprograms somatic cells into induced pluripotent stem cells (iPSCs). Reprogramming is a slow and inefficient process, suggesting the presence of safeguarding mechanisms that counteract cell fate conversion. One such mechanism is senescence. To identify modulators of reprogramming-induced senescence, we performed a genome-wide shRNA screen in primary human fibroblasts expressing OSKM. In the screen, we identified novel mediators of OSKM-induced senescence and validated previously implicated genes such as CDKN1A We developed an innovative approach that integrates single-cell RNA sequencing (scRNA-seq) with the shRNA screen to investigate the mechanism of action of the identified candidates. Our data unveiled regulation of senescence as a novel way by which mechanistic target of rapamycin (mTOR) influences reprogramming. On one hand, mTOR inhibition blunts the induction of cyclin-dependent kinase (CDK) inhibitors (CDKIs), including p16INK4a, p21CIP1, and p15INK4b, preventing OSKM-induced senescence. On the other hand, inhibition of mTOR blunts the senescence-associated secretory phenotype (SASP), which itself favors reprogramming. These contrasting actions contribute to explain the complex effect that mTOR has on reprogramming. Overall, our study highlights the advantage of combining functional screens with scRNA-seq to accelerate the discovery of pathways controlling complex phenotypes.


Asunto(s)
Reprogramación Celular , Senescencia Celular , Perfilación de la Expresión Génica , ARN Interferente Pequeño , Análisis de Secuencia de ARN , Serina-Treonina Quinasas TOR/fisiología , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Factor 4 Similar a Kruppel , Ratones , Análisis de la Célula Individual , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
14.
Genes Dev ; 31(2): 172-183, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28143833

RESUMEN

Senescence is a form of cell cycle arrest induced by stress such as DNA damage and oncogenes. However, while arrested, senescent cells secrete a variety of proteins collectively known as the senescence-associated secretory phenotype (SASP), which can reinforce the arrest and induce senescence in a paracrine manner. However, the SASP has also been shown to favor embryonic development, wound healing, and even tumor growth, suggesting more complex physiological roles than currently understood. Here we uncover timely new functions of the SASP in promoting a proregenerative response through the induction of cell plasticity and stemness. We show that primary mouse keratinocytes transiently exposed to the SASP exhibit increased expression of stem cell markers and regenerative capacity in vivo. However, prolonged exposure to the SASP causes a subsequent cell-intrinsic senescence arrest to counter the continued regenerative stimuli. Finally, by inducing senescence in single cells in vivo in the liver, we demonstrate that this activates tissue-specific expression of stem cell markers. Together, this work uncovers a primary and beneficial role for the SASP in promoting cell plasticity and tissue regeneration and introduces the concept that transient therapeutic delivery of senescent cells could be harnessed to drive tissue regeneration.


Asunto(s)
Plasticidad de la Célula/fisiología , Senescencia Celular/fisiología , Regeneración/fisiología , Vías Secretoras/fisiología , Animales , Biomarcadores/metabolismo , Plasticidad de la Célula/genética , Células Cultivadas , Senescencia Celular/genética , Células Epiteliales/citología , Células Epiteliales/fisiología , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/genética , Queratinocitos/citología , Queratinocitos/fisiología , Hígado/citología , Hígado/fisiología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , Fenotipo , Regeneración/genética , Vías Secretoras/genética , Células Madre/metabolismo
15.
Trends Biochem Sci ; 45(7): 578-592, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32531228

RESUMEN

Aging is a major risk factor for numerous human pathologies, including cardiovascular, metabolic, musculoskeletal, and neurodegenerative conditions and various malignancies. While our understanding of aging is far from complete, recent advances suggest that targeting fundamental aging processes can delay, prevent, or alleviate age-related disorders. Cellular senescence is physiologically beneficial in several contexts, but it has causal roles in multiple chronic diseases. New studies have illustrated the promising feasibility and safety to selectively ablate senescent cells from tissues, a therapeutic modality that holds potential for treating multiple chronic pathologies and extending human healthspan. Here, we review molecular links between cellular senescence and age-associated complications and highlight novel therapeutic avenues that may be exploited to target senescent cells in future geriatric medicine.


Asunto(s)
Senescencia Celular , Humanos , Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Fenotipo
16.
J Cell Mol Med ; 28(16): e70017, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39159071

RESUMEN

Acute myeloid leukaemia (AML) is a common and highly aggressive haematological malignancy in adults. Senescence-associated secretory phenotype (SASP) plays important roles in tumorigenesis and progression of tumour. However, the prognostic value of SASP in patients with AML has not been clarified. The present study aims to explore the prognostic value of SASP and develop a prognostic risk signature for AML. The RNA-sequencing data was collected from the TCGA, GTEx and TARGET databases. Subsequently, differentially expressed gene analysis, univariate Cox regression and LASSO regression were applied to identified prognostic SASP-related genes and construct a prognostic risk-scoring model. The risk score of each patient were calculated and patients were divided into high- or low-risk groups by the median risk score. This novel prognostic signature included 11 genes: G6PD, CDK4, RPS6KA1, UBC, H2BC12, KIR2DL4, HSF1, IFIT3, PIM1, RUNX3 and TRIM21. The patients with AML in the high-risk group had shorter OS, demonstrating that the risk score acted as a prognostic predictor, which was validated in the TAGET-AML dataset. Univariate and multivariate analysis revealed the risk score was an independent prognostic factor in patients with AML. Furthermore, the present study revealed that the risk score was associated with immune landscape, immune checkpoint gene expression and chemotherapeutic efficacy. In the present study, we constructed and validated a unique SASP-related prognostic model to assess therapeutic effect and prognosis in patients with AML, which might contribute to understanding the role of SASP in AML and guiding the treatment for AML.


Asunto(s)
Biomarcadores de Tumor , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/mortalidad , Pronóstico , Femenino , Biomarcadores de Tumor/genética , Masculino , Perfilación de la Expresión Génica , Persona de Mediana Edad , Regulación Leucémica de la Expresión Génica , Transcriptoma/genética , Adulto , Factores de Riesgo
17.
J Biol Chem ; 299(7): 104922, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37321449

RESUMEN

In normal tissue homeostasis, bidirectional communication between different cell types can shape numerous biological outcomes. Many studies have documented instances of reciprocal communication between fibroblasts and cancer cells that functionally change cancer cell behavior. However, less is known about how these heterotypic interactions shape epithelial cell function in the absence of oncogenic transformation. Furthermore, fibroblasts are prone to undergo senescence, which is typified by an irreversible cell cycle arrest. Senescent fibroblasts are also known to secrete various cytokines into the extracellular space; a phenomenon that is termed the senescence-associated secretory phenotype (SASP). While the role of fibroblast-derived SASP factors on cancer cells has been well studied, the impact of these factors on normal epithelial cells remains poorly understood. We discovered that treatment of normal mammary epithelial cells with conditioned media from senescent fibroblasts (SASP CM) results in a caspase-dependent cell death. This capacity of SASP CM to cause cell death is maintained across multiple senescence-inducing stimuli. However, the activation of oncogenic signaling in mammary epithelial cells mitigates the ability of SASP CM to induce cell death. Despite the reliance of this cell death on caspase activation, we discovered that SASP CM does not cause cell death by the extrinsic or intrinsic apoptotic pathway. Instead, these cells die by an NLRP3, caspase-1, and gasdermin D-dependent induction of pyroptosis. Taken together, our findings reveal that senescent fibroblasts can cause pyroptosis in neighboring mammary epithelial cells, which has implications for therapeutic strategies that perturb the behavior of senescent cells.


Asunto(s)
Senescencia Celular , Células Epiteliales , Fibroblastos , Piroptosis , Caspasas/metabolismo , Células Epiteliales/citología , Fibroblastos/metabolismo , Glándulas Mamarias Humanas/citología , Humanos , Medios de Cultivo Condicionados , Células Cultivadas
18.
J Cell Biochem ; 125(3): e30522, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38224175

RESUMEN

Understanding the connection between senescence phenotypes and mitochondrial dysfunction is crucial in aging and premature aging diseases. Loss of mitochondrial function leads to a decline in T cell function, which plays a significant role in this process. However, more research is required to determine if improving mitochondrial homeostasis alleviates senescence phenotypes. Our research has shown an association between NAD+ and senescent T cells through the cGAS-STING pathway, which can lead to an inflammatory phenotype. Further research is needed to fully understand the role of NAD+ in T-cell aging and how it can be utilized to improve mitochondrial homeostasis and alleviate senescence phenotypes. We demonstrate here that mitochondrial dysfunction and cellular senescence with a senescence-associated secretory phenotype (SASP) occur in senescent T cells and tumor-bearing mice. Senescence is mediated by a stimulator of interferon genes (STING) and involves ectopic cytoplasmic DNA. We further show that boosting intracellular NAD+ levels with nicotinamide mononucleotide (NMN) prevents senescence and SASP by promoting mitophagy. NMN treatment also suppresses senescence and neuroinflammation and improves the survival cycle of mice. Encouraging mitophagy may be a useful strategy to prevent CD8+ T cells from senescence due to mitochondrial dysfunction. Additionally, supplementing with NMN to increase NAD+ levels could enhance survival rates in mice while also reducing senescence and inflammation, and enhancing mitophagy as a potential therapeutic intervention.


Asunto(s)
Enfermedades Mitocondriales , NAD , Ratones , Animales , NAD/metabolismo , Linfocitos T CD8-positivos/metabolismo , Mitocondrias/metabolismo , Senescencia Celular/fisiología , Homeostasis , Enfermedades Mitocondriales/metabolismo , Suplementos Dietéticos
19.
Mol Cancer ; 23(1): 181, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217404

RESUMEN

Cellular senescence (CS), a permanent and irreversible arrest of the cell cycle and proliferation leading to the degeneration of cellular structure and function, has been implicated in various key physiological and pathological processes, particularly in cancer. Initially, CS was recognized as a barrier to tumorigenesis, serving as an intrinsic defense mechanism to protect cells from malignant transformation. However, increasing evidence suggests that senescent cells can promote tumor progression to overt malignancy, primarily through a set of factors known as senescence-associated secretory phenotypes (SASPs), including chemokines, growth factors, cytokines, and stromal metalloproteinases. These factors significantly reshape the tumor microenvironment (TME), enabling tumors to evade immune destruction. Interestingly, some studies have also suggested that SASPs may impede tumor development by enhancing immunosurveillance. These opposing roles highlight the complexity and heterogeneity of CS and SASPs in diverse cancers. Consequently, there has been growing interest in pharmacological interventions targeting CS or SASPs in cancer therapy, such as senolytics and senomorphics, to either promote the clearance of senescent cells or mitigate the harmful effects of SASPs. In this review, we will interpret the concept of CS, delve into the role of SASPs in reshaping the TME, and summarize recent advances in anti-tumor strategies targeting CS or SASPs.


Asunto(s)
Senescencia Celular , Progresión de la Enfermedad , Neoplasias , Fenotipo Secretor Asociado a la Senescencia , Microambiente Tumoral , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Animales
20.
Mol Cancer ; 23(1): 68, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561826

RESUMEN

Cancer progression is continuously controlled by the immune system which can identify and destroy nascent tumor cells or inhibit metastatic spreading. However, the immune system and its deregulated activity in the tumor microenvironment can also promote tumor progression favoring the outgrowth of cancers capable of escaping immune control, in a process termed cancer immunoediting. This process, which has been classified into three phases, i.e. "elimination", "equilibrium" and "escape", is influenced by several cancer- and microenvironment-dependent factors. Senescence is a cellular program primed by cells in response to different pathophysiological stimuli, which is based on long-lasting cell cycle arrest and the secretion of numerous bioactive and inflammatory molecules. Because of this, cellular senescence is a potent immunomodulatory factor promptly recruiting immune cells and actively promoting tissue remodeling. In the context of cancer, these functions can lead to both cancer immunosurveillance and immunosuppression. In this review, the authors will discuss the role of senescence in cancer immunoediting, highlighting its context- and timing-dependent effects on the different three phases, describing how senescent cells promote immune cell recruitment for cancer cell elimination or sustain tumor microenvironment inflammation for immune escape. A potential contribution of senescent cells in cancer dormancy, as a mechanism of therapy resistance and cancer relapse, will be discussed with the final objective to unravel the immunotherapeutic implications of senescence modulation in cancer.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Senescencia Celular , Sistema Inmunológico , Terapia de Inmunosupresión , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA