RESUMEN
Seed longevity is an important trait for agriculture and the conservation of genetic resources. ß-1,3-Glucanases were first recognized as pathogenesis-related proteins involved in plant defense, but their roles in seeds are largely unknown. Here, we report a glycosylphosphatidylinositol-anchored ß-1,3-glucanase, BG14, that degrades callose in seed embryos and functions in seed longevity and dormancy in Arabidopsis. The loss of function of BG14 significantly decreased seed longevity, whereas functional reversion (RE) and overexpression (OE) lines reversed and increased the impaired phenotype, respectively. The loss of function of BG14 enhanced callose deposition in the embryos of mature seeds, confirmed by quantitative determination and the decreased callose degrading ability in bg14. The drop-and-see (DANS) assay revealed that the fluorescence signal in bg14 was significantly lower than that observed in the other three genotypes. BG14 is located on the periphery of the cell wall and can completely merge with callose at the plasmodesmata of epidermal cells. BG14 was highly expressed in developing seeds and was induced by aging and abscisic acid (ABA). The loss of function of BG14 led to a variety of phenotypes related to ABA, including reduced seed dormancy and reduced responses to treatment with ABA or pacolblltrazol, whereas OE lines showed the opposite phenotype. The reduced ABA response is because of the decreased level of ABA and the lowered expression of ABA synthesis genes in bg14. Taken together, this study demonstrated that BG14 is a bona fide BG that mediates callose degradation in the plasmodesmata of embryo cells, transcriptionally influences ABA synthesis genes in developing seeds, and positively affects seed longevity and dormancy in Arabidopsis.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Latencia en las Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Longevidad , Germinación/genética , Ácido Abscísico/metabolismo , Semillas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Heat-shock transcription factors (HSFs) are crucial for regulating plant responses to heat and various stresses, as well as for maintaining normal cellular functions and plant development. HSFA9 and HSFA2 are two of the Arabidopsis class A HSFs and their expressions are dramatically induced in response to heat shock (HS) stress among all 21 Arabidopsis HSFs. However, the detailed biological roles of their cooperation have not been fully characterized. In this study, we employed an integrated approach that combined bioinformatics, molecular genetics and computational analysis to identify and validate the molecular mechanism that controls seed longevity and thermotolerance in Arabidopsis. The acquisition of tolerance to deterioration was accompanied by a significant transcriptional switch that involved the induction of primary metabolism, reactive oxygen species and unfolded protein response, as well as the regulation of genes involved in response to dehydration, heat and hypoxia. In addition, the cis-regulatory motif analysis in normal stored and controlled deterioration treatment (CDT) seeds confirmed the CDT-repressed genes with heat-shock element (HSE) in their promoters. Using a yeast two-hybrid and molecular dynamic interaction assay, it is shown that HSFA9 acted as a potential regulator that can interact with HSFA2. Moreover, the knock-out mutants of both HSFA9 and HSFA2 displayed a significant reduction in seed longevity. These novel findings link HSF transcription factors with seed deterioration tolerance and longevity.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Termotolerancia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Semillas/metabolismo , Termotolerancia/genética , Factores de Transcripción/metabolismoRESUMEN
Information on seed persistence and seedling emergence from the soil seed bank is critical for understanding species coexistence and predicting community dynamics. However, quantifying seed persistence in the soil is challenging; thus, its association with other life-history traits is poorly known on a broad scale. Using germination phenology for 349 species in a 42-yr experiment, we quantified the persistence-emergence correlations and their associations with intrinsic regeneration traits using Bayesian phylogenetic multilevel models. We showed no trade-off between seed persistence and seedling emergence. Physically dormant seeds were more persistent but exhibited lower emergence than nondormant seeds. Monocarpic species had both higher persistence and emergence than polycarpic species. Seed mass posed a marginal proxy for persistence, while emergence almost doubled from the smallest to the largest seeds. This study challenges the traditional assumption and is the first demonstration of noncorrelation between persistence and emergence, probably owing to the complexity of regenerative strategies. Species with short persistence and low emergence would be the most vulnerable for in situ conservation. Our analyses of this unique, long-term dataset provide a strong incentive for further experimental studies and a rich data resource for future syntheses.
Asunto(s)
Germinación , Plantones , Teorema de Bayes , Filogenia , Semillas , SueloRESUMEN
Nucleoporin 50 (Nup50) is an evolutionarily conserved protein that is a constituent of the nuclear pore complex (NPC); however, its physiological role in plants is unclear. Arabidopsis has two Nup50 proteins, Nup50a and Nup50b, which are highly expressed in developing seeds. Green fluoresceent protein (GFP)-fused Nup50a and Nup50b are localized exclusively in the nucleopolasm, implying an additional function beyond the NPC in the nuclear envelope. To investigate the function of Nup50s, we employed the CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9] system to generate a nup50a nup50b double mutant, which exhibited premature translation termination of both Nup50 proteins. While the mutant showed no significant abnormal phenotype during vegetative growth, the nup50a nup50b seeds had an abnormal shape compared with the wild type. Comparative transcriptomics using immature seeds revealed that Nup50s regulate the expression of various genes, including cell wall-related genes. The nup50a nup50b seeds exhibited reduced seed longevity and salinity stress tolerance. Tetrazolium uptake and mucilage release assays implied that the nup50a nup50b seeds had greater water permeability than the wild type. Taken together, our results imply that Nup50s play a critical role in seed formation by regulating gene expression.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Complejo Poro Nuclear , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Longevidad , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Estrés Salino , SemillasRESUMEN
BACKGROUND AND AIMS: Orchid seeds are reputed to be short lived in dry, cold storage conditions, potentially limiting the use of conventional seed banks for long-term ex situ conservation. This work explores whether Cattleya seeds are long lived or not during conventional storage (predried to ~12 % relative humidity, then stored at -18 °C). METHODS: We explored the possible interaction of factors influencing seed lifespan in eight species of the genus Cattleya using physiological (germination and vigour), biochemical (gas chromatography), biophysical (differential scanning calorimetry) and morphometric methods. Seeds were desiccated to ~3 % moisture content and stored at -18 °C for more than a decade, and seed quality was measured via three in vitro germination techniques. Tetrazolium staining was also used to monitor seed viability during storage. The morphometric and germination data were subjected to ANOVA and cluster analysis, and seed lifespan was subjected to probit analysis. KEY RESULTS: Seeds of all Cattleya species were found to be desiccation tolerant, with predicted storage lifespans (P50y) of ~30 years for six species and much longer for two species. Cluster analysis showed that the three species with the longest-lived seeds had smaller (9-11 %) airspaces around the embryo. The post-storage germination method impacted the quality assessment; seeds equilibrated at room temperature for 24 h or in 10 % sucrose solution had improved germination, particularly for the seeds with the smallest embryos. Chromatography revealed that the seeds of all eight species were rich in linoleic acid, and differential scanning calorimetry identified a peak that might be auxiliary to selecting long-lived seeds. CONCLUSIONS: These findings show that not all orchids produce seeds that are short lived, and our trait analyses might help to strengthen prediction of seed longevity in diverse orchid species.
Asunto(s)
Germinación , Orchidaceae , Banco de Semillas , Semillas , Semillas/fisiología , Semillas/crecimiento & desarrollo , Orchidaceae/fisiología , Orchidaceae/crecimiento & desarrollo , Orchidaceae/anatomía & histología , Germinación/fisiología , Desecación , Rastreo Diferencial de CalorimetríaRESUMEN
Lipids are organic nonpolar molecules with essential biological and economic importance. While the genetic pathways and regulatory networks of lipid biosynthesis and metabolism have been extensively studied and thoroughly reviewed in oil crops such as soybeans, less attention has been paid to the biological roles of lipids in rice, a staple food for the global population and a model species for plant molecular biology research, leaving a considerable knowledge gap in the biological roles of lipids. In this review, we endeavor to furnish a current overview of the advancements in understanding the genetic foundations and physiological functions of lipids, including triacylglycerol, fatty acids, and very-long-chain fatty acids. We aim to summarize the key genes in lipid biosynthesis, metabolism, and transcriptional regulation underpinning rice's developmental and growth processes, biotic stress responses, abiotic stress responses, fertility, seed longevity, and recent efforts in rice oil genetic improvement.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metabolismo de los Lípidos , Oryza , Oryza/metabolismo , Oryza/genética , Estrés Fisiológico , Ácidos Grasos/metabolismo , Lípidos , Triglicéridos/metabolismoRESUMEN
Prolonged storage of rice seeds can lead to a decrease in seed vigor and seedling quality. The Lipoxygenase (LOX) gene family is widely distributed in plants, and LOX activity is closely related to seed viability and stress tolerance. In this study, the lipoxygenase OsLOX10 gene from the 9-lipoxygenase metabolic pathway was cloned from rice, and its roles in determining seed longevity and tolerance to saline-alkaline stress caused by Na2CO3 in rice seedlings were mainly investigated. CRISPR/Cas9 knockout of OsLOX10 increased seed longevity compared with the wild-type and OsLOX10 overexpression lines in response to artificial aging. The expression levels of other 9-lipoxygenase metabolic pathway related genes, such as LOX1, LOX2 and LOX3, were increased in the LOX10 overexpression lines. Quantitative real-time PCR and histochemical staining analysis showed that the expression of LOX10 was highest in seed hulls, anthers and the early germinating seeds. KI-I2 staining of starch showed that LOX10 could catalyze the degradation of linoleic acid. Furthermore, we found that the transgenic lines overexpressing LOX10 showed better tolerance to saline-alkaline stress than the wild-type and knockout mutant lines. Overall, our study demonstrated that the knockout LOX10 mutant increased seed longevity, whereas overexpression of LOX10 enhanced tolerance to saline-alkaline stress in rice seedlings.
Asunto(s)
Lipooxigenasa , Oryza , Lipooxigenasa/genética , Plantones/metabolismo , Oryza/genética , Longevidad , Semillas/genéticaRESUMEN
Seeds slowly accumulate damage during storage, which ultimately results in germination failure. The seed coat protects the embryo from the external environment, and its composition is critical for seed longevity. Flavonols accumulate in the outer integument. The link between flavonol composition and outer integument development has not been explored. Genetic, molecular and ultrastructural assays on loss-of-function mutants of the flavonoid biosynthesis pathway were used to study the effect of altered flavonoid composition on seed coat development and seed longevity. Controlled deterioration assays indicate that loss of function of the flavonoid 3' hydroxylase gene TT7 dramatically affects seed longevity and seed coat development. Outer integument differentiation is compromised from 9 d after pollination in tt7 developing seeds, resulting in a defective suberin layer and incomplete degradation of seed coat starch. These distinctive phenotypes are not shared by other mutants showing abnormal flavonoid composition. Genetic analysis indicates that overaccumulation of kaempferol-3-rhamnoside is mainly responsible for the observed phenotypes. Expression profiling suggests that multiple cellular processes are altered in the tt7 mutant. Overaccumulation of kaempferol-3-rhamnoside in the seed coat compromises normal seed coat development. This observation positions TRANSPARENT TESTA 7 and the UGT78D1 glycosyltransferase, catalysing flavonol 3-O-rhamnosylation, as essential players in the modulation of seed longevity.
Asunto(s)
Arabidopsis , Arabidopsis/genética , Longevidad , Semillas/metabolismo , Flavonoides/metabolismo , Flavonoles/metabolismoRESUMEN
Ubiquitination is a fundamental mechanism regulating the stability of target proteins in eukaryotes; however, the regulatory mechanism in seed longevity remains unknown. Here, we report that an uncharacterized E3 ligase, ARABIDOPSIS TÓXICOS EN LEVADURA 5 (ATL5), positively regulates seed longevity by mediating the degradation of ACTIVATOR OF BASAL TRANSCRIPTION 1 (ABT1) in Arabidopsis. Seeds in which ATL5 was disrupted showed faster accelerated aging than the wild-type, while expressing ATL5 in atl5-2 basically restored the defective phenotype. ATL5 was highly expressed in the embryos of seeds, and its expression could be induced by accelerated aging. A yeast two-hybrid screen identified ABT1 as an ATL5 interacting protein, which was further confirmed by bimolecular fluorescence complementary assay and co-immunoprecipitation analysis. In vitro and in vivo assays showed that ATL5 functions as an E3 ligase and mediates the polyubiquitination and degradation of ABT1. Disruption of ATL5 diminished the degradation of translated ABT1, and the degradation could be induced by seed ageing and occurred in a proteasome-dependent manner. Furthermore, disruption of ABT1 enhanced seed longevity. Taken together, our study reveals that ATL5 promotes the polyubiquitination and degradation of the ABT1 protein posttranslationally and positively regulates seed longevity in Arabidopsis.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Longevidad , Ubiquitinación , Semillas/genética , Regulación de la Expresión Génica de las PlantasRESUMEN
Seed deterioration during storage results in poor germination, reduced vigour, and non-uniform seedling emergence. The aging rate depends on storage conditions and genetic factors. This study aims to identify these genetic factors determining the longevity of rice (Oryza sativa L.) seeds stored under experimental aging conditions mimicking long-term dry storage. Genetic variation for tolerance to aging was studied in 300 Indica rice accessions by storing dry seeds under an elevated partial pressure of oxygen (EPPO) condition. A genome-wide association analysis identified 11 unique genomic regions for all measured germination parameters after aging, differing from those previously identified in rice under humid experimental aging conditions. The significant single nucleotide polymorphism in the most prominent region was located within the Rc gene, encoding a basic helix-loop-helix transcription factor. Storage experiments using near-isogenic rice lines (SD7-1D (Rc) and SD7-1d (rc) with the same allelic variation confirmed the role of the wildtype Rc gene, providing stronger tolerance to dry EPPO aging. In the seed pericarp, a functional Rc gene results in accumulation of proanthocyanidins, an important sub-class of flavonoids having strong antioxidant activity, which may explain the variation in tolerance to dry EPPO aging.
Asunto(s)
Oryza , Oryza/genética , Estudio de Asociación del Genoma Completo , Germinación/genética , Plantones/genética , Semillas/genéticaRESUMEN
Seed longevity is a measure of the viability of seeds during long-term storage and is crucial for germplasm conservation and crop improvement programs. Also, longevity is an important trait for ensuring food and nutritional security. Thus, a better understanding of various factors regulating seed longevity is requisite to improve this trait and to minimize the genetic drift during the regeneration of germplasm. In particular, seed deterioration of cereal crops during storage adversely affects agricultural productivity and food security. The irreversible process of seed deterioration involves a complex interplay between different genes and regulatory pathways leading to: loss of DNA integrity, membrane damage, inactivation of storage enzymes and mitochondrial dysfunction. Identifying the genetic determinants of seed longevity and manipulating them using biotechnological tools hold the key to ensuring prolonged seed storage. Genetics and genomics approaches had identified several genomic regions regulating the longevity trait in major cereals such as: rice, wheat, maize and barley. However, very few studies are available in other Poaceae members, including millets. Deploying omics tools, including genomics, proteomics, metabolomics, and phenomics, and integrating the datasets will pinpoint the precise molecular determinants affecting the survivability of seeds. Given this, the present review enumerates the genetic factors regulating longevity and demonstrates the importance of integrated omics strategies to dissect the molecular machinery underlying seed deterioration. Further, the review provides a roadmap for deploying biotechnological approaches to manipulate the genes and genomic regions to develop improved cultivars with prolonged storage potential.
Asunto(s)
Grano Comestible , Longevidad , Grano Comestible/genética , Longevidad/genética , Semillas/genética , Semillas/metabolismo , Productos Agrícolas/genética , ProteómicaRESUMEN
Seed dormancy is an important agronomic trait in cereals and leguminous crops as low levels of seed dormancy during harvest season, coupled with high humidity, can cause preharvest sprouting. Seed longevity is another critical trait for commercial crop propagation and production, directly influencing seed germination and early seedling establishment. Both traits are precisely regulated by the integration of genetic and environmental cues. Despite the significance of these two traits in crop production, the relationship between them at the molecular level is still elusive, even with contradictory conclusions being reported. Some studies have proposed a positive correlation between seed dormancy and longevity in association with differences in seed coat permeability or seed reserve accumulation, whereas an increasing number of studies have highlighted a negative relationship, largely with respect to phytohormone-dependent pathways. In this review paper, we try to provide some insights into the interactions between regulatory mechanisms of genetic and environmental cues, which result in positive or negative relationships between seed dormancy and longevity. Finally, we conclude that further dissection of the molecular mechanism responsible for this apparently contradictory relationship between them is needed.
Asunto(s)
Latencia en las Plantas , Semillas , Latencia en las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/genética , Semillas/metabolismoRESUMEN
MAIN CONCLUSION: Based on the phenotypic, physiological and transcriptomic analysis, receptor-like kinase HAESA-like 1 was demonstrated to positively affect seed longevity in Arabidopsis. Seed longevity is very important for both genetic resource conservation and crop production. Receptor-like kinases (RLKs) are widely involved in plant growth, development and stress responses. However, the role of most RLKs, especially in seed longevity, is largely unknown. In this study, we report that Arabidopsis HAESA-like 1 (AtHSL1) positively regulated seed longevity. Disruption of HSL1 significantly decreased the germination rate to 50% at 7 days after cold stratification (DAC), compared with that of the wild type (93.5% at 7 DAC), after accelerated aging treatment. Expression of the HSL1 gene in hsl1 basically restored the defective phenotype (86.3%), while HSL1-overexpressing lines (98.3%) displayed slower accelerated aging than WT (93.5%). GUS staining revealed HSL1 was highly expressed universally, especially in young seedlings, mature seeds and embryos of imbibed seeds, and its expression could be induced by accelerated aging. No difference in the dyeing color and area of mucilage were identified between WT and hsl1. The soluble pectin content also was not different, while the adherent pectin content was significantly increased in hsl1. Global transcriptomics revealed that disruption of HSL1 mainly downregulated genes involved in trehalose synthesis, nucleotide sugar metabolism and protection and repair mechanisms. Therefore, an increase in adherent pectin content and downregulation of genes involved in trehalose synthesis may be the main reasons for decreasing seed longevity owing to disruption of HSL1 in Arabidopsis. Our work provides valuable information for understanding the function and mechanism of a receptor-like kinase, AtHSL1, in seed longevity.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Longevidad , Pectinas/metabolismo , Proteínas Represoras/genética , Semillas , TrehalosaRESUMEN
Astronium fraxinifolium Schott (Anacardiaceae), also known as a 'gonçalo-alves', is a tree of the American tropics, with distribution in Mexico, part of Central America, Argentina, Bolivia, Brazil and Paraguay. In Brazil it is an endangered species that occurs in the Cerrado, Caatinga and in the Amazon biomes. In support of ex situ conservation, this work aimed to study two accessions with different longevity (p50) of A. fraxinifolium collected from two different geographic regions, and to evaluate the transcriptome during aging of the seeds in order to identify genes related to seed longevity. Artificial ageing was performed at a constant temperature of 45 °C and 60% relative humidity. RNA was extracted from 100 embryonic axes exposed to control and aging conditions for 21 days. The transcriptome analysis revealed differentially expressed genes such as Late Embryogenesis Abundant (LEA) genes, genes involved in the photosystem, glycine rich protein (GRP) genes, and several transcription factors associated with embryo development and ubiquitin-conjugating enzymes. Thus, these results contribute to understanding which genes play a role in seed ageing, and may serve as a basis for future functional characterization of the seed aging process in A. fraxinifolium.
Asunto(s)
Anacardiaceae , Transcriptoma , Animales , Especies en Peligro de Extinción , Árboles/genética , Brasil , Semillas/metabolismo , Perfilación de la Expresión GénicaRESUMEN
Cutin and suberin are lipid polyesters deposited in specific apoplastic compartments. Their fundamental roles in plant biology include controlling the movement of gases, water and solutes, and conferring pathogen resistance. Both cutin and suberin have been shown to be present in the Arabidopsis seed coat where they regulate seed dormancy and longevity. In this study, we use accelerated and natural ageing seed assays, glutathione redox potential measures, optical and transmission electron microscopy and gas chromatography-mass spectrometry to demonstrate that increasing the accumulation of lipid polyesters in the seed coat is the mechanism by which the AtHB25 transcription factor regulates seed permeability and longevity. Chromatin immunoprecipitation during seed maturation revealed that the lipid polyester biosynthetic gene long-chain acyl-CoA synthetase 2 (LACS2) is a direct AtHB25 binding target. Gene transfer of this transcription factor to wheat and tomato demonstrated the importance of apoplastic lipid polyesters for the maintenance of seed viability. Our work establishes AtHB25 as a trans-species regulator of seed longevity and has identified the deposition of apoplastic lipid barriers as a key parameter to improve seed longevity in multiple plant species.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Fumarylacetoacetate hydrolase (FAH) proteins form a superfamily found in Archaea, Bacteria, and Eukaryota. However, few fumarylacetoacetate hydrolase domain (FAHD)-containing proteins have been studied in Metazoa and their role in plants remains elusive. Sequence alignments revealed high homology between two Arabidopsis thaliana FAHD-containing proteins and human FAHD1 (hFAHD1) implicated in mitochondrial dysfunction-associated senescence. Transcripts of the closest hFAHD1 orthologue in Arabidopsis (AtFAHD1a) peak during seed maturation drying, which influences seed longevity and dormancy. Here, a homology study was conducted to assess if AtFAHD1a contributes to seed longevity and vigour. We found that an A. thaliana T-DNA insertional line (Atfahd1a-1) had extended seed longevity and shallower thermo-dormancy. Compared to the wild type, metabolite profiling of dry Atfahd1a-1 seeds showed that the concentrations of several amino acids, some reducing monosaccharides, and δ-tocopherol dropped, whereas the concentrations of dehydroascorbate, its catabolic intermediate threonic acid, and ascorbate accumulated. Furthermore, the redox state of the glutathione disulphide/glutathione couple shifted towards a more reducing state in dry mature Atfahd1a-1 seeds, suggesting that AtFAHD1a affects antioxidant redox poise during seed development. In summary, AtFAHD1a appears to be involved in seed redox regulation and to affect seed quality traits such as seed thermo-dormancy and longevity.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolasas/genética , Latencia en las Plantas/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Germinación/genética , Humanos , Longevidad/genética , Oxidación-Reducción , Semillas/genética , Semillas/crecimiento & desarrolloRESUMEN
KEY MESSAGE: Os4BGlu14, a monolignol ß-glucosidase, plays a negative role in seed longevity by affecting primary metabolism during seed development and aging. Seed longevity is a crucial trait in agriculture and in the conservation of germplasm resources. ß-Glucosidases (BGlus) are multifunctional enzymes that affect plant growth and their adaptation to the environment. The function of rice BGlus in seed longevity, however, remains unknown. We report here that Os4BGlu14, a rice ß-Glucosidase, negatively affected seed longevity during accelerated aging. Os4BGlu14 was highly expressed in rice embryos and induced by accelerated aging. Compared to the wild type, rice lines overexpressing Os4BGlu14 had significantly greater grain length, but smaller grain width and thickness. Overexpressing (OE) lines also showed lower starch but higher glucose contents. After accelerated aging treatment, OE lines displayed a significantly lower germination percentage than the wild type. Additionally, these lines had higher lignin accumulation before and after accelerated aging. Metabolome analysis detected 217 metabolites in untreated and aged rice seeds. Comparison of the differential metabolites between WT and OE5 revealed that ten key metabolites, four of which (e.g., uridine 5'-diphosphoglucose-glucose, UDPG) were increased, while the other six (e.g., γ-aminobutyric acid and methionine) were decreased, might be the crucial factors that lead to seed deterioration. Further analysis confirmed higher UDPG levels and more severe programmed cell death in OE lines than in the wild type. Furthermore, OE lines presented a lower germination rate after abscisic acid and paclobutrazol treatment during germination, compared to the wild type. Our study provides a basis for understanding the function of Os4BGlu14 in seed longevity in rice.
Asunto(s)
Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Semillas/fisiología , beta-Glucosidasa/genética , Ácido Abscísico/farmacología , Muerte Celular , Regulación de la Expresión Génica de las Plantas , Germinación/efectos de los fármacos , Lignina/genética , Lignina/metabolismo , Metaboloma , Estrés Oxidativo/fisiología , Células Vegetales/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/metabolismo , Uridina Difosfato Glucosa/metabolismo , beta-Glucosidasa/metabolismoRESUMEN
MAIN CONCLUSION: Storage at an elevated partial pressure of oxygen and classical artificial ageing cause a rapid loss of seed viability of short-lived vegetable seeds. Prolonging seed longevity during storage is of major importance for gene banks and the horticultural industry. Slowing down biochemical deterioration, including oxygen-dependent deterioration caused by oxidative processes can boost longevity. This can be affected by the seed structure and the oxygen permeability of seed coat layers. Classical artificial seed ageing assays are used to estimate seed 'shelf-life' by mimicking seed ageing via incubating seeds at elevated temperature and elevated relative humidity (causing elevated equilibrium seed moisture content). In this study, we show that seed lots of vegetable Allium species are short-lived both during dry storage for several months and in seed ageing assays at elevated seed moisture levels. Micromorphological analysis of the Allium cepa x Allium fistulosum salad onion seed identified intact seed coat and endosperm layers. Allium seeds equilibrated at 70% relative humidity were used to investigate seed ageing at tenfold elevated partial pressure of oxygen (high pO2) at room temperature (22 ºC) in comparison to classical artificial ageing at elevated temperature (42 ºC). Our results reveal that 30 days high pO2 treatment causes a rapid loss of seed viability which quantitatively corresponded to the seed viability loss observed by ~ 7 days classical artificial ageing. A similar number of normal seedlings develop from the germinating (viable) proportion of seeds in the population. Many long-lived seeds first exhibit a seed vigour loss, evident from a reduced germination speed, preceding the loss in seed viability. In contrast to this, seed ageing of our short-lived Allium vegetable seems to be characterised by a rapid loss in seed viability.
Asunto(s)
Allium/fisiología , Oxígeno/química , Semillas/fisiología , Germinación , Presión Parcial , Plantones/fisiología , VerdurasRESUMEN
The accumulation of reactive oxygen species has been associated with a loss of seed viability. Therefore, we have investigated the germination ability of a range of seed stocks, including two wheat collections and one barley collection that had been dry-aged for 5-40 years. Metabolite profiling analysis revealed that the accumulation of glycerol was negatively correlated with the ability to germinate in all seed sets. Furthermore, lipid degradation products such as glycerol phosphates and galactose were accumulated in some seed sets. A quantitative analysis of nonoxidized and oxidized lipids was performed in the wheat seed set that showed the greatest variation in germination. This analysis revealed that the levels of fully acylated and nonoxidized storage lipids like triacylglycerols and structural lipids like phospho- and galactolipids were decreasing. Moreover, the abundance of oxidized variants and hydrolysed products such as mono-/diacylglycerols, lysophospholipids, and fatty acids accumulated as viability decreased. The proportional formation of oxidized and nonoxidized fatty acids provides evidence for an enzymatic hydrolysis of specifically oxidized lipids in dry seeds. The results link reactive oxygen species with lipid oxidation, structural damage, and death in long-term aged seeds.
Asunto(s)
Germinación/fisiología , Metabolismo de los Lípidos , Semillas/metabolismo , Triticum/fisiología , Ácidos Grasos/metabolismo , Galactosa/metabolismo , Glicerol/metabolismo , Hidrólisis , Lípidos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos/metabolismoRESUMEN
Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant, Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome-wide analysis, using publicly available single-nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1, SSLEA, SSTPR, DHAR1, CYP86A8, MYB47 and SPCH) and five negative ones (RBOHD, RBOHE, RBOHF, KNAT7 and SEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed-longevity in knock-out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P-450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing.