Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.022
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2309518121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422023

RESUMEN

The silica-based cell walls of diatoms are prime examples of genetically controlled, species-specific mineral architectures. The physical principles underlying morphogenesis of their hierarchically structured silica patterns are not understood, yet such insight could indicate novel routes toward synthesizing functional inorganic materials. Recent advances in imaging nascent diatom silica allow rationalizing possible mechanisms of their pattern formation. Here, we combine theory and experiments on the model diatom Thalassiosira pseudonana to put forward a minimal model of branched rib patterns-a fundamental feature of the silica cell wall. We quantitatively recapitulate the time course of rib pattern morphogenesis by accounting for silica biochemistry with autocatalytic formation of diffusible silica precursors followed by conversion into solid silica. We propose that silica deposition releases an inhibitor that slows down up-stream precursor conversion, thereby implementing a self-replicating reaction-diffusion system different from a classical Turing mechanism. The proposed mechanism highlights the role of geometrical cues for guided self-organization, rationalizing the instructive role for the single initial pattern seed known as the primary silicification site. The mechanism of branching morphogenesis that we characterize here is possibly generic and may apply also in other biological systems.


Asunto(s)
Diatomeas , Dióxido de Silicio , Dióxido de Silicio/química , Diatomeas/química , Morfogénesis
2.
Proc Natl Acad Sci U S A ; 120(51): e2302156120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079551

RESUMEN

Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen et al., Sci. Rep. 4, 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu et al., Appl. Environ. Microbiol. 88, e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore et al., Geology 48, 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.


Asunto(s)
Sedimentos Geológicos , Metano , Sedimentos Geológicos/microbiología , Anaerobiosis , Dióxido de Silicio , Hibridación Fluorescente in Situ , Fósiles , Archaea/genética , Oxidación-Reducción , Sulfatos , Silicatos , Filogenia , Consorcios Microbianos
3.
Proc Natl Acad Sci U S A ; 120(34): e2304735120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590411

RESUMEN

Synthetic amorphous silica is a common food additive and a popular cosmetic ingredient. Mesoporous silica particles are also widely studied for their potential use in drug delivery and imaging applications because of their unique properties, such as tunable pore sizes, large surfaces areas, and assumed biocompatibility. Such a nanomaterial, when consisting of pure silicon dioxide, is generally considered to be chemically inert, but in this study, we showed that oxidation yields for different compounds were facilitated by simply incubating aqueous solutions with pure silica particles. Three thiol-containing molecules, L-cysteine, glutathione, and D-penicillamine, were studied separately, and it was found that more than 95% of oxidation happened after incubating any of these compounds with mesoporous silica particles in the dark for a day at room temperature. Oxidation increased over incubation time, and more oxidation was found for particles having larger surface areas. For nonporous silica particles at submicron ranges, yields of oxidation were different based on the structures of molecules, correlating with steric hindrance while accessing surfaces. We propose that the silyloxy radical (SiO•) on silica surfaces is what facilitates oxidation. Density functional theory calculations were conducted for total energy changes for reactions between different aqueous species and silicon dioxide surfaces. These calculations identified two most plausible pathways of the lowest energy to generate SiO• radicals from water radical cations H2O•+ and hydroxyl radicals •OH, previously known to exist at water interfaces.

4.
Methods ; 223: 26-34, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266951

RESUMEN

The fabrication of red fluorescent hybrid mesoporous silica-based nanosensor materials has promised the bioimaging and selective detection of toxic pollutants in aqueous solutions. In this study, we present a hybrid mesoporous silica nanosensor in which the propidium iodide (PI) was used to conveniently integrate into the mesopore walls using bis(trimethoxysilylpropyl silane) precursors. Various characterization techniques including X-ray diffraction (XRD), Fourier-transform infrared (FTIR), N2 adsorption-desorption, zeta potential, particle size analysis, thermogravimetric, and UV-visible analysis were used to analyze the prepared materials. The prepared PI integrated mesoporous silica nanoparticles (PI-MSNs) selective metal ion sensing capabilities were tested with a variety of heavy metal ions (100 mM), including Ni2+, Cd2+, Co2+, Zn2+, Cr3+, Cu2+, Al3+, Mg2+, Hg2+ and Fe3+ ions. Among the investigated metal ions, the prepared PI-MSNs demonstrated selective monitoring of Fe3+ ions with a significant visible colorimetric pink color change into orange and quenching of pink fluorescence in an aqueous suspension. The selective sensing behavior of PI-MSNs might be due to the interaction of Fe3+ ions with the integrated PI functional fluorophore present in the mesopore walls. Therefore, we emphasize that the prepared PI-MSNs could be efficient for selective monitoring of Fe3+ ions in an aqueous solution and in the biological cellular microenvironment.


Asunto(s)
Metales Pesados , Nanopartículas , Colorimetría , Dióxido de Silicio , Metales Pesados/análisis , Iones
5.
Exp Cell Res ; 435(1): 113926, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228225

RESUMEN

The present research aims to evaluate the efficacy of Silibinin-loaded mesoporous silica nanoparticles (Sil@MSNs) immobilized into polylactic-co-glycolic acid/Collagen (PLGA/Col) nanofibers on the in vitro proliferation of adipose-derived stem cells (ASCs) and cellular senescence. Here, the fabricated electrospun PLGA/Col composite scaffolds were coated with Sil@MSNs and their physicochemical properties were examined by FTIR, FE-SEM, and TGA. The growth, viability and proliferation of ASCs were investigated using various biological assays including PicoGreen, MTT, and RT-PCR after 21 days. The proliferation and adhesion of ASCs were supported by the biological and mechanical characteristics of the Sil@MSNs PLGA/Col composite scaffolds, according to FE- SEM. PicoGreen and cytotoxicity analysis showed an increase in the rate of proliferation and metabolic activity of hADSCs after 14 and 21 days, confirming the initial and controlled release of Sil from nanofibers. Gene expression analysis further confirmed the increased expression of stemness markers as well as hTERT and telomerase in ASCs seeded on Sil@MSNs PLGA/Col nanofibers compared to the control group. Ultimately, the findings of the present study introduced Sil@MSNs PLGA/Col composite scaffolds as an efficient platform for long-term proliferation of ASCs in tissue engineering.


Asunto(s)
Nanofibras , Andamios del Tejido , Adhesión Celular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Silibina/farmacología , Andamios del Tejido/química , Nanofibras/química , Colágeno/farmacología , Colágeno/química , Ingeniería de Tejidos , Células Madre , Proliferación Celular , Células Cultivadas , Compuestos Orgánicos
6.
Proc Natl Acad Sci U S A ; 119(49): e2211549119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459651

RESUMEN

Biomineral-forming organisms produce inorganic materials with complex, genetically encoded morphologies that are unmatched by current synthetic chemistry. It is poorly understood which genes are involved in biomineral morphogenesis and how the encoded proteins guide this process. We addressed these questions using diatoms, which are paradigms for the self-assembly of hierarchically meso- and macroporous silica under mild reaction conditions. Proteomics analysis of the intracellular organelle for silica biosynthesis led to the identification of new biomineralization proteins. Three of these, coined dAnk1-3, contain a common protein-protein interaction domain (ankyrin repeats), indicating a role in coordinating assembly of the silica biomineralization machinery. Knocking out individual dank genes led to aberrations in silica biogenesis that are consistent with liquid-liquid phase separation as underlying mechanism for pore pattern morphogenesis. Our work provides an unprecedented path for the synthesis of tailored mesoporous silica materials using synthetic biology.


Asunto(s)
Diatomeas , Diatomeas/genética , Dióxido de Silicio , Morfogénesis/genética , Repetición de Anquirina , Biomineralización
7.
Proc Natl Acad Sci U S A ; 119(51): e2213076119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36516068

RESUMEN

The 18O/16O ratio of cherts (δ18Ochert) increases nearly monotonically by ~15‰ from the Archean to present. Two end-member explanations have emerged: cooling seawater temperature (TSW) and increasing seawater δ18O (δ18Osw). Yet despite decades of work, there is no consensus, leading some to view the δ18Ochert record as pervasively altered. Here, we demonstrate that cherts are a robust archive of diagenetic temperatures, despite metamorphism and exposure to meteoric fluids, and show that the timing and temperature of quartz precipitation and thus δ18Ochert are determined by the kinetics of silica diagenesis. A diagenetic model shows that δ18Ochert is influenced by heat flow through the sediment column. Heat flow has decreased over time as planetary heat is dissipated, and reasonable Archean-modern heat flow changes account for ~5‰ of the increase in δ18Ochert, obviating the need for extreme TSW or δ18Osw reconstructions. The seawater oxygen isotope budget is also influenced by solid Earth cooling, with a recent reconstruction placing Archean δ18OSW 5 to 10‰ lower than today. Together, this provides an internally consistent view of the δ18Ochert record as driven by solid Earth cooling over billion-year timescales that is compatible with Precambrian glaciations and biological constraints and satisfyingly accounts for the monotonic nature of the δ18Ochert trend.


Asunto(s)
Planeta Tierra , Agua de Mar , Isótopos de Oxígeno/análisis , Temperatura , Calor , Oxígeno
8.
Proc Natl Acad Sci U S A ; 119(31): e2201014119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35905319

RESUMEN

Diatoms are single-celled organisms with a cell wall made of silica, called the frustule. Even though their elaborate patterns have fascinated scientists for years, little is known about the biological and physical mechanisms underlying their organization. In this work, we take a top-down approach and examine the micrometer-scale organization of diatoms from the Coscinodiscus family. We find two competing tendencies of organization, which appear to be controlled by distinct biological pathways. On one hand, micrometer-scale pores organize locally on a triangular lattice. On the other hand, lattice vectors tend to point globally toward a center of symmetry. This competition results in a frustrated triangular lattice, populated with geometrically necessary defects whose density increases near the center.


Asunto(s)
Pared Celular , Diatomeas , Dióxido de Silicio , Pared Celular/química , Diatomeas/química , Nanoestructuras , Porosidad
9.
Proc Natl Acad Sci U S A ; 119(29): e2123527119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858309

RESUMEN

A promising clinical trial utilizing gold-silica core-shell nanostructures coated with polyethylene glycol (PEG) has been reported for near-infrared (NIR) photothermal therapy (PTT) of prostate cancer. The next critical step for PTT is the visualization of therapeutically relevant nanoshell (NS) concentrations at the tumor site. Here we report the synthesis of PEGylated Gd2O3-mesoporous silica/gold core/shell NSs (Gd2O3-MS NSs) with NIR photothermal properties that also supply sufficient MRI contrast to be visualized at therapeutic doses (≥108 NSs per milliliter). The nanoparticles have r1 relaxivities more than three times larger than those of conventional T1 contrast agents, requiring less concentration of Gd3+ to observe an equivalent signal enhancement in T1-weighted MR images. Furthermore, Gd2O3-MS NS nanoparticles have r2 relaxivities comparable to those of existing T2 contrast agents, observed in agarose phantoms. This highly unusual combination of simultaneous T1 and T2 contrast allows for MRI enhancement through different approaches. As a rudimentary example, we demonstrate T1/T2 ratio MR images with sixfold contrast signal enhancement relative to its T1 MRI and induced temperature increases of 20 to 55 °C under clinical illumination conditions. These nanoparticles facilitate MRI-guided PTT while providing real-time temperature feedback through thermal MRI mapping.


Asunto(s)
Medios de Contraste , Gadolinio , Oro , Imagen por Resonancia Magnética , Nanocáscaras , Terapia Fototérmica , Medios de Contraste/síntesis química , Gadolinio/química , Oro/química , Imagen por Resonancia Magnética/métodos , Nanocáscaras/química , Terapia Fototérmica/métodos , Polietilenglicoles/química , Dióxido de Silicio/química
10.
Nano Lett ; 24(31): 9734-9742, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39047072

RESUMEN

Fiber-integrated micro/nanostructures play a crucial role in modern industry, mainly owing to their compact size, high sensitivity, and resistance to electromagnetic interference. However, the three-dimensional manufacturing of fiber-tip functional structures beyond organic polymers remains challenging. It is essential to construct fiber-integrated inorganic silica with designed functional nanostructures for microsystem applications. Here, we develop a strategy for the 3D nanolithography of fiber-integrated silica from hybrid organic-inorganic materials by ultrafast laser-induced multiphoton absorption. Without silica nanoparticles and polymer additives, the acrylate-functionalized precursors can be locally cross-linked through a nonlinear effect. Followed by annealing at low temperature, the as-printed micro/nanostructures are transformed to high-quality silica with sub-100 nm resolution. Silica microcantilever probes and microtoroid resonators are directly integrated onto the optical fiber, showing strong thermal stability and quality factors. This work provides a promising strategy for fabricating desired fiber-tip silica micro/nanostructures, which is helpful for the development of integrated functional device applications.

11.
Nano Lett ; 24(22): 6625-6633, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38788161

RESUMEN

All-solid-state lithium-sulfur batteries (ASSLSBs) are promising next-generation battery technologies with a high energy density and excellent safety. Because of the insulating nature of sulfur/Li2S, conventional cathode designs focus on developing porous hosts with high electronic conductivities such as porous carbon. However, carbon hosts boost the decomposition of sulfide electrolytes and suffer from sulfur detachment due to their weak bonding with sulfur/Li2S, resulting in capacity decays. Herein, we propose a counterintuitive design concept of host materials in which nonconductive polar mesoporous hosts can enhance the cycling life of ASSLSBs through mitigating the decomposition of adjacent electrolytes and bonding sulfur/Li2S steadily to avoid detachment. By using a mesoporous SiO2 host filled with 70 wt % sulfur as the cathode, we demonstrate steady cycling in ASSLSBs with a capacity reversibility of 95.1% in the initial cycle and a discharge capacity of 1446 mAh/g after 500 cycles at C/5 based on the mass of sulfur.

12.
Nano Lett ; 24(15): 4554-4561, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573122

RESUMEN

Three-dimensionally (3D) integrated metallic nanomaterials composed of two or more different types of nanostructures make up a class of advanced materials due to the multidimensional and synergistic effects between different components. However, designing and synthesizing intricate, well-defined metallic 3D nanomaterials remain great challenges. Here, a novel single-particle soft-enveloping strategy using a core-shell Au NP@mSiO2 particle as a template was proposed to synthesize 3D nanomaterials, namely, a Au nanoparticle@center-radial nanorod-Au-Pt nanoparticle (Au NP@NR-NP-Pt NP) superstructure. Taking advantage of the excellent plasmonic properties of Au NP@NR-NP by the synergistic plasmonic coupling of the outer Au NPs and inner Au nanorods, we can enhance the catalytic performance for 4-nitrophenol hydrogenation using Au NP@NR-NP-Pt NP as a photocatalyst with plasmon-excited hot electrons from Au NP@NR-NP under light irradiation, which is 2.76 times higher than in the dark. This process opens a door for the design of a new generation of 3D metallic nanomaterials for different fields.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38234297

RESUMEN

Background. Silica nanoparticles found in sugarcane ash have been postulated to be a toxicant contributing to chronic kidney disease of unknown etiology (CKDu). However, while the administration of manufactured silica nanoparticles is known to cause chronic tubulointerstitial disease in rats, the effect of administering sugarcane ash on kidney pathology remains unknown. Here we investigate whether sugarcane ash can induce CKD in rats. Methods. Sugarcane ash was administered for 13 weeks into the nares of rats (5 mg/day for 5d/week), and blood, urine and kidney tissues were collected at 13 weeks (at the end of ash administration) and in a separate group of rats at 24 weeks (11 weeks after stopping ash administration). Kidney histology was evaluated, and inflammation and fibrosis (collagen deposition) measured. Results. Sugarcane ash exposure led to the accumulation of silica in the kidneys, lungs, liver and spleen of rats. Mild proteinuria developed although renal function was largely maintained. However, biopsies showed focal glomeruli with segmental glomerulosclerosis, and tubulointerstitial inflammation and fibrosis that tended to worsen even after the ash administration had been stopped. Staining for the lysosomal marker, LAMP-1, showed decreased staining in ash administered rats consistent with lysosomal activation. Conclusion. Sugarcane ash containing silica nanoparticles can cause CKD in rats.

14.
Curr Issues Mol Biol ; 46(4): 3005-3021, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38666918

RESUMEN

The ion doping of mesoporous silica nanoparticles (MSNs) has played an important role in revolutionizing several materials applied in medicine and dentistry by enhancing their antibacterial and regenerative properties. Mineral trioxide aggregate (MTA) is a dental material widely used in vital pulp therapies with high success rates. The aim of this study was to investigate the effect of the modification of MTA with cerium (Ce)- or calcium (Ca)-doped MSNs on the biological behavior of human gingival fibroblasts (hGFs). MSNs were synthesized via sol-gel, doped with Ce and Ca ions, and mixed with MTA at three ratios each. Powder specimens were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Biocompatibility was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay following hGFs' incubation in serial dilutions of material eluates. Antioxidant status was evaluated using Cayman's antioxidant assay after incubating hGFs with material disc specimens, and cell attachment following dehydration fixation was observed through SEM. Material characterization confirmed the presence of mesoporous structures. Biological behavior and antioxidant capacity were enhanced in all cases with a statistically significant increase in CeMTA 50.50. The application of modified MTA with cerium-doped MSNs offers a promising strategy for vital pulp therapies.

15.
Biochem Biophys Res Commun ; 736: 150488, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39111054

RESUMEN

Nanoparticles have useful functions due to the characteristics conferred on them by an increase in their specific surface area, and they have already been put into practical use in products in various industrial fields. Although exposure to nanoparticles in daily life is unavoidable for pregnant women, studies that evaluate the toxicity of nanoparticles in pregnant women are lacking. To redress this, we have focused on the placenta and have previously revealed that nanoparticles can show placental toxicity. However, there is still little knowledge regarding the behavior of nanoparticles within placental cells, which would enable us to understand their mode of action. Here, we tried to clarify the intracellular localization of silica nanoparticles in placental cells and how this affects placental toxicity. We analyzed the uptake of silica nanoparticles with a diameter of 10 nm (nSP10) into JEG-3 cells, a human choriocarcinoma cell line. Flow cytometry analysis showed that nSP10 labelled with red fluorescence were taken up into JEG-3 cells, and that pre-treatment with the endocytosis inhibitor cytochalasin D inhibited their uptake, suggesting that nSP10 are taken up into JEG-3 cells by the endocytic pathway. Moreover, confocal microscopy revealed that nSP10 are prominently localized in lysosomes. Staining with LysoTracker showed that nSP10 treatment increased the acidic compartment of JEG-3 cells, suggesting lysosome accumulation and swelling. These results indicate that nSP10 taken into placental cells are transferred to lysosomes and may cause lysosomal dysfunction.

16.
Biochem Biophys Res Commun ; 702: 149627, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38340655

RESUMEN

Rupture of vulnerable plaque and secondary thrombosis caused by atherosclerosis are one of the main causes of acute cardiovascular and cerebrovascular events, and it is urgent to develop an in-situ, noninvasive, sensitive and targeted detection method at molecular level. We chose CD44, a specific receptor highly expressed on the surface of macrophages, as the target of the molecular probe, and modified the CD44 ligand HA onto the surface of Gd2O3@MSN, constructing the MRI imaging nanoprobe HA-Gd2O3@MSN for targeted recognition of atherosclerosis. The fundamental properties of HA-Gd2O3@MSN were initially investigated. The CCK-8, hemolysis, hematoxylin-eosin staining tests and blood biochemical assays confirmed that HA-Gd2O3@MSN possessed excellent biocompatibility. Laser confocal microscopy, cellular magnetic resonance imaging, flow cytometry and immunohistochemistry were used to verify that the nanoprobes had good targeting properties. The in vivo targeting performance of the nanoprobes was further validated by employing a rabbit atherosclerosis animal model. In summary, the synthesized HA-Gd2O3@MSN nanoprobes have excellent biocompatibility properties as well as good targeting properties. It could provide a new technical tool for early identification of atherosclerosis.


Asunto(s)
Aterosclerosis , Nanopartículas , Animales , Conejos , Ácido Hialurónico/química , Nanopartículas/química , Dióxido de Silicio/química , Línea Celular Tumoral , Aterosclerosis/diagnóstico por imagen
17.
BMC Plant Biol ; 24(1): 598, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38914950

RESUMEN

BACKGROUND: Soil contamination with heavy metals poses a significant threat to plant health and human well-being. This study explores the potential of nano silica as a solution for mitigating heavy metal uptake in Calendula officinalis. RESULTS: Greenhouse experiments demonstrated, 1000 mg•kg- 1 nano silica caused a 6% increase in soil pH compared to the control treatment. Also in 1000 mg. kg- 1 nano silica, the concentrations of available Pb (lead), Zn (zinc), Cu (copper), Ni (nickel), and Cr (chromium) in soil decreased by 12%, 11%, 11.6%, 10%, and 9.5%, respectively, compared to the control. Nano silica application significantly reduces heavy metal accumulation in C. officinalis exposed to contaminated soil except Zn. In 1000 mg.kg- 1 nano silica shoots Zn 13.28% increased and roots Zn increased 13% compared to the control treatment. Applying nano silica leads to increase the amount of phosphorus (P) 25%, potassium (K) 26% uptake by plant, In 1000 mg.kg - 1 treatment the highest amount of urease enzyme activity was 2.5%, dehydrogenase enzyme activity, 23.6% and the highest level of alkaline phosphatase enzyme activity was 13.5% higher than the control treatment. CONCLUSION: Nano silica, particularly at a concentration of 1000 mg.kg - 1, enhanced roots and shoots length, dry weight, and soil enzyme activity Moreover, it increased P and K concentrations in plant tissues while decreasing heavy metals uptake by plant.


Asunto(s)
Calendula , Metales Pesados , Dióxido de Silicio , Contaminantes del Suelo , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Calendula/metabolismo , Nanopartículas , Suelo/química , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos
18.
Small ; 20(31): e2310724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38429241

RESUMEN

The portfolio of extraordinary fire retardancy, mechanical properties, dielectric/electric insulating performances, and thermal conductivity (λ) is essential for the practical applications of epoxy resin (EP) in high-end industries. To date, it remains a great challenge to achieve such a performanceportfolio in EP due to their different and even mutually exclusive governing mechanisms. Herein, a multifunctional additive (G@SiO2@FeHP) is fabricated by in situ immobilization of silica (SiO2) and iron phenylphosphinate (FeHP) onto the graphene (G) surface. Benefiting from the synergistic effect of G, SiO2 and FeHP, the addition of 1.0 wt% G@SiO2@FeHP enables EP to achieve a vertical burning (UL-94) V-0 rating and a limiting oxygen index (LOI) of 30.5%. Besides, both heat release and smoke generation of as-prepared EP nanocomposite are significantly suppressed due to the condensed-phase function of G@SiO2@FeHP. Adding 1.0 wt% G@SiO2@FeHP also brings about 44.5%, 61.1%, and 42.3% enhancements in the tensile strength, tensile modulus, and impact strength of EP nanocomposite. Moreover, the EP nanocomposite exhibits well-preserved dielectric and electric insulating properties and significantly enhanced λ. This work provides an integrated strategy for the development of multifunctional EP materials, thus facilitating their high-performance applications.

19.
Small ; : e2400353, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651235

RESUMEN

Chemotherapy is crucial in oncology for combating malignant tumors but often encounters obatacles such as severe adverse effects, drug resistance, and biocompatibility issues. The advantages of degradable silica nanoparticles in tumor diagnosis and treatment lie in their ability to target drug delivery, minimizing toxicity to normal tissues while enhancing therapeutic efficacy. Moreover, their responsiveness to both endogenous and exogenous stimuli opens up new possibilities for integrating multiple treatment modalities. This review scrutinizes the burgeoning utility of degradable silica nanoparticles in combination with chemotherapy and other treatment modalities. Commencing the elucidation of degradable silica synthesis and degradation mechanisms, emphasis is placed on the responsiveness of these materials to endogenous (e.g., pH, redox reactions, hypoxia, and enzymes) and exogenous stimuli (e.g., light and high-intensity focused ultrasound). Moreover, this exploration delves into strategies harnessing degradable silica nanoparticles in chemotherapy alone, coupled with radiotherapy, photothermal therapy, photodynamic therapy, gas therapy, immunotherapy, starvation therapy, and chemodynamic therapy, elucidating multimodal synergies. Concluding with an assessment of advances, challenges, and constraints in oncology, despite hurdles, future investigations are anticipated to augment the role of degradable silica in cancer therapy. These insights can serve as a compass for devising more efficacious combined tumor treatment strategies.

20.
Small ; 20(21): e2307758, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100187

RESUMEN

Metal halide nanocrystals (MHNCs) embedded in a polymer matrix as flexible X-ray detector screens is an effective strategy with the advantages of low cost, facile preparation, and large area flexibility. However, MHNCs easily aggregate during preparation, recombination, under mechanical force, storage, or high operating temperature. Meanwhile, it shows an unmatched refractive index with polymer, resulting in low light yield. The related stability and properties of the device remain a huge unrevealed challenge. Herein, a composite screen (CZBM@AG-PS) by integrating MHNCs (Cs2ZnBr4: Mn2+ as an example) into silica aerogel (AG) and embedded in polystyrene (PS) is successfully developed. Further characterization points to the high porosity AG template that can effectively improve the dispersion of MHNCs in polymer detector screens, essentially decreasing nonradiative transition, Rayleigh scattering, and performance aging induced by aggregation in harsh environments. Furthermore, the higher light output and lower optical crosstalk are also achieved by a novel light propagation path based on the MHNCs/AG and AG/PS interfaces. Finally, the optimized CZBM@AG-PS screen shows much enhanced light yield, spatial resolution, and temperature stability. Significantly, the strategy is proven universal by the performance tests of other MHNCs embedded composite films for ultra-stable and efficient X-ray imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA