Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.724
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2317394121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377212

RESUMEN

Effectively managing sewage sludge from Fenton reactions in an eco-friendly way is vital for Fenton technology's viability in pollution treatment. This study focuses on sewage sludge across various treatment stages, including generation, concentration, dehydration, and landfill, and employs chemical composite MoS2 to facilitate green resource utilization of all types of sludge. MoS2, with exposed Mo4+ and low-coordination sulfur, enhances iron cycling and creates an acidic microenvironment on the sludge surface. The MoS2-modified iron sludge exhibits outstanding (>95%) phenol and pollutant degradation in hydrogen peroxide and peroxymonosulfate-based Fenton systems, unlike unmodified sludge. This modified sludge maintains excellent Fenton activity in various water conditions and with multiple anions, allowing extended phenol degradation for over 14 d. Notably, the generated chemical oxygen demand (COD) in sludge modification process can be efficiently eliminated through the Fenton reaction, ensuring effluent COD compliance and enabling eco-friendly sewage sludge resource utilization.

2.
BMC Biotechnol ; 24(1): 29, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720285

RESUMEN

This research investigates the efficacy of a high-performance pilot-scale Internal Circulation Anaerobic Reactor inoculated with Granular Sludge (ICAGSR) for treating cattle slaughterhouse wastewater while concurrently generating biogas. The primary objective is to assess the efficiency and performance of ICAGSR in terms of organic pollutant removal and biogas production using granular anaerobic sludge. The research methodology entails operating the ICAGSR system under ambient conditions and systematically varying key parameters, including different Hydraulic Retention Times (HRTs) (24, 12, and 8 h) and Organic Loading Rates (OLRs) (3.3, 6.14, and 12.83 kg COD/m³. d). The study focuses on evaluating pollutants' removal and biogas production rates. Results reveal that the ICAGSR system achieves exceptional removal efficiency for organic pollutants, with Chemical Oxygen Demand (COD) removal exceeding 74%, 67%, and 68% at HRTs of 24, 12, and 8 h, respectively. Furthermore, the system demonstrates stable and sustainable biogas production, maintaining average methane contents of 80%, 76%, and 72% throughout the experimental period. The successful operation of the ICAGSR system underscores its potential as a viable technology for treating cattle slaughterhouse wastewater and generating renewable biogas. In conclusion, this study contributes to wastewater treatment and renewable energy production by providing a comprehensive analysis of the ICAGSR system's hydrodynamic properties. The research enhances our understanding of the system's performance optimization under varying conditions, emphasizing the benefits of utilizing ICAGSR reactors with granular sludge as an effective and sustainable approach. Identifying current gaps, future research directions aim to further refine and broaden the application of ICAGSR technology in wastewater treatment and renewable energy initiatives.


Asunto(s)
Mataderos , Biocombustibles , Reactores Biológicos , Aguas del Alcantarillado , Aguas Residuales , Animales , Bovinos , Aguas del Alcantarillado/microbiología , Aguas Residuales/química , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Metano/metabolismo , Análisis de la Demanda Biológica de Oxígeno
3.
Appl Environ Microbiol ; 90(8): e0059824, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-38995046

RESUMEN

Wastewater treatment plants (WWTPs) are host to diverse microbial communities and receive a constant influx of microbes from influent wastewater. However, the impact of immigrants on the structure and activities of the activated sludge (AS) microbial community remains unclear. To gain insight on this phenomenon known as perpetual community coalescence, the current study utilized controlled manipulative experiments that decoupled the influent wastewater composition from the microbial populations to reveal the fundamental mechanisms involved in immigration between sewers and AS-WWTP. The immigration dynamics of heterotrophs were analyzed by harvesting wastewater biomass solids from three different sewer systems and adding to synthetic wastewater. Immigrating influent populations were observed to contribute up to 14% of the sequencing reads in the AS. By modeling the net growth rate of taxa, it was revealed that immigrants primarily exhibited low or negative net growth rates. By developing a protocol to reproducibly grow AS-WWTP communities in the lab, we have laid down the foundational principles for the testing of operational factors creating community variations with low noise and appropriate replication. Understanding the processes that drive microbial community diversity and assembly is a key question in microbial ecology. In the future, this knowledge can be used to manipulate the structure of microbial communities and improve system performance in WWTPs.IMPORTANCEIn biological wastewater treatment processes, the microbial community composition is essential in the performance and stability of the system. This study developed a reproducible protocol to investigate the impact of influent immigration (or perpetual coalescence of the sewer and activated sludge communities) with appropriate reproducibility and controls, allowing intrinsic definitions of core and immigrant populations to be established. The method developed herein will allow sequential manipulative experiments to be performed to test specific hypothesis and optimize wastewater treatment processes to meet new treatment goals.


Asunto(s)
Bacterias , Microbiota , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Aguas Residuales/microbiología , Eliminación de Residuos Líquidos/métodos
4.
Appl Environ Microbiol ; 90(4): e0225323, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38440988

RESUMEN

We evaluated a unique model in which four full-scale wastewater treatment plants (WWTPs) with the same treatment schematic and fed with similar influent wastewater were tracked over an 8-month period to determine whether the community assembly would differ in the activated sludge (AS) and sand filtration (SF) stages. For each WWTP, AS and SF achieved an average of 1-log10 (90%) and <0.02-log10 (5%) reduction of total cells, respectively. Despite the removal of cells, both AS and SF had a higher alpha and beta diversity compared to the influent microbial community. Using the Sloan neutral model, it was observed that AS and SF were individually dominated by different assembly processes. Specifically, microorganisms from influent to AS were predominantly determined by the selective niche process for all WWTPs, while the microbial community in the SF was relatively favored by a stochastic, random migration process, except two WWTPs. AS also contributed more to the final effluent microbial community compared with the SF. Given that each WWTP operates the AS independently and that there is a niche selection process driven mainly by the chemical oxygen demand concentration, operational taxonomic units unique to each of the WWTPs were also identified. The findings from this study indicate that each WWTP has its distinct microbial signature and could be used for source-tracking purposes.IMPORTANCEThis study provided a novel concept that microorganisms follow a niche assembly in the activated sludge (AS) tank and that the AS contributed more than the sand filtration process toward the final microbial signature that is unique to each treatment plant. This observation highlights the importance of understanding the microbial community selected by the AS stage, which could contribute toward source-tracking the effluent from different wastewater treatment plants.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Arena , Ríos , Aguas Residuales
5.
Appl Environ Microbiol ; 90(8): e0056324, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39023264

RESUMEN

We developed a nondestructive three-dimensional microbial visualization method utilizing synchrotron radiation X-ray microscale computed tomography to better understand the relationship between microorganisms and their surrounding habitats. The method was tested and optimized using a mixture of axenic Escherichia coli and Comamonas testosteroni. The osmium-thiocarbohydrazide-osmium method was used to stain all the microbial cells, and gold in situ hybridization was used to detect specific phylogenetic microbial groups. The stained samples were embedded in epoxy resin for microtomographic analysis. Differences in X-ray absorbances were calculated by subtracting the pre-L3-edge images from the post-L3-edge images to visualize the osmium and gold signals. Although we successfully detected cells stained with osmium, those labeled with gold were not detected, probably because of the insufficient density of gold atoms in the microbial cells. We then applied the developed technique to anaerobic granules and visualized the distribution of microbial cells and extracellular polymeric substances. Empty spaces were highlighted to determine the cavity distribution in granules. Numerous independent cavities of different sizes were identified in the granules. The developed method can be applied to various environmental samples for deeper insights into microbial life in their habitats. IMPORTANCE: Microorganisms inhabit diverse environments and often form biofilms. One factor that affects their community structure is the surrounding physical environment. The arrangement of residential space within the formed biofilm plays a crucial role in the supply and transportation of substances, as well as the discharge of metabolites. Conventional approaches, such as scanning electron microscopy and confocal laser scanning microscopy combined with fluorescence in situ hybridization, have limitations as they provide information primarily from the biofilm surface and cross-sections. In this study, we developed a method for detecting microorganisms in biofilms using synchrotron radiation X-ray microscale computer tomography. The developed method allows nondestructive three-dimensional observation of biofilms at a single-cell resolution (voxel size of approximately 200 nm), facilitating an understanding of the relationship between microorganisms and their physical habitats.


Asunto(s)
Aguas del Alcantarillado , Sincrotrones , Aguas del Alcantarillado/microbiología , Anaerobiosis , Microtomografía por Rayos X/métodos , Escherichia coli , Imagenología Tridimensional/métodos
6.
Arch Microbiol ; 206(7): 317, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904779

RESUMEN

Two myxobacterial strains (KH5-1T and NO1) were isolated from the activated sludge tanks treating municipal sewage wastewater in Japan. These strains were recognised as myxobacteria based on their phenotypic characteristics of swarming colonies and fruiting bodies. Phylogenetic analyses using the 16S rRNA gene revealed that strains KH5-1T and NO1 were affiliated with the genus Corallococcus, with the closest neighbours being Corallococcus exercitus AB043AT (99.77% and 99.84%, respectively). Genome comparisons using orthologous average nucleotide identity (orthoANI) and digital DNA-DNA hybridisation similarity (dDDH) with strains KH5-1T and NO1 and their phylogenetically close relatives in Corallococcus spp. were below the thresholds. The major cellular fatty acids of strains KH5-1T and NO1 were iso-C15:0 (31.9%, 30.0%), summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c) (20.2%, 17.7%), and iso-C17:0 (12.1%, 14.8%), and the major respiratory quinone was found to be menaquinone (MK)-8. Based on the phenotypic, chemotaxonomic, and phylogenetic evidence, strains KH5-1T and NO1 represent a new species in the genus Corallococcus, for which the proposed name is Corallococcus caeni sp. nov. The type strain is KH5-1T (= NCIMB 15510T = JCM 36609T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Myxococcales , Filogenia , ARN Ribosómico 16S , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , ADN Bacteriano/genética , Myxococcales/genética , Myxococcales/clasificación , Myxococcales/aislamiento & purificación , Japón , Hibridación de Ácido Nucleico , Análisis de Secuencia de ADN , Vitamina K 2/análisis , Genoma Bacteriano , Aguas Residuales/microbiología
7.
Arch Microbiol ; 206(6): 252, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727820

RESUMEN

A microaerophilic Gram-stain-negative bacilliform bacterial strain, FB-5 T, was isolated from activated sludge in Yokohama, Japan, that exhibited filamentous growth and formed a microtube (sheath). Cells were motile using a single polar flagellum. The optimum growth temperature and pH were 30 °C and 7.5, respectively. Strain FB-5 T was catalase-negative. Peptides and amino acids were utilized as energy and carbon sources. Sugars and organic acids were not utilized. Vitamin B12 enhanced the growth of strain FB-5 T. Sulfur-dependent lithotrophic growth was possible. Major respiratory quinone was UQ-8. Major fatty acids were C16:1ω7 and C16:0. The genomic DNA G + C content was 69.16%. Phylogenetic analysis of the 16S rRNA gene suggested that strain FB-5 T belongs to the genus Sphaerotilus. The close relatives were S. natans subsup. sulfidivorans and S. natans subsup. natans with 98.0% and 97.8% similarity based on the 16S rRNA gene analysis, respectively. The genome size (6.06 Mbp) was larger than that (4.39-5.07 Mbp) of the Sphaerotilus strains. The AAI values against the related strains ranged from 71.0 to 72.5%. The range of ANI values was 81.7 - 82.5%. In addition to these distinguishable features of the genome, the core genome and dDDH analyses suggested that this strain is a novel member of the genus Sphaerotilus. Based on its physiological properties and genomic features, strain FB-5 T is considered as a novel species of the genus Sphaerotilus, for which the name S. microaerophilus sp. nov. is proposed. The type strain is FB-5 T (= JCM 35424 T = KACC 23146 T).


Asunto(s)
Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Japón , Genoma Bacteriano
8.
Artículo en Inglés | MEDLINE | ID: mdl-38284383

RESUMEN

A Gram-stain-negative, strictly aerobic and filamentous bacterial strain, designated as DQS-5T, was isolated from the activated sludge of a municipal sewage treatment plant in Shenzhen, PR China. Optimal growth was observed at 28 °C and pH 7.5. Catalase and oxidase activities were detected. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DQS-5T was most closely related to the genera Chitinimonas and Chitinivorax (91.0-93.4 % and 92.5 % 16S rRNA gene sequence similarity, respectively) and was close to the member of the family Burkholderiaceae. The complete genome sequence of strain DQS-5T contains 5 653 844 bp and 57.3 mol% G+C. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between the genome of strain DQS-5T and those of its close relatives were 75.9-77.2, 19.0-20.3 and 57.2-61.8 %, respectively. Chemotaxonomic analysis of strain DQS-5T indicated that the sole respiratory quinone was ubiquinone-8, the predominant cellular fatty acids were C16 : 0 and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), and the major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, aminophospholipid and aminolipid. The phylogenetic, genotypic, phenotypic and chemotaxonomic data demonstrate that strain DQS-5T represents a novel species in a novel genus within the family Burkholderiaceae, for which the name Parachitinimonas caeni gen. nov., sp. nov., is proposed. Strain DQS-5T (=KCTC 92788T=CCTCC AB 2022320T) is the type and only strain of P. caeni.


Asunto(s)
Burkholderiaceae , Ácidos Grasos , Ácidos Grasos/química , Fosfolípidos/química , Aguas del Alcantarillado , Filogenia , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Análisis de Secuencia de ADN , China
9.
Artículo en Inglés | MEDLINE | ID: mdl-38190241

RESUMEN

Five strains of two novel species were isolated from the wastewater treatment systems of a pharmaceutical factory located in Zhejiang province, PR China. Strains ZM22T and Y6 were identified as belonging to a potential novel species of the genus Comamonas, whereas strains ZM23T, ZM24 and ZM25 were identified as belonging to a novel species of the genus Pseudomonas. These strains were characterized by polyphasic approaches including 16S rRNA gene analysis, multi-locus sequence analysis, average nucleotide identity (ANI), in silico DNA-DNA hybridization (isDDH), physiological and biochemical tests, as well as chemotaxonomic analysis. Genome-based phylogenetic analysis further confirmed that strains ZM22T and Y6 form a distinct clade closely related to Comamonas testosteroni ATCC 11996T and Comamonas thiooxydans DSM 17888T. Strains ZM23T, ZM24 and ZM25 were grouped as a separate clade closely related to Pseudomonas nitroreducens DSM 14399T and Pseudomonas nicosulfuronedens LAM1902T. The orthoANI and isDDH results indicated that strains ZM22T and Y6 belong to the same species. In addition, genomic DNA fingerprinting demonstrated that these strains do not originate from a single clone. The same results were observed for strains ZM23T, ZM24 and ZM25. Strains ZM22T and Y6 were resistant to multiple antibiotics, whereas strains ZM23T, ZM24 and ZM25 were able to degrade an emerging pollutant, triclosan. The phylogenetic, physiological and biochemical characteristics, as well as chemotaxonomy, allowed these strains to be distinguished from their genus, and we therefore propose the names Comamonas resistens sp. nov. (type strain ZM22=MCCC 1K08496T=KCTC 82561T) and Pseudomonas triclosanedens sp. nov. (type strain ZM23T=MCCC 1K08497T=JCM 36056T), respectively.


Asunto(s)
Comamonas , Ácidos Grasos , Purificación del Agua , Técnicas de Tipificación Bacteriana , Composición de Base , Comamonas/genética , ADN Bacteriano/genética , Ácidos Grasos/química , Filogenia , Pseudomonas/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Industria Farmacéutica
10.
Artículo en Inglés | MEDLINE | ID: mdl-38767617

RESUMEN

A Gram-stain-negative bacterium, designated LG-2T, was isolated from sludge collected at a pesticide-manufacturing factory in Jiangsu Province, PR China. Cells of strain LG-2T were strictly aerobic, non-motile and spherical. Growth was observed at 15-42 °C (optimum, 30 °C), pH 6.0-9.0 (optimum, pH 7.0) and 0-3.0 % (w/v) NaCl (optimum, 1.0 %). LG-2T showed 95.5-96.9 % 16S rRNA sequence similarity to type strains in the genera Pusillimonas, Bordetella, Parapusillimonas, Candidimonas and Paracandidimonas of the family Alcaligenaceae. The phylogenomic tree indicated that strain LG-2T was clustered in the family Alcaligenaceae and formed a clade with Paracandidimonas soli IMT-305T, while the phylogenetic trees based on 16S rRNA gene sequences indicated that strain LG-2T formed a distinct clade within the family Alcaligenaceae. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between LG-2T and its closely related type strains in the genera Pusillimonas, Bordetella, Parapusillimonas, Candidimonas and Paracandidimonas were 70.8-75.3, 18.9-23.7 and 59.6 %-69.3 %, respectively. The major cellular fatty acids were C16 : 0, C17 : 0 cyclo, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and summed feature 2 (C12 : 0 aldehyde and/or unknown 10.928). The predominant menaquinone was Q-8. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, two aminophospholipids, three aminolipids and nine unknown polar lipids. The genome size of strain LG-2T was 3.2 Mb and the DNA G+C content was 63.4 mol%. On the basis of the phenotypic, phylogenetic and genomic results from this study, strain LG-2T represents a novel species of a new genus in the family Alcaligenaceae, for which the name Yanghanlia caeni gen. nov., sp. nov. is proposed, with strain LG-2T (=KCTC 8084T= CCTCC AB 2023123T) as the type strain.


Asunto(s)
Alcaligenaceae , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Aguas del Alcantarillado , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Ácidos Grasos/análisis , ADN Bacteriano/genética , China , Aguas del Alcantarillado/microbiología , Alcaligenaceae/genética , Alcaligenaceae/clasificación , Alcaligenaceae/aislamiento & purificación , Plaguicidas , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis
11.
Artículo en Inglés | MEDLINE | ID: mdl-38546460

RESUMEN

A Gram-stain-negative bacterium, designated as R-40T, was isolated from sediment of the Mulong river in Mianyang city, Sichuan province, PR China. The cells of strain R-40T were aerobic non-motile and formed translucent white colonies on R2A agar. Growth occurred at 15-37 °C (optimum 30 °C), pH 5.0-9.0 (optimum 7.0) and salinities of 0-3.0 % (w/v, optimum 0 %). R-40T showed 95.2-96.6 % 16S rRNA gene sequence similarities with the type strains of species of the genera Oxalicibacterium, Herminiimonas, Lacisediminimonas, Paucimonas, Herbaspirillum and Noviherbaspirillum in the family Oxalobacteraceae. The results of phylogenetic analysis based on genome sequences indicated that the strain was clustered with type strains of species of the genera Oxalicibacterium and Herminiimonas in the family Oxalobacteraceae but formed a distinct lineage. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH) and average amino acid identity (AAI) values between R-40T and type strains of species of the genera Oxalicibacterium, Herminiimonas, Lacisediminimonas, Paucimonas, Herbaspirillum and Noviherbaspirillum ranged from 69.3 to 74.1 %, from 18.2 to 21.4 % and from 60.1 to 67.4 %, respectively. The major cellular fatty acids were C16 : 0, C17 : 0 cyclo and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The major quinone was ubiquinone-8 (Q-8). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipid and small amounts of glycophospholipids. The genome size of R-40T was 5.1 Mbp with 54.0 % DNA G+C content. On the basis of the evidence presented in this study, strain R-40T represents a novel species of a novel genus in the family Oxalobacteraceae, for which the name Keguizhuia sedimenti gen. nov., sp. nov. (type strain R-40T=MCCC 1K08818T=KCTC 8137T) is proposed.


Asunto(s)
Compuestos Azo , Burkholderiaceae , Herbaspirillum , Oxalobacteraceae , Filogenia , ARN Ribosómico 16S/genética , Ríos , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Oxalobacteraceae/genética
12.
Microb Cell Fact ; 23(1): 160, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822346

RESUMEN

BACKGROUND: Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges. RESULTS: This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures. CONCLUSIONS: Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.


Asunto(s)
Hidroxibutiratos , Metano , Methylosinus trichosporium , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Methylosinus trichosporium/metabolismo , Hidroxibutiratos/metabolismo , Metano/metabolismo , Poliésteres/metabolismo , Biodegradación Ambiental , Aguas Residuales/microbiología , Polihidroxibutiratos
13.
Microb Ecol ; 87(1): 105, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133233

RESUMEN

Despite some effectiveness of wastewater treatment processes, microplastics accumulate in sewage sludge and their further use may contribute to the release of plastic microplastics into the environment. There is an urgent need to reduce the amount of microplastics in sewage sludge. Plastic particles serve as solid substrates for various microorganisms, promoting the formation of microbial biofilms with different metabolic activities. The biofilm environment associated with microplastics will determine the efficiency of treatment processes, especially biological methods, and the mechanisms of organic compound conversion. A significant source of microplastics is the land application of sewage sludge from wastewater treatment plants. The detrimental impact of microplastics affects soil enzymatic activity, soil microorganisms, flora, fauna, and plant production. This review article summarizes the development of research related to microplastics and discusses the issue of microplastic introduction from sewage sludge. Given that microplastics can contain complex composite polymers and form a plastisphere, further research is needed to understand their potential environmental impact, pathogenicity, and the characteristics of biofilms in wastewater treatment systems. The article also discusses the physicochemical properties of microplastics in wastewater treatment plants and their role in biofilm formation. Then, the article explained the impact of these properties on the possibility of the formation of biofilms on their surface due to the peculiar structure of microorganisms and also characterized what factors enable the formation of specific plastisphere in wastewater treatment plants. It highlights the urgent need to understand the basic information about microplastics to assess environmental toxicity more rationally, enabling better pollution control and the development of regulatory standards to manage microplastics entering the environment.


Asunto(s)
Biopelículas , Microbiota , Microplásticos , Aguas del Alcantarillado , Aguas Residuales , Microplásticos/análisis , Aguas Residuales/microbiología , Aguas Residuales/química , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Bacterias/clasificación , Bacterias/metabolismo , Plásticos/química
14.
Environ Sci Technol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39322606

RESUMEN

Triclocarban (TCC), as a typical antimicrobial agent, accumulates at substantial levels in natural environments and engineered systems. This work investigated the impact of TCC on anaerobic sulfur transformation, especially toxic H2S production. Experimental findings revealed that TCC facilitated sulfur flow from the sludge solid phase to liquid phase, promoted sulfate reduction and sulfur-containing amino acid degradation, and largely improved anaerobic H2S production, i.e., 50-600 mg/kg total suspended solids (TSS) TCC increased the cumulative H2S yields by 24.76-478.12%. Although TCC can be partially biodegraded in anaerobic systems, the increase in H2S production can be mainly attributed to the effect of TCC rather than its degradation products. TCC was spontaneously adsorbed by protein-like substances contained in microbe extracellular polymers (EPSs), and the adsorbed TCC increased the direct electron transfer ability of EPSs, possibly due to the increase in the content of electroactive polymer protein in EPSs, the polarization of the amide group C═O bond, and the increase of the α-helical peptide dipole moment, which might be one important reason for promoting sulfur bioconversion processes. Microbial analysis showed that the presence of TCC enriched the organic substrate-degrading bacteria and sulfate-reducing bacteria and increased the abundances of functional genes encoding sulfate transport and dissimilatory sulfate reduction.

15.
Environ Sci Technol ; 58(22): 9850-9862, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38758285

RESUMEN

A considerable number of micropollutants from human activities enter the wastewater network for removal. However, at the wastewater treatment plant (WWTP), some proportion of these compounds is retained in the sewage sludge (biosolids), and due to its high content of nutrients, sludge is widely applied as an agricultural fertilizer and becomes a means for the micropollutants to be introduced to the environment. Accordingly, a holistic semiquantitative nontarget screening was performed on sewage sludges from five different WWTPs using nanoflow liquid chromatography coupled to high-resolution Orbitrap mass spectrometry. Sixty-one inorganic elements were measured using inductively coupled plasma mass spectrometry. Across all sludges, the nontarget analysis workflow annotated >21,000 features with chemical structures, and after strict prioritization and filtering, 120 organic micropollutants with diverse chemical structures and applications such as pharmaceuticals, pesticides, flame retardants, and industrial and natural compounds were identified. None of the tested sludges were free from organic micropollutants. Pharmaceuticals contributed the largest share followed by pesticides and natural products. The predicted concentration of identified contaminants ranged between 0.2 and 10,881 ng/g dry matter. Through quantitative nontarget analysis, this study comprehensively demonstrated the occurrence of cocktails of micropollutants in sewage sludges.


Asunto(s)
Agricultura , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Aguas Residuales/química , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Fertilizantes
16.
Environ Sci Technol ; 58(21): 9272-9282, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38749055

RESUMEN

Triclocarban (TCC), as a widely used antimicrobial agent, is accumulated in waste activated sludge at a high level and inhibits the subsequent anaerobic digestion of sludge. This study, for the first time, investigated the effectiveness of microbial electrolysis cell-assisted anaerobic digestion (MEC-AD) in mitigating the inhibition of TCC to methane production. Experimental results showed that 20 mg/L TCC inhibited sludge disintegration, hydrolysis, acidogenesis, and methanogenesis processes and finally reduced methane production from traditional sludge anaerobic digestion by 19.1%. Molecular docking revealed the potential inactivation of binding of TCC to key enzymes in these processes. However, MEC-AD with 0.6 and 0.8 V external voltages achieved much higher methane production and controlled the TCC inhibition to less than 5.8%. TCC in the MEC-AD systems was adsorbed by humic substances and degraded to dichlorocarbanilide, leading to a certain detoxification effect. Methanogenic activities were increased in MEC-AD systems, accompanied by complete VFA consumption. Moreover, the applied voltage promoted cell apoptosis and sludge disintegration to release biodegradable organics. Metagenomic analysis revealed that the applied voltage increased the resistance of electrode biofilms to TCC by enriching functional microorganisms (syntrophic VFA-oxidizing and electroactive bacteria and hydrogenotrophic methanogens), acidification and methanogenesis pathways, multidrug efflux pumps, and SOS response.


Asunto(s)
Electrólisis , Anaerobiosis , Aguas del Alcantarillado/microbiología , Metano/metabolismo , Carbanilidas/farmacología
17.
Environ Sci Technol ; 58(4): 1966-1975, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38153028

RESUMEN

Polysaccharides in extracellular polymeric substances (EPS) can form a hybrid matrix network with proteins, impeding waste-activated sludge (WAS) fermentation. Amino sugars, such as N-acetyl-d-glucosamine (GlcNAc) polymers and sialic acid, are the non-negligible components in the EPS of aerobic granules or biofilm. However, the occurrence of amino sugars in WAS and their degradation remains unclear. Thus, amino sugars (∼6.0%) in WAS were revealed, and the genera of Lactococcus and Zoogloea were identified for the first time. Chitin was used as the substrate to enrich a chitin-degrading consortium (CDC). The COD balances for methane production ranged from 83.3 and 95.1%. Chitin was gradually converted to oligosaccharides and GlcNAc after dosing with the extracellular enzyme. After doing enriched CDC in WAS, the final methane production markedly increased to 60.4 ± 0.6 mL, reflecting an increase of ∼62%. Four model substrates of amino sugars (GlcNAc and sialic acid) and polysaccharides (cellulose and dextran) could be used by CDC. Treponema (34.3%) was identified as the core bacterium via excreting chitinases (EC 3.2.1.14) and N-acetyl-glucosaminidases (EC 3.2.1.52), especially the genetic abundance of chitinases in CDC was 2.5 times higher than that of WAS. Thus, this study provides an elegant method for the utilization of amino sugar-enriched organics.


Asunto(s)
Quitinasas , Aguas del Alcantarillado , Amino Azúcares , Fermentación , Ácido N-Acetilneuramínico , Quitina/química , Quitina/metabolismo , Polisacáridos , Quitinasas/química , Quitinasas/metabolismo , Metano
18.
Environ Sci Technol ; 58(26): 11542-11553, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38871676

RESUMEN

Nanoplastics (NPs) are emerging pollutants and have been reported to cause the disintegration of anaerobic granular sludge (AnGS). However, the mechanism involved in AnGS disintegration was not clear. In this study, polyvinyl chloride nanoplastics (PVC-NPs) were chosen as target NPs and their long-term impact on AnGS structure was investigated. Results showed that increasing PVC-NPs concentration resulted in the inhibition of acetoclastic methanogens, syntrophic propionate, and butyrate degradation, as well as AnGS disintegration. At the presence of 50 µg·L-1 PVC-NPs, the hydrophobic interaction was weakened with a higher energy barrier due to the relatively higher hydrophilic functional groups in extracellular polymeric substances (EPS). PVC-NPs-induced ROS inhibited quorum sensing, significantly downregulated hydrophobic amino acid synthesis, whereas it highly upregulated the genes related to the synthesis of four hydrophilic amino acids (Cys, Glu, Gly, and Lys), resulting in a higher hydrophily degree of protein secondary structure in EPS. The differential expression of genes involved in EPS biosynthesis and the resulting protein secondary structure contributed to the greater hydrophilic interaction, reducing microbial aggregation ability. The findings provided new insight into the long-term impact of PVC-NPs on AnGS when treating wastewater containing NPs and filled the knowledge gap on the mechanism involved in AnGS disintegration by PVC-NPs.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Cloruro de Polivinilo , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Cloruro de Polivinilo/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Anaerobiosis , Interacciones Microbianas
19.
Environ Sci Technol ; 58(32): 14282-14292, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39083369

RESUMEN

Biodegradable flocculants are rarely used in waste activated sludge (WAS) fermentation. This study introduces an alginate-based biodegradable flocculant (ABF) to enhance both the dewatering and degradation of WAS during its fermentation. Alginate was identified in structural extracellular polymeric substances (St-EPS) of WAS, with alginate-producing bacteria comprising ∼4.2% of the total bacterial population in WAS. Owing to its larger floc size, higher contact angle, and lower free energy resulting from the Lewis acid-base interaction, the addition of the prepared ABF with a network structure significantly improved the dewaterability of WAS and reduced capillary suction time (CST) by 72%. The utilization of ABF by an enriched alginate-degrading consortium (ADC) resulted in a 35.5% increase in the WAS methane yield owing to its higher hydrolytic activity on both ABF and St-EPS. Additionally, after a 30 day fermentation, CST decreased by 62% owing to the enhanced degradation of St-EPS (74.4%) and lower viscosity in the WAS + ABF + ADC group. The genus Bacteroides, comprising 12% of ADC, used alginate lyase (EC 4.2.2.3) and pectate lyase (EC 4.2.2.2 and EC 4.2.2.9) to degrade alginate and polygalacturonate in St-EPS, respectively. Therefore, this study introduces a new flocculant and elucidates its dual roles in enhancing both the dewaterability and degradability of WAS. These advancements improve WAS fermentation, resulting in higher methane production and lower CSTs.


Asunto(s)
Alginatos , Fermentación , Floculación , Aguas del Alcantarillado , Anaerobiosis , Eliminación de Residuos Líquidos , Biodegradación Ambiental
20.
Environ Sci Technol ; 58(26): 11685-11694, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38905014

RESUMEN

A regular tetrahedron model was established to pierce the fractionation of dissolved organic matter (DOM) among quaternary components by using high-resolution mass spectrometry. The model can stereoscopically visualize molecular formulas of DOM to show the preference to each component according to the position in a regular tetrahedron. A classification method was subsequently developed to divide molecular formulas into 15 categories related to fractionation ratios, the relative change of which was demonstrated to be convergent with the uncertainty of mass peak area. The practicality of the regular tetrahedron model was verified by seven kinds of sludge from waste leachate treatment and sewage wastewater treatment plants by using stratification of extracellular polymeric substances coupled with Orbitrap MS as an example, presenting the DOM chemodiversity in stratified sludge flocs. Sensitivity analysis proved that classification results were relatively stable with the perturbation of four model parameters. Multinomial logistic regression analysis could further help identify the effect of molecular properties on the fractionation of DOM based on the classification results of the regular tetrahedron model. This model offers a methodology for the assessment of specificity of sequential extraction on DOM from solid or semisolid components and simplifies the complex mathematical expression of fractionation coefficients for quaternary components.


Asunto(s)
Espectrometría de Masas , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Compuestos Orgánicos/química , Fraccionamiento Químico , Modelos Teóricos , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA