Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38508711

RESUMEN

In the study of bodily awareness, the predictive coding theory has revealed that our brain continuously modulates sensory experiences to integrate them into a unitary body representation. Indeed, during multisensory illusions (e.g., the rubber hand illusion, RHI), the synchronous stroking of the participant's concealed hand and a fake visible one creates a visuotactile conflict, generating a prediction error. Within the predictive coding framework, through sensory processing modulation, prediction errors are solved, inducing participants to feel as if touches originated from the fake hand, thus ascribing the fake hand to their own body. Here, we aimed to address sensory processing modulation under multisensory conflict, by disentangling somatosensory and visual stimuli processing that are intrinsically associated during the illusion induction. To this aim, we designed two EEG experiments, in which somatosensory- (SEPs; Experiment 1; N = 18; F = 10) and visual-evoked potentials (VEPs; Experiment 2; N = 18; F = 9) were recorded in human males and females following the RHI. Our results show that, in both experiments, ERP amplitude is significantly modulated in the illusion as compared with both control and baseline conditions, with a modality-dependent diametrical pattern showing decreased SEP amplitude and increased VEP amplitude. Importantly, both somatosensory and visual modulations occur in long-latency time windows previously associated with tactile and visual awareness, thus explaining the illusion of perceiving touch at the sight location. In conclusion, we describe a diametrical modulation of somatosensory and visual processing as the neural mechanism that allows maintaining a stable body representation, by restoring visuotactile congruency under the occurrence of multisensory conflicts.


Asunto(s)
Electroencefalografía , Potenciales Evocados Somatosensoriales , Potenciales Evocados Visuales , Ilusiones , Percepción Visual , Humanos , Masculino , Femenino , Adulto , Percepción Visual/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Adulto Joven , Ilusiones/fisiología , Potenciales Evocados Visuales/fisiología , Percepción del Tacto/fisiología , Estimulación Luminosa/métodos , Conflicto Psicológico , Corteza Somatosensorial/fisiología , Imagen Corporal
2.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39245849

RESUMEN

Definitions of human pain acknowledge at least two dimensions of pain, affective and sensory, described as separable and thus potentially differentially modifiable. Using electroencephalography, we investigated perceptual and neural changes of emotional pain modulation in healthy individuals. Painful electrical stimuli were applied after presentation of priming emotional pictures (negative, neutral, positive) and followed by pain intensity and unpleasantness ratings. We found that perceptual and neural event-related potential responses to painful stimulation were significantly modulated by emotional valence. Specifically, pain unpleasantness but not pain intensity ratings were increased when pain was preceded by negative compared to neutral or positive pictures. Amplitudes of N2 were higher when pain was preceded by neutral compared to negative and positive pictures, and P2 amplitudes were higher for negative compared to neutral and positive pictures. In addition, a hierarchical regression analysis revealed that P2 alone and not N2, predicted pain perception. Finally, source analysis showed the anterior cingulate cortex and the thalamus as main spatial clusters accounting for the neural changes in pain processing. These findings provide evidence for a separation of the sensory and affective dimensions of pain and open new perspectives for mechanisms of pain modulation.


Asunto(s)
Electroencefalografía , Emociones , Dolor , Humanos , Masculino , Femenino , Emociones/fisiología , Dolor/psicología , Dolor/fisiopatología , Adulto Joven , Adulto , Potenciales Evocados/fisiología , Percepción del Dolor/fisiología , Encéfalo/fisiología , Estimulación Eléctrica , Estimulación Luminosa/métodos , Dimensión del Dolor , Mapeo Encefálico
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642106

RESUMEN

The spatial coding of tactile information is functionally essential for touch-based shape perception and motor control. However, the spatiotemporal dynamics of how tactile information is remapped from the somatotopic reference frame in the primary somatosensory cortex to the spatiotopic reference frame remains unclear. This study investigated how hand position in space or posture influences cortical somatosensory processing. Twenty-two healthy subjects received electrical stimulation to the right thumb (D1) or little finger (D5) in three position conditions: palm down on right side of the body (baseline), hand crossing the body midline (effect of position), and palm up (effect of posture). Somatosensory-evoked potentials (SEPs) were recorded using electroencephalography. One early-, two mid-, and two late-latency neurophysiological components were identified for both fingers: P50, P1, N125, P200, and N250. D1 and D5 showed different cortical activation patterns: compared with baseline, the crossing condition showed significant clustering at P1 for D1, and at P50 and N125 for D5; the change in posture showed a significant cluster at N125 for D5. Clusters predominated at centro-parietal electrodes. These results suggest that tactile remapping of fingers after electrical stimulation occurs around 100-125 ms in the parietal cortex.


Asunto(s)
Percepción del Tacto , Tacto , Humanos , Tacto/fisiología , Dedos/fisiología , Percepción del Tacto/fisiología , Mano/fisiología , Electroencefalografía , Corteza Somatosensorial
4.
Eur J Neurosci ; 60(1): 3772-3794, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38726801

RESUMEN

Beside the well-documented involvement of secondary somatosensory area, the cortical network underlying late somatosensory evoked potentials (P60/N60 and P100/N100) is still unknown. Electroencephalogram and magnetoencephalogram source imaging were performed to further investigate the origin of the brain cortical areas involved in late somatosensory evoked potentials, using sensory inputs of different strengths and by testing the correlation between cortical sources. Simultaneous high-density electroencephalograms and magnetoencephalograms were performed in 19 participants, and electrical stimulation was applied to the median nerve (wrist level) at intensity between 1.5 and 9 times the perceptual threshold. Source imaging was undertaken to map the stimulus-induced brain cortical activity according to each individual brain magnetic resonance imaging, during three windows of analysis covering early and late somatosensory evoked potentials. Results for P60/N60 and P100/N100 were compared with those for P20/N20 (early response). According to literature, maximal activity during P20/N20 was found in central sulcus contralateral to stimulation site. During P60/N60 and P100/N100, activity was observed in contralateral primary sensorimotor area, secondary somatosensory area (on both hemispheres) and premotor and multisensory associative cortices. Late responses exhibited similar characteristics but different from P20/N20, and no significant correlation was found between early and late generated activities. Specific clusters of cortical activities were activated with specific input/output relationships underlying early and late somatosensory evoked potentials. Cortical networks, partly common to and distinct from early somatosensory responses, contribute to late responses, all participating in the complex somatosensory brain processing.


Asunto(s)
Electroencefalografía , Potenciales Evocados Somatosensoriales , Magnetoencefalografía , Corteza Somatosensorial , Humanos , Potenciales Evocados Somatosensoriales/fisiología , Magnetoencefalografía/métodos , Masculino , Femenino , Adulto , Electroencefalografía/métodos , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/diagnóstico por imagen , Nervio Mediano/fisiología , Adulto Joven , Estimulación Eléctrica/métodos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
5.
Exp Physiol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39233383

RESUMEN

Blood-flow-restriction exercise (BFREX) is an emerging method to stimulate hypertrophy and strength without the need for high training loads. However, the impact of BFREX concerning somatosensory processing remains elusive. Here, we aimed to investigate the acute effects of BFREX on somatosensory processing in healthy adults using somatosensory-evoked potentials (SEPs). Twelve healthy adults (23.0 ± 3.2 years of age) participated in a randomized crossover experiment, consisting of three experimental conditions: application of blood-flow restriction without resistance exercise (BFR), resistance exercise for multiple sets with blood-flow restriction (BFREX) and traditional resistance exercise (unilateral biceps curls) for multiple sets without BFR (EX). SEP measurements were recorded bilaterally before, during and after each condition. SEP amplitudes were largely unaffected during various occlusive conditions. Nonetheless, our findings demonstrate a significant decrease in N9 latencies for condition EX compared with BFR, specifically in the exercised limb (mean difference = -0.26 ms, SE = 0.06 ms, P = 0.002, d = -0.335). This study provides evidence on the lack of impact of BFREX within the somatosensory domain, according to current guidelines. As an alternative method to traditional high-load resistance exercise, BFREX might offer a considerable upside for rehabilitative settings by reducing strain on the musculoskeletal system.

6.
Muscle Nerve ; 70(5): 1089-1094, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39132869

RESUMEN

INTRODUCTION/AIMS: Somatosensory evoked potentials (SSEPs) are described as a supportive tool to diagnose chronic inflammatory demyelinating polyradiculoneuropathy (CIDP); however, there is a lack of studies determining the effectiveness of SSEPs in monitoring the clinical course of individuals with this condition. The aims of this study are to evaluate the utility of SSEPs in monitoring patients with CIDP and to assess their association with clinical outcomes following immunomodulatory therapy. METHODS: This was a single-center retrospective observational study that included patients who met European Federation of Neurological Societies and Peripheral Nerve Society criteria for CIDP between 2018 and 2023. SSEPs were performed at diagnosis and during follow-up after the start of immunomodulatory treatment. Fisher's exact test was employed to assess the association between clinical improvement and SSEP improvement. RESULTS: Eighteen patients were included in the study. Ten patients had a typical CIDP pattern and 11 were male. In 17, SSEPs were abnormal prior to the start of immunomodulatory treatment. In patients who showed clinical improvement with immunomodulatory therapy, we observed that 15/17 had partial or complete improvement in SSEPs. Patients who showed no clinical improvement with first-line treatment exhibited worsening SSEPs. There was a significant association between clinical and SSEPs improvement (p = 0.009). DISCUSSION: We observed a positive association between improvement in SSEPs and clinical improvement in patients with CIDP. Our data suggest that SSEPs may be useful for monitoring the clinical course of patients with CIDP, but additional, larger studies are needed.


Asunto(s)
Potenciales Evocados Somatosensoriales , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Humanos , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/fisiopatología , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/diagnóstico , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/terapia , Masculino , Potenciales Evocados Somatosensoriales/fisiología , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Adulto , Conducción Nerviosa/fisiología
7.
J Neural Transm (Vienna) ; 131(4): 359-367, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38456947

RESUMEN

The different peaks of somatosensory-evoked potentials (SEP) originate from a variety of anatomical sites in the central nervous system. The origin of the median nerve subcortical N18 SEP has been studied under various conditions, but the exact site of its generation is still unclear. While it has been claimed to be located in the thalamic region, other studies indicated its possible origin below the pontomedullary junction. Here, we scrutinized and compared SEP recordings from median nerve stimulation through deep brain stimulation (DBS) electrodes implanted in various subcortical targets. We studied 24 patients with dystonia, Parkinson's disease, and chronic pain who underwent quadripolar electrode implantation for chronic DBS and recorded median nerve SEPs from globus pallidus internus (GPi), subthalamic nucleus (STN), thalamic ventral intermediate nucleus (Vim), and ventral posterolateral nucleus (VPL) and the centromedian-parafascicular complex (CM-Pf). The largest amplitude of the triphasic potential of the N18 complex was recorded in Vim. Bipolar recordings confirmed the origin to be close to Vim electrodes (and VPL/CM-Pf) and less close to STN electrodes. GPi recorded only far-field potentials in unipolar derivation. Recordings from DBS electrodes located in different subcortical areas allow determining the origin of certain subcortical SEP waves more precisely. The subcortical N18 of the median nerve SEP-to its largest extent-is generated ventral to the Vim in the region of the prelemniscal radiation/ zona incerta.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Potenciales Evocados Somatosensoriales/fisiología , Núcleo Subtalámico/fisiología , Tálamo/fisiología , Enfermedad de Parkinson/terapia , Electrodos , Globo Pálido , Electrodos Implantados
8.
J Intensive Care Med ; : 8850666241287154, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344464

RESUMEN

PURPOSE: Myoclonus after anoxic brain injury is a marker of significant cerebral injury. Absent cortical signal (N20) on somatosensory evoked potentials (SSEPs) after cardiac arrest is a reliable predictor of poor neurological recovery when combined with an overall clinical picture consistent with severe widespread neurological injury. We evaluated a clinical question of if SSEP result could be predicted from other clinical and neurodiagnostic testing results in patients with post-anoxic myoclonus. METHODS: Retrospective chart review of all adult patients with post-cardiac arrest myoclonus who underwent both electroencephalographic (EEG) monitoring and SSEPs for neuroprognostication. Myoclonus was categorized as "non-myoclonic movements," "myoclonus not captured on EEG," "myoclonus without EEG correlate," "myoclonus with EEG correlate," and "status myoclonus." SSEP results were categorized as all absent, all present, N18 and N20 absent bilaterally, and N20 only absent bilaterally. Cox proportional hazards with censoring was used to evaluate the association of myoclonus category, SSEP results, and confounding factors with survival. RESULTS: In 56 patients, median time from arrest to either confirmed death or last follow up was 9 days. The category of myoclonus was not associated with SSEP result or length of survival. Absence of N20 s or N18 s was associated with shorter survival (N20 hazard ratio [HR] 4.4, p = 0.0014; N18 HR 5.5, p < 0.00001). CONCLUSIONS: Category of myoclonus did not reliably predict SSEP result. SSEP result was correlated with outcome consistently, but goals of care transitioned to comfort measures only in all patients with present peripheral potentials and either absent N20 s only or absence of N18 s and N20 s. Our results suggest that SSEPs may retain prognostic value in patients with post-anoxic myoclonus.

9.
Cereb Cortex ; 33(10): 6198-6206, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563001

RESUMEN

Sensory integration contributes to temporal coordination of the movement with external rhythms. How the information flowing of sensory inputs is regulated with increasing tapping rates and its function remains unknown. Here, somatosensory evoked potentials to ulnar nerve stimulation were recorded during auditory-cued repetitive right-index finger tapping at 0.5, 1, 2, 3, and 4 Hz in 13 healthy subjects. We found that sensory inputs were suppressed at subcortical level (represented by P14) and primary somatosensory cortex (S1, represented by N20/P25) during repetitive tapping. This suppression was decreased in S1 but not in subcortical level during fast repetitive tapping (2, 3, and 4 Hz) compared with slow repetitive tapping (0.5 and 1 Hz). Furthermore, we assessed the ability to analyze temporal information in S1 by measuring the somatosensory temporal discrimination threshold (STDT). STDT increased during fast repetitive tapping compared with slow repetitive tapping, which was negatively correlated with the task performance of phase shift and positively correlated with the peak-to-peak amplitude (% of resting) in S1 but not in subcortical level. These novel findings indicate that the increased sensory input (lower sensory gating) in S1 may lead to greater temporal uncertainty for sensorimotor integration dereasing the performance of repetitive movement during increasing tapping rates.


Asunto(s)
Potenciales Evocados Somatosensoriales , Movimiento , Humanos , Potenciales Evocados Somatosensoriales/fisiología , Movimiento/fisiología , Filtrado Sensorial , Corteza Somatosensorial/fisiología
10.
Eur Spine J ; 33(3): 924-931, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38008871

RESUMEN

OBJECTIVE: To evaluate the validity of intraoperative evoked potential (EP) including motor evoked potential (MEP) and somatosensory evoked potentials (SEP) as a biomarker for predicting neural function changes after thoracic spinal decompression (TSD) surgery. METHOD: A consecutive series of 336 TSD surgeries were reviewed between 2010 and 2021 from four spine center. All patients with TSD were divided into 3 groups according to different intraoperative EP results: group 1, EP alerts; group 2, no obvious EP deterioration; group 3, EP improvement compared with baselines. The lower limb Japanese Orthopedic Association (JOA) scores (as well as early and long-term JOA recovery rate) were utilized to quantitatively assess pre- and postoperative neural function change. RESULTS: Among the 3 subgroups according to the different EP changes, the early JOA recovery rate (RR%) in the EP improvement group was significantly better than the other two groups (51.3 ± 58.6* vs. 27.5 ± 31.2 and 33.3 ± 43.1; p < 0.01) after 3-month follow-up. The mean MEP and SEP amplitude were from 116 ± 57 µV to 347 ± 71 µV (p < 0.01) and from 1.86 ± 0.24 µV to 2.65 ± 0.29 µV (p < 0.01) between spinal cord pre-decompression and post-decompression. Moreover, multivariate logistic regression analysis revealed that risk factors of EP improvement were duration of symptom (p < 0.001, OR 10.9) and Preop. neurologic deficit degree (p = 0.013, OR 7.46). CONCLUSION: The intraoperative EP can predict postoperative neural function changes as a biomarker during TSD. Patient with EP improvement probably has better prognosis for early neural function recovery. The duration of symptom and preoperative neurologic deficit degree may be related to intraoperative EP improvement.


Asunto(s)
Potenciales Evocados Motores , Potenciales Evocados Somatosensoriales , Humanos , Potenciales Evocados Somatosensoriales/fisiología , Potenciales Evocados Motores/fisiología , Columna Vertebral , Biomarcadores , Descompresión , Estudios Retrospectivos
11.
Acta Neurochir (Wien) ; 166(1): 341, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39160268

RESUMEN

BACKGROUND: The semi-sitting position offers advantages for surgeries in the posterior cranial fossa. However, data on its safety and effectiveness for clipping aneurysms in the posterior cerebral circulation are limited. This retrospective cohort study evaluates the safety and effectiveness of using the semi-sitting position for these surgeries. METHODS: We conducted a retrospective study of 17 patients with posterior cerebral circulation aneurysms who underwent surgical clipping in the semi-sitting position in the Department of Neurosurgery at Hannover Medical School over a 10-year period. RESULTS: The mean age at surgery was 62 years (range, 31 to 75). Fourteen patients were admitted with subarachnoid hemorrhage and 3 patients had incidental aneurysmas. Fifteen patients had PICA aneurysms, and two had aneurysms of the vertebral artery and the superior cerebellar artery, respectively. The median diameter of the aneurysms was 5 mm (range 3-17 mm). Intraoperative venous air embolism (VAE) occurred in 4 patients, without affecting the surgical or clinical course. VAE was associated with a mild decrease of EtCO2 levels in 3 patients and in 2 patients a decrease of blood pressure occurred which was managed effectively. Surgical procedures proceeded as planned in all instances. There were no complications secondary to VAE. Two patients died secondary to respiratory problems (not related to VAE), and one patient was lost to follow-up. Eleven of fourteen patients were partially or completely independent (Barthel index between 60 and 100) at a median follow-up duration of 13.5 months (range, 3-103 months). CONCLUSION: The semi-sitting position is a safe and effective technique for the surgical clipping of aneurysms in the posterior cerebral circulation. The incidence of VAE is comparable to that seen in tumor surgery. However, it is crucial for the surgical and anesthesiological team to be familiar with potential complications and to react immediately in case of an occurrence of VAE.


Asunto(s)
Aneurisma Intracraneal , Procedimientos Neuroquirúrgicos , Humanos , Persona de Mediana Edad , Femenino , Aneurisma Intracraneal/cirugía , Masculino , Anciano , Adulto , Estudios Retrospectivos , Procedimientos Neuroquirúrgicos/métodos , Sedestación , Instrumentos Quirúrgicos , Resultado del Tratamiento , Hemorragia Subaracnoidea/cirugía
12.
Neurocrit Care ; 40(1): 237-250, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36991177

RESUMEN

BACKGROUND: Somatosensory evoked potentials (SSEPs) help prognostication, particularly in patients with diffuse brain injury. However, use of SSEP is limited in critical care. We propose a novel, low-cost approach allowing acquisition of screening SSEP using widely available intensive care unit (ICU) equipment, specifically a peripheral "train-of-four" stimulator and standard electroencephalograph. METHODS: The median nerve was stimulated using a train-of-four stimulator, and a standard 21-channel electroencephalograph was recorded to generate the screening SSEP. Generation of the SSEP was supported by visual inspection, univariate event-related potentials statistics, and a multivariate support vector machine (SVM) decoding algorithm. This approach was validated in 15 healthy volunteers and validated against standard SSEPs in 10 ICU patients. The ability of this approach to predict poor neurological outcome, defined as death, vegetative state, or severe disability at 6 months, was tested in an additional set of 39 ICU patients. RESULTS: In each of the healthy volunteers, both the univariate and the SVM methods reliably detected SSEP responses. In patients, when compared against the standard SSEP method, the univariate event-related potentials method matched in nine of ten patients (sensitivity = 94%, specificity = 100%), and the SVM had 100% sensitivity and specificity when compared with the standard method. For the 49 ICU patients, we performed both the univariate and the SVM methods: a bilateral absence of short latency responses (n = 8) predicted poor neurological outcome with 0% FPR (sensitivity = 21%, specificity = 100%). CONCLUSIONS: Somatosensory evoked potentials can reliably be recorded using the proposed approach. Given the very good but slightly lower sensitivity of absent SSEPs in the proposed screening approach, confirmation of absent SSEP responses using standard SSEP recordings is advised.


Asunto(s)
Potenciales Evocados Somatosensoriales , Nervio Mediano , Humanos , Potenciales Evocados Somatosensoriales/fisiología , Sensibilidad y Especificidad , Cuidados Críticos
13.
J Integr Neurosci ; 23(1): 10, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38287858

RESUMEN

BACKGROUND: Neural adaptions in response to sensorimotor tasks are impaired in those with untreated, recurrent mild-to-moderate neck pain (subclinical neck pain (SCNP)), due to disordered central processing of afferent information (e.g., proprioception). Neural adaption to force modulation, a sensorimotor skill reliant on accurate proprioception, is likely to be impaired in those with SCNP. This study examined changes in somatosensory evoked potential (SEP) peak amplitudes following the acquisition of a novel force matching tracking task (FMTT) in those with SCNP compared to non-SCNP. METHODS: 40 (20 female (F) & 20 male (M); average age (standard deviation, SD): 21.6 (3.01)) right-handed participants received controlled electrical stimulation at 2.47 Hz and 4.98 Hz (averaged 1000 sweeps/frequency) over the right-median nerve, to elicit SEPs before and after FMTT acquisition. Participants used their right thumb to match a series of force profiles that were calibrated to their right thumb (abductor pollicis brevis muscle) strength. To determine if motor learning was impacted, retention was assessed 24 to 48 hours later. Outliers were removed before running independent t-tests on normalized SEP peak amplitudes, and repeated measures analysis of variance (ANOVA) with planned contrasts on absolute and normalized motor performance accuracy. Benjamini-hochberg test was used to correct for multiple independent SEP comparisons. RESULTS: SEP peaks: N18 (t(29.058) = 2.031, p = 0.026), N20 (t(35) = -5.460, p < 0.001), and P25 (t(33) = -2.857, p = 0.004) had group differences. Motor performance: Absolute error (n = 38) had a main effect of time, and significant pre-and post-acquisition contrast for time (both p < 0.001). CONCLUSIONS: Group differences in the olivary-cerebellar pathway (N18), and cortical processing at the somatosensory cortex (N20 and P25), suggests that SCNP alters cortical and cerebellar processing compared to non-SCNP in response to FMTT acquisition. The sensory-motor integration differences in the SCNP group suggests that those with SCNP may rely more on feedback loops for discrete sensorimotor tasks dependent on proprioception. Early SEP changes may be used as a marker for altered neuroplasticity in the context of motor skill acquisition of a novel discrete FMTT in those with SCNP.


Asunto(s)
Potenciales Evocados Somatosensoriales , Dolor de Cuello , Humanos , Masculino , Femenino , Potenciales Evocados Somatosensoriales/fisiología , Destreza Motora , Músculo Esquelético/inervación , Mano , Estimulación Eléctrica , Corteza Somatosensorial/fisiología
14.
J Integr Neurosci ; 23(5): 98, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38812396

RESUMEN

OBJECTIVES: In this study, we explored the effects of chiropractic spinal adjustments on resting-state electroencephalography (EEG) recordings and early somatosensory evoked potentials (SEPs) in Alzheimer's and Parkinson's disease. METHODS: In this randomized cross-over study, 14 adults with Alzheimer's disease (average age 67 ± 6 years, 2 females:12 males) and 14 adults with Parkinson's disease (average age 62 ± 11 years, 1 female:13 males) participated. The participants underwent chiropractic spinal adjustments and a control (sham) intervention in a randomized order, with a minimum of one week between each intervention. EEG was recorded before and after each intervention, both during rest and stimulation of the right median nerve. The power-spectra was calculated for resting-state EEG, and the amplitude of the N30 peak was assessed for the SEPs. The source localization was performed on the power-spectra of resting-state EEG and the N30 SEP peak. RESULTS: Chiropractic spinal adjustment significantly reduced the N30 peak in individuals with Alzheimer's by 15% (p = 0.027). While other outcomes did not reach significance, resting-state EEG showed an increase in absolute power in all frequency bands after chiropractic spinal adjustments in individuals with Alzheimer's and Parkinson's disease. The findings revealed a notable enhancement in connectivity within the Default Mode Network (DMN) at the alpha, beta, and theta frequency bands among individuals undergoing chiropractic adjustments. CONCLUSIONS: We found that it is feasible to record EEG/SEP in individuals with Alzheimer's and Parkinson's disease. Additionally, a single session of chiropractic spinal adjustment reduced the somatosensory evoked N30 potential and enhancement in connectivity within the DMN at the alpha, beta, and theta frequency bands in individuals with Alzheimer's disease. Future studies may require a larger sample size to estimate the effects of chiropractic spinal adjustment on brain activity. Given the preliminary nature of our findings, caution is warranted when considering the clinical implications. CLINICAL TRIAL REGISTRATION: The study was registered by the Australian New Zealand Clinical Trials Registry (registration number ACTRN12618001217291 and 12618001218280).


Asunto(s)
Enfermedad de Alzheimer , Estudios Cruzados , Electroencefalografía , Potenciales Evocados Somatosensoriales , Enfermedad de Parkinson , Humanos , Femenino , Masculino , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Anciano , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Persona de Mediana Edad , Potenciales Evocados Somatosensoriales/fisiología , Proyectos Piloto , Manipulación Quiropráctica/métodos
15.
J Clin Monit Comput ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261395

RESUMEN

Somatosensory evoked potentials are frequently acquired by stimulation of the median or tibial nerves (mSEPs and tSEPs) for intraoperative monitoring of sensory pathways. Due to their low amplitudes it is common practice to average 200 or more sweeps to discern the evoked potentials from the background EEG. The aim of this study was to investigate if an algorithm designed to determine the lowest sweep count needed to obtain reproducible evoked potentials in each patient significantly reduces the median necessary sweep count to under 200. 30 patients undergoing spinal surgery at the Department of Neurosurgery were included in the study. Beginning with a sweep count of 200 an algorithm was designed to determine the lowest sweep count that yielded reproducible evoked potentials in each patient. By this algorithm the minimal sweep count was determined in 15 patients for mSEPs and in 15 patients for tSEPs. The required sweep count was below 200 in 14 of 15 patients for mSEPs (93.3%) with a mean sweep count of 56 ± 51. For tSEPs the sweep count was below 200 in 11 of 15 patients (73.3%) with a mean sweep count of 106 ± 70 (mean ± SD). The calculated mean time to average the potentials could thereby be reduced from 48.8s to 13.7s for mSEPs and from 48.8s to 25.9s for tSEPs. The proposed algorithm allowed sweep count and acquisition time reduction in roughly 90% of all patients for mSEPs and in 70% of all patients for tSEPs.

16.
J Clin Monit Comput ; 38(5): 1003-1042, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39068294

RESUMEN

Somatosensory evoked potentials (SEPs) are used to assess the functional status of somatosensory pathways during surgical procedures and can help protect patients' neurological integrity intraoperatively. This is a position statement on intraoperative SEP monitoring from the American Society of Neurophysiological Monitoring (ASNM) and updates prior ASNM position statements on SEPs from the years 2005 and 2010. This position statement is endorsed by ASNM and serves as an educational service to the neurophysiological community on the recommended use of SEPs as a neurophysiological monitoring tool. It presents the rationale for SEP utilization and its clinical applications. It also covers the relevant anatomy, technical methodology for setup and signal acquisition, signal interpretation, anesthesia and physiological considerations, and documentation and credentialing requirements to optimize SEP monitoring to aid in protecting the nervous system during surgery.


Asunto(s)
Potenciales Evocados Somatosensoriales , Monitorización Neurofisiológica Intraoperatoria , Sociedades Médicas , Potenciales Evocados Somatosensoriales/fisiología , Humanos , Monitorización Neurofisiológica Intraoperatoria/métodos , Estados Unidos , Monitoreo Intraoperatorio/métodos , Electroencefalografía/métodos , Anestesia/métodos
17.
Neuromodulation ; 27(1): 160-171, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37245141

RESUMEN

INTRODUCTION: Dorsal root ganglion stimulation (DRG-S) is a viable interventional option for intractable pain management. Although systematic data are lacking regarding the immediate neurologic complications of this procedure, intraoperative neurophysiological monitoring (IONM) can be a valuable tool to detect real-time neurologic changes and prompt intervention(s) during DRG-S performed under general anesthesia and deep sedation. MATERIALS AND METHODS: In our single-center case series, we performed multimodal IONM, including peripheral nerve somatosensory evoked potentials (pnSSEPs) and dermatomal somatosensory evoked potentials (dSSEPs), spontaneous electromyography (EMG), transcranial motor evoked potentials (MEPs), and electroencephalogram (EEG) for some trials and all permanent DRG-S lead placement per surgeon preference. Alert criteria for each IONM modality were established before data acquisition and collection. An IONM alert was used to implement an immediate repositioning of the lead to reduce any possible postoperative neurologic deficits. We reviewed the literature and summarized the current IONM modalities commonly applied during DRG-S, including somatosensory evoked potentials and EMG. Because DRG-S targets the dorsal roots, we hypothesized that including dSSEP would allow more sensitivity as a proxy for potential sensory changes under generalized anesthesia than would including standard pnSSEPs. RESULTS: From our case series of 22 consecutive procedures with 45 lead placements, one case had an alert immediately after DRG-S lead positioning. In this case, dSSEP attenuation was seen, indicating changes in the S1 dermatome, which occurred despite ipsilateral pnSSEP from the posterior tibial nerve remaining at baselines. The dSSEP alert prompted the surgeon to reposition the S1 lead, resulting in immediate recovery of the dSSEP to baseline status. The rate of IONM alerts reported intraoperatively was 4.55% per procedure and 2.22% per lead (n = 1). No neurologic deficits were reported after the procedure, resulting in no postoperative neurologic complications or deficits. No other IONM changes or alerts were observed from pnSSEP, spontaneous EMG, MEPs, or EEG modalities. Reviewing the literature, we noted challenges and potential deficiencies when using current IONM modalities for DRG-S procedures. CONCLUSIONS: Our case series suggests dSSEPs offer greater reliability than do pnSSEPs in quickly detecting neurologic changes, and subsequent neural injury, during DRG-S cases. We encourage future studies to focus on adding dSSEP to standard pnSSEP to provide a comprehensive, real-time neurophysiological assessment during lead placement for DRG-S. More investigation, collaboration, and evidence are required to evaluate, compare, and standardize comprehensive IONM protocols for DRG-S.


Asunto(s)
Monitorización Neurofisiológica Intraoperatoria , Humanos , Monitorización Neurofisiológica Intraoperatoria/métodos , Ganglios Espinales , Reproducibilidad de los Resultados , Potenciales Evocados Motores/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Complicaciones Posoperatorias/etiología
18.
J Stroke Cerebrovasc Dis ; 33(11): 107958, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159904

RESUMEN

OBJECTIVE: Perioperative Large Vessel Occlusions (LVOs) occurring during and following surgery are of immense clinical importance. As such, we aim to present risk factors and test if the Society of Thoracic Surgery (STS) mortality and stroke risk scores can be used to assess operative risk. METHODS: Using data containing 7 index cardiac operations at a single tertiary referral center from 2010 to 2022, logistic and multivariate regression analysis was performed to identify factors that correlate to higher operative LVO and stroke rate. Odds ratios and confidence intervals were also obtained to test if the STS-Predicted Risk of Mortality (PROM) and -Predicted Risk of Stroke (PROS) scores were positively correlated to operative LVO and stroke rate. RESULTS: Multivariate modeling showed primary risk factors for an operative LVO were diabetes (OR: 1.727 [95 % CI: 1.060-2.815]), intracranial or extracranial carotid stenosis (OR: 3.661 [95 % CI: 2.126-6.305]), and heart failure as defined by NYHA class (Class 4, OR: 3.951 [95 % CI: 2.092-7.461]; compared to Class 1). As the STS-PROM increased, the relative rate of LVO occurrence increased (very high risk, OR: 6.576 [95 % CI: 2.92-14.812], high risk, OR: 2.667 [1.125-6.322], medium risk, OR: 2.858 [1.594-5.125]; all compared to low risk). STS-PROS quartiles showed a similar relation with LVO risk (quartile 4, OR: 7.768 [95 % CI: 2.740-22.027], quartile 3, OR: 5.249 [1.800-15.306], quartile 2, OR:2.980 [0.960-9.248]; all compared to quartile 1). CONCLUSIONS: Patients with diabetes, carotid disease and heart failure are at high risk for operative LVO. Both STS-PROM and -PROS can be useful metrics for preoperative measuring of LVO risks.

19.
Medicina (Kaunas) ; 60(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39202485

RESUMEN

Introduction: Schwannomas (Schs) are benign tumor masses that rarely occur intra-abdominally and rarely reach larger diameters. When present, they occur as rare solitary nerve sheath tumors of peri-neural Schwann cells. Schwannoma mostly affects the nerves of the extremities, trunk, or the head and neck region. They are more common in female patients, mostly among patients between the third and fifth decade. They occur spontaneously but could also be found in association with a group of genetic autosomal dominant disorders called type 2. When present intra-abdominally, schwannomas grow slowly without significant clinical signs and symptoms. Clinical importance is presented in cases of occupying intra-abdominal space and impingement of surrounding structures, which causes intermittent pain. Only 0.5-5% of all retroperitoneal tumors are schwannomas and their malignant transformation is very rare. Case report: The authors present a case of a large intra-abdominal schwannoma in a 70-year-old female patient. She underwent CT scanning due to refractory left-sided subcostal pain, which revealed a large tumor mass in the left-sided hemiabdomen. Preoperative cytologic biopsy confirmed Sch. The patient underwent an MRI scan upon admission to our department, which revealed the origin of the tumor at the left-sided L3 level and intra-abdominal tumor spreading with the largest diameter of 25 cm. The patient underwent multidisciplinary surgical excision, confirmed by MRI scan in a period of five months postoperatively. Conclusions: Its rare presentation leads to the necessity to adequately evaluate such patients, especially to avoid any hidden diagnosis which might lead to further complications. The goal of a multidisciplinary approach should be emphasized as maintaining a good postsurgical condition without neurological deficits.


Asunto(s)
Neurilemoma , Neoplasias Retroperitoneales , Humanos , Neurilemoma/cirugía , Neurilemoma/diagnóstico por imagen , Neurilemoma/patología , Femenino , Neoplasias Retroperitoneales/cirugía , Neoplasias Retroperitoneales/diagnóstico por imagen , Neoplasias Retroperitoneales/diagnóstico , Anciano , Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X
20.
J Neurophysiol ; 129(1): 247-261, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36448686

RESUMEN

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that has noted alterations to motor performance and coordination, potentially affecting learning processes and the acquisition of motor skills. This work will provide insight into the role of altered neural processing and sensorimotor integration (SMI) while learning a novel visuomotor task in young adults with ADHD. This work compared adults with ADHD (n = 12) to neurotypical controls (n = 16), using a novel visuomotor tracing task, where participants used their right-thumb to trace a sinusoidal waveform that varied in both frequency and amplitude. This learning paradigm was completed in pre, acquisition, and post blocks, where participants additionally returned and completed a retention and transfer test 24 h later. Right median nerve short latency somatosensory-evoked potentials (SEPs) were collected pre and post motor acquisition. Performance accuracy and variability improved at post and retention measures for both groups for both normalized (P < 0.001) and absolute (P < 0.001) performance scores. N18 SEP: increased in the ADHD group post motor learning and decreased in controls (P < 0.05). N20 SEP: increased in both groups post motor learning (P < 0.01). P25: increased in both groups post motor learning (P < 0.001). N24: increased for both groups at post measures (P < 0.05). N30: decreased in the ADHD group and increased in controls (P < 0.05). These findings suggest that there may be differences in cortico-cerebellar and prefrontal processing in response to novel visuomotor tasks in those with ADHD.NEW & NOTEWORTHY Alterations to somatosensory-evoked potentials (SEPs) were present in young adults with attention-deficit/hyperactivity disorder (ADHD), when compared with neurotypical controls. The N18 and N30 SEP peak had differential changes between groups, suggesting alterations to olivary-cerebellar-M1 processing and SMI in those with ADHD when acquiring a novel visuomotor tracing task. This suggests that short-latency SEPs may be a useful biomarker in the assessment of differential responses to motor acquisition in those with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Humanos , Adulto Joven , Desempeño Psicomotor/fisiología , Destreza Motora/fisiología , Aprendizaje/fisiología , Pulgar , Electroencefalografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA