RESUMEN
BACKGROUND: This study investigates a novel idea about the foliar application of nanoparticles as nanofertilizer combined with a natural stimulant, blue-green algae Spirulina platensis L. extract, as a bio-fertilizer to achieve safety from using nanoparticles for enhancement of the growth and production of the plant. Thus, this experiment aimed to chemically synthesize copper nanoparticles via copper sulfate in addition to evaluate the impact of CuNPs at 500, 1000, and 1500 mg/L and the combination of CuNPs with or without microalgae extract at 0.5, 1, and 1.5 g/L on the morphological parameters, photosynthetic pigments accumulation, essential oil production, and antioxidant activity of French basil. RESULTS: The results revealed that foliar application of CuNPs and its interaction with spirulina extract significantly increased growth and yield compared with control, the treatments of 1000 and 1500 mg/L had less impact than 500 mg/L CuNPs. Plants treated with 500 mg/L CuNPs and 1.5 g/L spirulina extract showed the best growth and oil production, as well as the highest accumulation of chlorophylls and carotenoids. The application of CuNPs nanofertilizer caused a significant increase in the antioxidant activity of the French basil plant, but the combination of CuNPs with spirulina extract caused a decrease in antioxidant activity. CONCULOSION: Therefore, foliar application of natural bio-fertilizer with CuNPsis necessary for obtaining the best growth and highest oil production from the French basil plant with the least damage to the plant and the environment.
Asunto(s)
Cobre , Nanopartículas del Metal , Ocimum basilicum , Spirulina , Spirulina/metabolismo , Spirulina/efectos de los fármacos , Spirulina/crecimiento & desarrollo , Ocimum basilicum/efectos de los fármacos , Ocimum basilicum/crecimiento & desarrollo , Ocimum basilicum/metabolismo , Antioxidantes/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Fertilizantes , Clorofila/metabolismo , Fotosíntesis/efectos de los fármacos , Aceites Volátiles/farmacologíaRESUMEN
BACKGROUND: The Mexican lime (Citrus aurantifolia cv.), widely consumed in Iran and globally, is known for its high perishability. Edible coatings have emerged as a popular method to extend the shelf life of fruits, with xanthan gum-based coatings being particularly favored for their environmental benefits. This study aims to evaluate the effectiveness of an edible coating formulated from xanthan gum, enriched with Spirulina platensis (Sp) and pomegranate seed oil (PSO), in improving the quality and reducing the weight loss of Mexican lime fruit under conditions of 20 ± 2 °C and 50-60% relative humidity. RESULTS: Based on the results, the application of coatings was generally effective in reducing fruit weight loss, with the least weight loss observed in the xanthan gum 0.2%+ Spirulina platensis extract (1%) treatment. Additionally, the levels of total phenols and flavonoids in the treated fruits exceeded those in the control group, with xanthan gum 0.2%+ Spirulina platensis extract (1%) and xanthan gum 0.2% exhibiting the highest concentrations of these compounds. The antioxidant capacity of the fruits was also enhanced by the coatings, surpassing that of the control group, with xanthan gum 0.2%+ Spirulina platensis extract (1%) achieving the highest levels. The treatments significantly suppressed the activity of the polyphenol oxidase (PPO) enzyme, with xanthan gum 0.2% demonstrating the most potent inhibitory effect. Furthermore, the treatments resulted in increased activities of catalase (CAT) and peroxidase (POD) enzymes compared to the control. Except for xanthan gum 0.2%+ pomegranate seed oil (0.05%), all treatments maintained the fruit's greenness (a*) more effectively than the control. CONCLUSIONS: Peel browning is a major factor contributing to the decline in quality and shelf life of lime fruit. The application of 0.1% and 0.2% xanthan gum coatings, as well as a combination of 0.2% xanthan gum and Spirulina platensis extract, significantly inhibited PPO activity and enhanced the activity of CAT and POD and phenolic compound in Mexican lime fruits stored at of 20 ± 2 °C for 24 days. Consequently, these treatments comprehensively preserved lime fruit quality by significantly reducing browning, maintaining green color, and preserving internal quality parameters such as TA, thereby enhancing both visual appeal and overall fruit quality.
Asunto(s)
Aceites de Plantas , Polisacáridos Bacterianos , Granada (Fruta) , Semillas , Spirulina , Spirulina/química , Aceites de Plantas/farmacología , Granada (Fruta)/química , Semillas/química , Frutas/química , Citrus aurantiifolia , Conservación de Alimentos/métodos , Almacenamiento de Alimentos , AntioxidantesRESUMEN
Melanoma is the most aggressive and deadly skin cancer. The difficulty in its treatment arises from its ability to suppress the immune system, making it crucial to find a substance that increases anti-tumor immunity. C-phycocyanin (C-PC) appears as a promising bioactive, with multifaceted effects against several cancers, but its efficacy against melanoma has only been tested in vitro. Therefore, we investigated C-PC's the anti-tumor and immunomodulatory action in a murine melanoma model. The tumor was subcutaneously induced in C57BL/6 mice by injecting B16F10 cells. The animals were injected subcutaneously with C-PC for three consecutive days. After euthanasia, the tumor was weighed and measured. The inguinal lymph node was removed, and the cells were stained with antibodies and analyzed by flow cytometry. The heart, brain and lung were analyzed by histopathology. C-PC increased the B cell population of the inguinal lymph node in percentage and absolute number. The absolute number of T lymphocytes and myeloid cells were also increased in the groups treated with C-PC. Thus, C-PC showed a positive immunomodulatory effect both animals with and without tumor. However, this effect was more pronounced in the presence of the tumor. Positive immune system modulation may be associated with a reduction in tumor growth in animals treated with C-PC. Administration of C-PC subcutaneously did not cause organ damage. Our findings demonstrate C-PC's immunomodulatory and anti-melanoma action, paving the way for clinical research with this bioactive.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Ratones , Ficocianina/farmacología , Ficocianina/uso terapéutico , Ratones Endogámicos C57BL , Neoplasias Cutáneas/tratamiento farmacológico , InmunomodulaciónRESUMEN
In order to improve the structural properties of clays and composites of powdered spirulina, clay, nanosilica, hydroxyapatite, TiO2 and ZnO were used as an additive for mechanical processing. As a result, composites with natural nanostructured materials (NNM) are prepared with improved structural properties and bioactivity. The mixtures based on NNM with crystalline kaolinite, clays and admixtures were processed in a knife mill. The materials were characterized using FTIR spectroscopy, nitrogen adsorption and desorption, SEM release of bioactive components (anthocyanin 0,004-0,07â mg/g; chlorophyll 20-29â mg/g), composite toxicity level (below 25%), particle size measurement and surface charge density, zeta potential. Adsorption enthalpies during the formation of an intermolecular complex during the interactions of an anthocyanin molecule with the appropriate component of the composite were also calculated. There are regularities in the characteristics depending on the type of NNM, particle morphology and textural features of solids. The morphological and structural properties of the components changed slighty in the blends because the processing was conducted under relatively low mechanical stress. The morphological, textural and structural characteristics of the composites as well as the transformation to a nanostructured state, assume great bioactive activity of the composites, interesting for practical applications in medicine and cosmetics.
RESUMEN
Spirulina is the common name for the edible, nonheterocystous, filamentous cyanobacterium Arthrospira platensis that is grown industrially as a food supplement, animal feedstock, and pigment source. Although there are many applications for engineering this organism, until recently no genetic tools or reproducible transformation methods have been published. While recent work showed the production of a diversity of proteins in A. platensis, including single-domain antibodies for oral delivery, there remains a need for a modular, characterized genetic toolkit. Here, we independently establish a reproducible method for the transformation of A. platensis and engineer this bacterium to produce acetaminophen as proof-of-concept for small molecule production in an edible host. This work opens A. platensis to the wider scientific community for future engineering as a functional food for nutritional enhancement, modification of organoleptic traits, and production of pharmaceuticals for oral delivery.
RESUMEN
Phycocyanin, a blue-coloured pigment, predominantly found and derived from Spirulina sp., has gained researchers' interest due to its vibrant hues and other attractive properties like antioxidant and anti-microbial. However, the lack of reliable and sustainable phycocyanin extraction strategies without compromising the quality has hindered the scaling up of its production processes for commercial purposes. Here in this study, phycocyanin was extracted from wet and dry biomass Spirulina sp., using three different physical cell disruption methods (ultrasonication, homogenization, and freeze-thaw cycles) combined with two different buffers (phosphate buffer and acetate buffer) and water (as control). The result showed that the freeze-thaw method combined with acetate buffer produced the highest yield (25.013 ± 2.572 mg/100 mg) with a purity ratio of 0.806 ± 0.079. Furthermore, when subjected to 30% w/v salt stress, 1.9 times higher phycocyanin yield with a purity ratio of 1.402 ± 0.609 was achieved using the previously optimized extraction method.
Asunto(s)
Ficocianina , Estrés Salino , Spirulina , Ficocianina/metabolismo , Ficocianina/aislamiento & purificación , Spirulina/metabolismo , Spirulina/química , Biomasa , CongelaciónRESUMEN
The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR) and nicotinamide adenine dinucleotide phosphate (NADPH). Spirulina platensis, which is one of the blue-green algae in the form of spiral rings, belongs to the cyanobacteria class. Spirulina platensis can produce Trx under stress conditions. If it can produce Trx, it also has TrxR activity. Therefore, in this study, the TrxR enzyme was purified for the first time from Spirulina platensis, an algae the most grown and also used as a nutritional supplement in the world. A two-step purification process was used: preparation of the homogenate and 2',5'-ADP sepharose 4B affinity chromatography. The enzyme was purified with a purification fold of 1059.51, a recovery yield of 9.7 %, and a specific activity of 5.77 U/mg protein. The purified TrxR was tested for purity by SDS-PAGE. The molecular weight of its subunit was found to be about 45 kDa. Optimum pH, temperature and ionic strength of the enzyme were pH 7.0, 40 °C and 750 mM in phosphate buffer respectively. The Michaelis constant (Km) and maximum velocity of enzyme (Vmax) values for NADPH and 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) are 5 µM and 2.2 mM, and 0.0033 U/mL and 0.0044 U/mL, respectively. Storage stability of the purified enzyme was determined at several temperatures. The inhibition effects of Ag+, Cu2+, Al3+ and Se4+ metal ions on the purified TrxR activity were investigated in vitro. While Se4+ ion increased the enzyme activity, other tested metal ions showed different type of inhibitory effects on the Lineweaver-Burk graphs.
Asunto(s)
Antioxidantes , Spirulina , Reductasa de Tiorredoxina-Disulfuro , NADP/metabolismo , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Cromatografía de Afinidad , Tiorredoxinas/química , Iones , CinéticaRESUMEN
Spirulina (S.) platensis is a blue-green algae with reported nutritional and health-promoting properties, such as immunomodulating, antioxidant, cholesterol-lowering properties, and beneficial effects on inflammatory diseases. Spirulina platensis can improve the function and composition of the gut microbiota and exert systemic beneficial effects. Gut dysbiosis is characterized by an imbalance in the composition and function of gut microbiota and is associated with several diseases. Some dietary bioactive compounds can restore the composition, diversity, and function of the gut microbiota and improve health-related parameters. This review proposes to gather relevant information on the effects of S. platensis supplementation on the modulation of the function and composition of gut microbiota and local and systemic measures related to gut health, such as inflammation, oxidative stress, and glucose and lipid metabolism. The body of evidence conducted with animals and clinical studies shows that S. platensis supplementation increased gut microbiota diversity and improved gut microbiota composition, as reported by a decrease in the Firmicutes/Bacteroides ratio, increase in the relative abundance of Prevotella and Lactobacillaceae, increase in short-chain fatty acid production and decrease of gut permeability. Improvements in gut microbiota have been associated with host health benefits such as anti-obesity, anti-diabetic, anti-hypertensive, anti-lipemic, anti-inflammatory, and antioxidant effects.
RESUMEN
Microalgal, species are recognized for their high protein content, positioning them as a promising source of this macronutrient. Spirulina platensis, in particular, is noteworthy for its rich protein levels (70â¯g/100â¯g dw), which are higher than those of meat and legumes. Incorporating this microalgae into food can provide various benefits to human health due to its diverse chemical composition, encompassing high amount of protein and elevated levels of minerals, phenolics, essential fatty acids, and pigments. Conventional techniques employed for protein extraction from S. platensis have several drawbacks, prompting the exploration of innovative extraction techniques (IETs) to overcome these limitations. Recent advancements in extraction methods include ultrasound-assisted extraction, microwave-assisted extraction, high-pressure-assisted extraction, supercritical fluid extraction, pulse-electric field assisted extraction, ionic liquids assisted extraction, and pressurized liquid extraction. These IETs have demonstrated efficiency in enhancing protein yield of high quality while maximizing biomass utilization. This comprehensive review delves into the mechanisms, applications, and drawbacks associated with implementing IETs in protein extraction from S. platensis. Notably, these innovative methods offer advantages such as increased extractability, minimized protein denaturation, reduced solvent consumption, and lower energy consumption. However, safety considerations and the synergistic effects of combined extraction methods warrant further exploration and investigation of their underlying mechanisms.
RESUMEN
Carbapenem-resistant Acinetobacter baumannii denotes a significant menace to public health, and it mandates an urgent development of new effective medications. Here, we aimed to estimate the efficiency of the zinc oxide nanoparticles (ZnO NP) biosynthesized from Arthrospira maxima (Spirulina) both in vitro and in vivo. Carbapenem-resistant A. baumannii isolates were collected, identified, tested for their antibiotic susceptibility, and then subjected to PCR to detect carbapenemase-producing genes. The most predominant carbapenemase resistance gene was blaKPC. The biosynthesized ZnO NP were characterized using UV, FTIR, XRD, SEM, and TEM. The prepared ZnO NP was then tested against A. baumannii isolates to determine the minimum inhibitory concentration (MIC), which ranged from 250 to 1000 µg/ml. Burn wound was persuaded in twenty rats and inoculated with carbapenem-resistant A. baumannii isolate. Rats were allocated into four groups: a negative control group, a positive control group treated with topical 0.9% saline, a test treatment group that received topical ZnO NP, and a standard treatment group. All groups received treatment for 15 consecutive days and then euthanized. Skin samples were harvested and then subjected to histopathological and immunochemical investigations. ZnO NP revealed a comparable antibacterial activity to colistin as it revealed a lower level of fibrosis, mature surface epithelization with keratinization, and restoration of the normal skin architecture. In addition, it significantly decreased the immunoreactivity of the studied inflammatory markers. Thus, ZnO NP synthesized by A. maxima could be considered a promising, safe, and biocompatible alternative to traditional antibiotics in the therapy of carbapenem-resistant A. baumannii infections.
Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Carbapenémicos , Pruebas de Sensibilidad Microbiana , Cicatrización de Heridas , Óxido de Zinc , Acinetobacter baumannii/efectos de los fármacos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ratas , Carbapenémicos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Nanopartículas del Metal/química , Nanopartículas/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Masculino , Quemaduras/microbiología , Quemaduras/tratamiento farmacológico , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genéticaRESUMEN
Excessive consumption of antibiotics is considered one of the top public health threats, this necessitates the development of new compounds that can hamper the spread of infections. A facile green technology for the biosynthesis of Zinc oxide nanoparticles (ZnO NPs) using the methanol extract of Spirulina platensis as a reducing and stabilizing agent has been developed. A bunch of spectroscopic and microscopic investigations confirmed the biogenic generation of nano-scaled ZnO with a mean size of 19.103 ± 5.66 nm. The prepared ZnO NPs were scrutinized for their antibacterial and antibiofilm potentiality, the inhibition zone diameters ranged from 12.57 ± 0.006 mm to 17.33 ± 0.006 mm (at 20 µg/mL) for a variety of Gram-positive and Gram-negative pathogens, also significant eradication of the biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae by 96.7% and 94.8% respectively was detected. The free radical scavenging test showed a promising antioxidant capacity of the biogenic ZnO NPs (IC50=78.35 µg/mL). Furthermore, the anti-inflammatory role detected using the HRBCs-MSM technique revealed an efficient stabilization of red blood cells in a concentration-dependent manner. In addition, the biogenic ZnO NPs have significant anticoagulant and antitumor activities as well as minimal cytotoxicity against Vero cells. Thus, this study offered green ZnO NPs that can act as a secure substitute for synthetic antimicrobials and could be applied in numerous biomedical applications.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Spirulina , Óxido de Zinc , Animales , Chlorocebus aethiops , Óxido de Zinc/farmacología , Óxido de Zinc/química , Células Vero , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Extractos Vegetales/químicaRESUMEN
BACKGROUND: Breast carcinoma is the second leading cause of cancer related-deaths among women. Given its high incidence and mortality rates, searching for innovative treatments represents a formidable challenge within the medical and pharmaceutical industries. This study delves into the preparation, characterization, and anticancer properties of silver chloride nanoparticles (AgCLNPs) as a novel therapeutic approach for breast cancer cells, employing a biological synthesis method. METHODS: This investigation, utilized spirulina platensis extract to synthesize silver chloride nanoparticles (AgCLNPs-SP). The formation, size, and structure of the nanoparticles were characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), X-ray crystallography (XRD), and Energy-dispersive X-ray spectroscopy (EDS) analysis. Additionally, the apoptotic and anticancer properties of AgCLNPs-SP were thoroughly examined. RESULTS: The results, revealed AgCLNPs-SP to exhibit a spherical, morphology with a size range of 40-70 nm, primarily silver and chlorine. The dose-dependent response of AgCLNP-SP against MDA-MB231 cells was ascertained using the MTT Assay, with an IC50 value of 34 µg/mL. Furthermore, the Annexin V-FITC/ PI apoptosis assay demonstrated a significant proportion of early apoptosis (43.67%) in MDA-MB231 cells. This apoptosis process was substantiated by up-regulation in mRNA expression levels of P53, CAD, and Bax genes, alongside a down-regulation of the of bcl2 gene expression. Additionally, an augmented production of reactive oxygen species (ROS), cell cycle analysis, Hoechst staining assay, and evaluated levels of Caspase - 3, -8 and - 9 were observed in AgCLNPs-SP-treated MDA_MB231 cancer cells. CONCLUSIONS: In conclusion, the results suggest that AgCLNPs-SP may be a promising agent for treating breast cancer.
Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Microalgas , Femenino , Humanos , Nanopartículas del Metal/química , Células MCF-7 , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Cloruros , Extractos Vegetales/farmacología , Extractos Vegetales/químicaRESUMEN
Bioplastics have been used as alternatives to conventional petroleum-based plastics to lessen the burdens on marine and terrestrial environments due to their non-biodegradability and toxicity. However, recent studies have shown that not all bioplastics may be environmentally friendly. Microalgae, such as Spirulina that do not require arable land, have been identified as a potential bioplastic source. In this study, cradle-to-gate life cycle assessment (LCA) was carried out in openLCA program using the Agribalyse database, to evaluate the environmental impacts of Spirulina bioplastic, formed from plasticization of Spirulina powder with glycerol. Two processes were created for the inventories of (i) Spirulina powder and (ii) Spirulina bioplastic, where the output of the former served as an input for the latter. The extruded bioplastic sheets were food-grade and could be used as edible packaging materials. The bioplastic was also compared to conventional plastics and it was found that the energy consumption was 3.83 ± 0.26 MJ/kg-bioplastic, which was 12% and 22% higher than that of LDPE and PVC plastic films, respectively. The impacts on the environment showed that the chemical growth medium (Zarrouk medium) and electricity were the main contributors in most of the categories. Compared to the PVC and LDPE films, the Spirulina bioplastic's impacts on the aquatic ecosystems were 2-3 times higher. The global warming potential of the Spirulina bioplastic was 1.99 ± 0.014 kg CO2 eq, which was 23% and 47% lower than that of LDPE and PVC films, respectively. Sensitivity analysis was carried out by changing the electricity source and using alternative growth media. Except for the case of switching to solar energy, the results for other cases did not differ significantly from the base case scenario. Future studies were suggested to identify different greener alternatives to the growth medium as well as different energy mixes for more environmentally benign solutions.
Asunto(s)
Glicerol , Spirulina , Spirulina/crecimiento & desarrollo , Spirulina/química , Glicerol/química , Plásticos , Embalaje de AlimentosRESUMEN
Thioredoxin reductase (TrxR, enzyme code [E.C.] 1.6.4.5) is a widely distributed flavoenzyme that catalyzes nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of thioredoxin and many other physiologically important substrates. Spirulina platensis is a blue-green algae that is often used as a dietary supplement. S. platensis is rich in protein, lipid, polysaccharide, pigment, carotenoid, enzyme, vitamins and many other chemicals and exhibits a variety of pharmacological functions. In the present study, a simple and efficient method to purify TrxR from S. platensis tablets is reported. The extractions were carried out using two different methods: heat denaturation and 2',5'-adenosine diphosphate Sepharose 4B affinity chromatography. The enzyme was purified by 415.04-fold over the crude extract, with a 19% yield, and specific activity of 0.7640 U/mg protein. Optimum pH, temperature and ionic strength of the enzyme activity, as well as the Michaelis constant (Km ) and maximum velocity of enzyme (Vmax ) values for NADPH and 5,5'-dithiobis(2-nitrobenzoic acid) were determined. Tested metal ions, vitamins, and drugs showed inhibition effects, except Se4+ ion, cefazolin sodium, teicoplanin, and tobramycin that increased the enzyme activity in vitro. Ag+ , Cu2+ , Mg2+ , Ni2+ , Pb2+ , Zn2+ , Al3+ , Cr3+ , Fe3+ , and V4+ ions; vitamin B3 , vitamin B6 , vitamin C, and vitamin U and aciclovir, azithromycin, benzyladenine, ceftriaxone sodium, clarithromycin, diclofenac, gibberellic acid, glurenorm, indole-3-butyric acid, ketorolac, metformin, mupirocin, mupirocin calcium, paracetamol, and tenofovir had inhibitory effects on TrxR. Ag+ exhibited stronger inhibition than 1-chloro-2,4-dinitrobenzene (a positive control).
Asunto(s)
Spirulina , Reductasa de Tiorredoxina-Disulfuro , NADP/metabolismo , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Cromatografía de Afinidad , Vitaminas , IonesRESUMEN
CONTEXT: Recently, prioritize has been given to using natural phytogenic or nano compounds as growth promoters and immunostimulants in fish diets as an alternative to antibiotics. AIMS: The main propose of this trial was to determine the impact of supplementing diets with spirulina or curcumin nanoparticles on the performance and health indicators of Nile tilapia fingerlings. METHODS: In a 56-day feeding trial, 180 tilapia fingerlings were assigned into three main groups, as follows: 1st, control group, 2nd, Spirulina platensis (SP; 5 g kg-1 diet) and 3rd, curcumin nanoparticles (CUR-NPs; 30 mg kg-1 diet). KEY RESULTS: Incorporating tilapia diets with SP or CUR-NPs significantly improved performance, body chemical analysis, blood biochemical and hematological indices, digestive enzyme activities, and antioxidant and immunostimulant features compared to the control. CONCLUSION: Fortified tilapia diets with CUR-NPs or SP efficiently boost the productivity and health of Nile tilapia fingerlings. IMPLICATIONS: The research introduces new practical solutions for applying safe feed additives as alternatives to antibiotics in tilapia farming.
Asunto(s)
Alimentación Animal , Antioxidantes , Cíclidos , Curcumina , Dieta , Suplementos Dietéticos , Nanopartículas , Spirulina , Animales , Curcumina/farmacología , Curcumina/administración & dosificación , Spirulina/química , Cíclidos/inmunología , Cíclidos/sangre , Alimentación Animal/análisis , Nanopartículas/administración & dosificación , Nanopartículas/química , Dieta/veterinaria , Antioxidantes/farmacología , Composición Corporal/efectos de los fármacosRESUMEN
Edwardsiellosis is a bacterial fish disease that mostly occurs in freshwater farms and is characterized by a high mortality rate. Edwardsiella tarda strain was recovered from 17 fish out of 50 Nile tilapia, which were harboring clinical signs of systemic septicemia. The level of un-ionized ammonia (NH3) in the fish farm's water was 0.11-0.15 mg/L, which was stressful for the Nile tilapia.Sequencing of the gyrB1 gene confirmed that the isolate was E. tarda JALO4, and it was submitted to NCBI under the accession number PP449014. The isolated E. tarda harbored the virulence gene edw1 AHL-synthase (quorum sensing). In addition, the isolate was sensitive to trimethoprim and sulfamethoxazole mean while it was intermediate to florfenicol. The median lethal dose (LD50) of E. tarda JALO4 was determined to be 1.7 × 105 CFU/mL in Nile tilapia.In the indoor experiment, Nile tilapia (45.05 ± 0.4 g), which received dietary Spirulina platensis (5 and 10 g/kg fish feed), showed optimum growth and feed utilization. Meanwhile, after receiving dietary S. platensis, the fish's feed conversion ratio (FCR) was significantly enhanced compared to the control, which was 1.94, 1.99, and 2.88, respectively. The expression of immune-related genes interleukin (IL)-1ß and tumor necrosis factor (TNF)-α were upsurged in E. tarda-challenged fish with higher intensity in S. platensis groups. Dietary S. platensis at a dose of 10 g/kg fish feed could provide a relative protection level (RPL) of 22.2% Nile tilapia challenged against E. tarda. Nile tilapia experimentally infected E. tarda, drastically altering their behavior: higher operculum movement, low food apprehension, and abnormal swimming dietary S. platensis (10 g/kg fish feed) could rapidly restore normal status.It was concluded that Edwardsiellosis could alter Nile tilapia behavior with a high loss in fish population. Fish received dietary-S. platensis could rapidly restore normal behavior after E. tarda infection. It is recommended the incorporation of S. platensis at doses of 10 g/kg into the Nile tilapia diet to boost their immunity and counteract E. tarda infection.
Asunto(s)
Alimentación Animal , Cíclidos , Edwardsiella tarda , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Spirulina , Animales , Cíclidos/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Alimentación Animal/análisis , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/prevención & control , Acuicultura , Dieta/veterinariaRESUMEN
BACKGROUND: The present study is designed to assess the effect of adding various doses of Spirulina platensis (SP) on broiler chicken growth performance, gut health, antioxidant biomarkers, cecal microbiota, histopathology, and immunohistochemistry of inducible nitric oxide synthase (iNOS). 240 male Cobb 500 broiler chicks (1 day old) were placed into four groups (sixty birds/group), then each group was further divided into three replicates of 20 chickens each for 35 days. Birds were allocated as follows; the 1st group (G1), the control group, fed on basal diet, the 2nd group (G2): basal diet plus SP (0.1%), the 3rd group (G3): basal diet plus SP (0.3%), and the 4th group (G4): basal diet plus SP (0.5%). RESULTS: Throughout the trial (d 1 to 35), SP fortification significantly increased body weight growth (BWG) and feed conversion rate (FCR) (P < 0.05). Bursa considerably increased among the immunological organs in the Spirulina-supplemented groups. Within SP-supplemented groups, there was a substantial increase in catalase activity, blood total antioxidant capacity, jejunal superoxide dismutase (SOD), and glutathione peroxidase (GPX) activity (P < 0.05). Fatty acid binding protein 2 (FABP2), one of the gut barrier health biomarkers, significantly increased in the SP-supplemented groups but the IL-1ß gene did not significantly differ across the groups (P < 0.05). Different organs in the control group showed histopathological changes, while the SP-supplemented chicken showed fewer or no signs of these lesions. The control group had higher levels of iNOS expression in the gut than the SP-supplemented groups (p < 0.05). Cecal Lactobacillus count significantly elevated with increasing the rate of SP inclusion rate (p < 0.05). CONCLUSION: Supplementing broiler diets with SP, particularly at 0.5%, can improve productivity and profitability by promoting weight increase, feed utilization, antioxidant status, immunity, and gastrointestinal health.
Asunto(s)
Antioxidantes , Spirulina , Animales , Masculino , Pollos , Decapodiformes , BiomarcadoresRESUMEN
The gut microbiota is one of the essential contributors of the pathogenesis and progress of inflammatory bowel disease (IBD). Compared with first-line drug therapy, probiotic supplementation has emerged as a viable and secure therapeutic approach for managing IBD through the regulation of both the immune system and gut microbiota. Nevertheless, the efficacy of oral probiotic supplements is hindered by their susceptibility to the gastrointestinal barrier, leading to diminished bioavailability and restricted intestinal colonization. Here, we developed a bacteria-microalgae symbiosis system (EcN-SP) for targeted intestinal delivery of probiotics and highly effective treatment of colitis. The utilization of mircroalge Spirulina platensis (SP) as a natural carrier for the probiotic Escherichia coli Nissle 1917 (EcN) demonstrated potential benefits in promoting EcN proliferation, facilitating effective intestinal delivery and colonization. The alterations in the binding affinity of EcN-SP within the gastrointestinal environment, coupled with the distinctive structural properties of the SP carrier, served to overcome gastrointestinal barriers, minimizing transgastric EcN loss and enabling sustained intestinal retention and colonization. The oral administration of EcN-SP could effectively treat IBD by reducing the expression of intestinal inflammatory factors, maintaining the intestinal barrier and regulating the balance of gut microbiota. This probiotic delivery approach is inspired by symbiotic interactions found in nature and offers advantages in terms of feasibility, safety, and efficacy, thus holding significant promise for the management of gastrointestinal disorders.
Asunto(s)
Escherichia coli , Microbioma Gastrointestinal , Microalgas , Probióticos , Spirulina , Simbiosis , Animales , Ratones , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/terapia , Humanos , Colitis , Ratones Endogámicos C57BL , Masculino , Sistemas de Liberación de Medicamentos/métodosRESUMEN
Phycocyanin was extracted from Spirulina platensis using conventional extraction (CE), direct ultrasonic-assisted extraction (direct UAE), indirect ultrasonic-assisted extraction (indirect UAE), and microwave-assisted extraction (MAE) methods at different temperatures, extraction intervals, stirring rate, and power intensities while maintaining the same algae to solvent ratio (1:15 w/v). The optimization of the extraction parameters indicated that the direct UAE yielded the highest phycocyanin concentration (29.31 ± 0.33 mg/mL) and antioxidant activity (23.6 ± 0.56 mg TE/g algae), while MAE achieved the highest purity (Rp = 0.5 ± 0.002). Based on the RP value, phycocyanin extract obtained by MAE (1:15 w/v algae to solvent ratio, 40 min, 40 °C, and 900 rpm) was selected as active compound in an alginate-based hydrogel formulation designed as potential wound dressings. Phycocyanin extracts and loaded hydrogels were characterized by FT-IR analysis. SEM analysis confirmed a porous structure for both blank and phycocyanin loaded hydrogels, while the mechanical properties remained approximately unchanged in the presence of phycocyanin. Phycocyanin release kinetics was investigated at two pH values using Zero-order, First-order, Higuchi, and Korsmeyer-Peppas kinetics models. The Higuchi model best fitted the experimental results. The R2 value at higher pH was nearly 1, indicating a superior fit compared with lower pH values.
Asunto(s)
Alginatos , Hidrogeles , Ficocianina , Spirulina , Ficocianina/química , Hidrogeles/química , Alginatos/química , Spirulina/química , Antioxidantes/química , Antioxidantes/síntesis química , Microondas , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de HidrógenoRESUMEN
The current research employed an animal model of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland carcinogenesis. The estrogen receptor-positive human breast adenocarcinoma cell line (MCF-7) was used for in vitro analysis. This was combined with a network pharmacology-based approach to assess the anticancer properties of Spirulina (SP) extract and understand its molecular mechanisms. The results showed that the administration of 1 g/kg of SP increased the antioxidant activity by raising levels of catalase (CAT) and superoxide dismutase (SOD), while decreasing the levels of malonaldehyde (MDA) and protein carbonyl. A histological examination revealed reduced tumor occurrence, decreased estrogen receptor expression, suppressed cell proliferation, and promoted apoptosis in SP protected animals. In addition, SP disrupted the G2/M phase of the MCF-7 cell cycle, inducing apoptosis and reactive oxygen species (ROS) accumulation. It also enhanced intrinsic apoptosis in MCF-7 cells by upregulating cytochrome c, Bax, caspase-8, caspase-9, and caspase-7 proteins, while downregulating Bcl-2 production. The main compounds identified in the LC-MS/MS study of SP were 7-hydroxycoumarin derivatives of cinnamic acid, hinokinin, valeric acid, and α-linolenic acid. These substances specifically targeted three important proteins: ERK1/2 MAPK, PI3K-protein kinase B (AKT), and the epidermal growth factor receptor (EGFR). Network analysis and molecular docking indicated a significant binding affinity between SP and these proteins. This was verified by Western blot analysis that revealed decreased protein levels of p-EGFR, p-ERK1/2, and p-AKT following SP administration. SP was finally reported to suppress MCF-7 cell growth and induce apoptosis by modulating the PI3K/AKT/EGFR and MAPK signaling pathways suggesting EGFR as a potential target of SP in breast cancer (BC) treatment.